Journal articles on the topic 'Графічні навички'

To see the other types of publications on this topic, follow the link: Графічні навички.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 47 journal articles for your research on the topic 'Графічні навички.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Vasenko, Vasyl. "Реалізація графічної складової у формуванні проектно-технологічної компетентності учнів." HUMANITARIUM 45, no. 2 (July 3, 2020): 13–18. http://dx.doi.org/10.31470/2308-5126-2019-45-2-13-18.

Full text
Abstract:
У статті аналізуються вимоги Державного стандарту базової і повної загальної середньої освіти для освітньої галузі «Технології». Визначається місце та завдання технологічного компоненту в трудовому навчанні учнів й звертається увага на його графічну складову. Розглядаються деякі умови формування проектно-технологічної компетентності школярів у графічній діяльності на уроках трудового навчання. Проводиться аналіз змісту цього навчального предмету через призму формування цілісного уявлення про розвиток матеріального виробництва, ролі техніки, проектування і технологій обробки матеріалів у розвитку суспільства.Анонсована компетентність розглядається на предмет виявлення можливостей формування техніко-технологічних знань, умінь і навичок на уроках трудового навчання. При цьому звертається увага на методи, які застосовуються у взаємодії вчителя і учня у педагогічному процесі в освітній галузі «Технологія» та дозволяють модернізацію навчання в загальноосвітній школіВизначено структуру та характеристики компетенцій учнів базової і повної загальної середньої освіти для освітньої галузі «Технології»: розрахунково-графічні; проектно-технологічні; техніко-технологічні; виробничо-технологічні; творчо-конструкторські, формування яких здійснюється технологічним компонентом у вигляді проектування. На основі цього доведено, що у проектній діяльності учні базової загальної середньої освіти реалізують графічну складову проектно-технологічної компетентності через розуміння і виконання елементів художнього конструювання за графічним зображенням або власним задумом, обрання та застосування методів художнього і технічного проектування, читання і розуміння графічних зображень, необхідних для виконання завдань проекту, тощо. Школярі повної загальної середньої освіти – різних сфер людської діяльності (технологічної, освітньої, мистецької, економічної, політичної тощо) та проведення художньо-конструкторського аналізу об’єкта проектування і т.п.
APA, Harvard, Vancouver, ISO, and other styles
2

Гумен, Олена Миколаївна, Соломія Євгенівна Лясковська, and Євген Володимирович Мартин. "Графічні інформаційні технології у підготовці фахівців технологічних спеціальностей." Theory and methods of e-learning 4 (February 17, 2014): 65–68. http://dx.doi.org/10.55056/e-learn.v4i1.371.

Full text
Abstract:
Розвиток і зміцнення промислового потенціалу України передбачає широке залучення інформаційних технологій у процесі створення сучасних засобів виробництва. Зокрема, важливими є питання впровадження новітніх технологій в галузь електронного машинобудування, де інформаційна складова досить висока. Зауважимо широке використання у підготовці технічних проектів дослідження та розроблення сучасних взірців електронної техніки методу скінченних елементів [1], новий етап розвитку якого обумовлений наявністю потужного комп’ютерного інструментарію. Значну і важливу його частину складають геометричні елементи [2], від вибору яких залежить точність визначення технологічних параметрів виробів електронного машинобудування. Природно, важливу увагу звертають на стан вивчення і засвоєння студентами технічних спеціальностей графічних дисциплін. Незважаючи на активну і плідну роботу Української асоціації з прикладної геометрії [3], вивчення її фундаментальної складової – інженерної та комп’ютерної графіки – обмежене мінімально можливою кількістю аудиторних навчальних годин, причому співвідношення кількості годин аудиторних занять до самостійної та індивідуальної роботи студентів становить для стаціонарної форми навчання 44%, а для заочної – 12%.Разом з тим широке залучення графічних засобів у процесі реалізації навчальних проектів засвоєння комп’ютерного інструментарію [4], в тому числі конструювання виробів електронного машинобудування, вимагає професійної підготовки саме з інженерної та комп’ютерної графіки. Отже, опанування базовими знаннями нарисної геометрії та креслення, складових інженерної графіки, виступає зовсім не самоціллю, чи тим більше альтернативою іншим навчальним технологіям, а ознакою цілісного підходу до процесу підготовки технічного фахівця в галузі електронного машинобудування, являє єдину розумну можливість з практичних міркувань, виходячи з великої кількості супутніх побудов при використанні сучасних комп’ютерних і комп’ютеризованих методів досліджень, до яких слід віднести метод скінченних елементів.На вивчення курсу інженерної та комп’ютерної графіки обсягом 36 годин лекційних та 36 годин лабораторних занять відведено перший і другий семестри. Матеріал курсу максимально адаптований до дисциплін старших курсів, зокрема, курсу «Метод скінченних елементів», який читається у сьомому семестрі. При вивченні методу використовується програмний продукт AutoCAD Mechanical. Враховуючи використання у методі плоских і просторових геометричних елементів, у курсі інженерної та комп’ютерної графіки передбачається їх вивчення як традиційними, так і комп’ютерними засобами. Так, на практичних заняттях з інженерної графіки студенти виконують графічну роботу «Геометричне креслення», викреслюючи деталь типу «планка». У процесі виконання цієї роботи відбувається ґрунтовне знайомство з викреслюванням основних графічних примітивів та з прийомами їх редагування: вилучення геометричних об’єктів, виконання фасок, спряжень, вибір типів ліній тощо. Елементи нарисної геометрії представлені лекційним матеріалом та відповідними графічними роботами з розділів ортогонального і аксонометричного проекціювання елементів тривимірного простору: точки, лінії, поверхні, їх загальне та особливе положення, взаємне розташування у просторі. Особлива увага акцентується на взаємне положення прямих і площин, побудову об’єктів їх перетину. Типові геометричні поверхні – призма, піраміда, циліндр, конус, сфера – вивчаються у курсі відповідно до вимог подання елементів методу комп’ютерними засобами як просторові об’єкти особливого положення, ортогональні до площин проекцій.Для підвищення ефективності подачі матеріалу постійно відбувається розвиток і поповнення методичної бази за рахунок нових посібників, що розробляються згідно навчального плану. Широке залучення методичних посібників дозволяє якісно використовувати час, відведений на самостійну роботу студентів, розв’язувати задачі з нарисної геометрії чи викреслювати графічні роботи з інженерної графіки з мінімальним втручанням викладача, а також самостійно здійснювати підготовку до контрольних заходів, згідно тематики занять. Таким чином, студенти швидше і з більшим розумінням справляються з поточними завданнями, осмислено підходячи до виконання робіт.Враховуючи значний відсоток відведених на самостійну роботу годин, наявність комп’ютерної техніки, на кожному практичному занятті проводиться короткотривале супутнє пояснення окремих засобів подання відповідних розділів інженерної графіки з використанням пакета системи автоматизованого проектування AutoCAD 2009 російськомовної версії [5].Щодо вивчення основ інженерної комп’ютерної графіки в середовищі системи AutoCAD для проведення лабораторних занять також розроблено відповідні методичні напрацювання. Кожний етап виконання графічної роботи розписується детально, доступно роз’яснюється та ілюструється.Відповідно до можливостей навчальної дисципліни і потреб курсу «Метод скінченних елементів» передбачено виконання двох лабораторних робіт з комп’ютерної графіки у 2D і 3D форматах у другому семестрі, а саме: створення комп’ютерного варіанту зображення планки в режимі 2D-моделювання і однойменної лабораторної роботи з теми «Перетин поверхонь площинами» у 3D форматі. Обидві лабораторні роботи виконуються відповідно до навчальних варіантів графічних робіт. Традиційно вивчення інженерної графіки завершується заліком наприкінці першого семестру та іспитом у другому семестрі. При цьому контроль комп’ютерної складової передбачений у другому семестрі.Протягом практичних занять, виконуючи в аудиторії поточні графічні роботи, студенти мають можливість одержувати консультації з відповідних розділів комп’ютерної графіки. Заключним розділом вивчення інженерної графіки у другому семестрі являє оформлення конструкторської документації [6] на прикладі виконання схем електричних принципових, які переважно використовуються у виробах електронного машинобудування. Щодо інженерної графіки, то схеми містять її традиційні геометричні примітиви для зображення електричних елементів: точки, кола, багатокутники, дуги тощо. Такі елементи просто подати геометричними примітивами комп’ютерної графіки, використовуючи спеціальні команди: Задание атрибутов, Создание блока, Вставка блока меню Блоки.Нарешті, наприкінці курсу передбачено два лекційних та два лабораторних заняття з комп’ютерної графіки. На лекціях подається в інтегрованому вигляді матеріал, з яким студенти знайомились на практичних заняттях та вивчали за рахунок кількості годин самостійної та індивідуальної роботи упродовж двох семестрів, стосовно до виконання двох лабораторних робіт. Виконання лабораторної роботи «Схеми електричні принципові» передбачено факультативно.Лабораторні роботи виконуються у 2D і 3D форматах з використанням варіантів, виконаних студентами і підписаних викладачем графічних робіт з однойменної тематики. Бали за лабораторні роботи включені до загальної кількості балів за виконані роботи в другому семестрі як складова оцінки другого модуля.Слід зазначити, що виконання лабораторних робіт з комп’ютерної графіки дозволяє студентам краще засвоїти знання, одержані при виконанні відповідної графічної роботи в курсі інженерної графіки. Навички і уміння, здобуті при вивченні навчального матеріалу як під час виконання графічних робіт, так і при освоєнні комп’ютерних графічних засобів відображення базових елементів, сприятимуть у подальшому засвоєнню інших інженерних дисциплін на старших курсах.Висновки. Винесення частини матеріалу з комп’ютерної графіки на самостійне вивчення із урахуванням значного відсотку самостійної та індивідуальної роботи в навчальному плані з наступним його вивченням і закріпленням на лекційних і лабораторних заняттях наприкінці другого семестру уможливлює знизити негативний вплив скорочення годин на вивчення графічних дисциплін. Разом з тим актуальною є проблема розділення в часі процесу вивчення інженерної та комп’ютерної графіки. Доцільним видається вивчення інженерної графіки традиційними засобами у першому і другому семестрі, а комп’ютерної графіки – у третьому семестрі.
APA, Harvard, Vancouver, ISO, and other styles
3

Поліщук, Володимир Ісидорович, Іван Григорович Балюба, and Борис Федорович Горягін. "Про дистанційний курс з нарисної геометрії в ДНАБА." New computer technology 4 (October 31, 2013): 47. http://dx.doi.org/10.55056/nocote.v4i1.24.

Full text
Abstract:
Нарисна геометрія [1] є фундаментальною дисципліною, що закладає основу для подальшого вивчення інженерних дисциплін, які потрібні фахівцям будівельної галузі. В період прискореного науково-технічного прогресу виникає особлива необхідність використання інформаційних комп’ютерних технологій в процесі інженерної підготовки студентів. Згідно з вимогами, викладеними у листі МОНУ № 4.1-20/2366 від 04.07.2005 р. та враховуючи досвід підготовки матеріалів для створення курсів для дистанційної форми навчання, кафедра “Інженерна та комп’ютерна графіка” приступила до розробки дистанційного курсу з нарисної геометрії.На кафедрі виконувалась держбюджетна науково-дослідна робота К-4 -08-03 – Комп’ютерне навчання дисципліні “Нарисна геометрія”, номер державної реєстрації 0102U002844.Використовуючи одержаний досвід, згідно з рекомендаціями Центру дистанційного та факультативного навчання Донбаської національної академії будівництва і архітектури по розроблених централізовано методичних вказівках авторами був створений план і структура матеріалів курсу нарисної геометрії. Нами були виділені три основні етапи роботи: теоретичний матеріал, практичні роботи, графічні завдання. Кожний з етапів, для визначення степені засвоєння розділів, включав в себе самотестування.Теоретичний матеріал, розбитий на розділи по аналогії з лекціями курсу, подавався модулями у вигляді завдань з їх поясненнями та самотестуванням для виявлення рівня їх засвоєння. В кінці розділу забезпечувалось самотестування. Якщо студент був задоволений результатами самотестування розділу, використовувана нами система “Прометей” дозволяла перехід для освоєння іншого розділу.По аналогії побудовано опанування етапу практичних робіт.Для роботи над етапом графічних завдань студент повинен мати навички роботи з панеллю малювання в текстовому редакторі MicrosoftWord, для чого були створені відповідні методичні розробки.Апробація дистанційного курсу з нарисної геометрії по перших двох розділах була проведена в локальній мережі академії.
APA, Harvard, Vancouver, ISO, and other styles
4

Алєксєєв, Олександр Миколайович, Тетяна Юріївна Маландій, and Дмитро Вікторович Требухов. "ЗАСТОСУВАННЯ МОБІЛЬНОГО ДОДАТКА SSUQUESTIONNAIRE-M ДЛЯ КОНТРОЛЮ ЗНАНЬ СТУДЕНТІВ ІНЖЕНЕРНИХ СПЕЦІАЛЬНОСТЕЙ." Information Technologies and Learning Tools 81, no. 1 (February 23, 2021): 137–53. http://dx.doi.org/10.33407/itlt.v81i1.3462.

Full text
Abstract:
У статті розглянуто сучасні тенденції використання мобільних пристроїв для тестового контролю знань. Проведено аналіз ринку програмних продуктів, які призначені для створення мобільних додатків. За основу аналізу прийнято рівень комп'ютерної грамотності, який потрібен під час використання розглянутих програмних продуктів для розроблення мобільних додатків. З цієї класифікаційної ознаки виділено три групи програмних засобів із такими вимогами до компетенцій проєктувальників мобільних пристроїв: 1) повинні мати професійні навички програмування; 2) не вимагається знання мов програмування; 3) з уміннями проєктувати на базі вебінтерфейсу. Відзначено, що різноманітність представлених на ринку програмних продуктів і закладені в них функції надають можливість викладачам створювати якісні додатки для проведення тестового контролю знань студентів інженерних спеціальностей на мобільних пристроях. Зроблено припущення, що впровадження мобільних пристроїв у навчальний процес для проведення контрольних заходів буде успішнішим, якщо враховувати специфіку практичних занять з професійної та практичної підготовки студентів, майбутніх інженерів. Особливістю цих занять є те, що в якості вихідних даних і результатів виконання навчальних завдань часто використовуються графічні зображення. Після закінчення практичних занять студенти інженерних спеціальностей зобов'язані знати конструкцію складних технічних пристроїв і навчитися ними користуватися. Тому для проведення контролю знань треба передбачити використання в тесті завдань з графічними ілюстраціями, зокрема із зображеннями великого розміру. Важливо проводити контроль знань у навчальних лабораторіях і виробничих приміщеннях, де мають проходити практичні заняття, але там не завжди є можливість забезпечення доступу до мобільного зв'язку.Описано мобільний додаток SSUquestionnaire-m, який надає можливість врахувати зазначені в статті особливості інженерної освіти та охопити контрольними заходами всіх студентів, які присутні на занятті. Водночас не потрібно переходити на суміщені технології мобільного контролю та, обмежуючись можливістю користуватися лише мобільними пристроями студентів, проводити всі контрольні заходи в одну сесію.
APA, Harvard, Vancouver, ISO, and other styles
5

Надточій, В. О., Ю. М. Лимарєва, and Д. А. Черняков. "РІЗНОРІВНЕВІ РГР ЯК ЗАСІБ КОМПЛЕКСНОЇ ПЕРЕВІРКИ ЗНАНЬ СТУДЕНТІВ З ЕЛЕКТРИКИ ТА МАГНЕТИЗМУ." Духовність особистості: методологія, теорія і практика 91, no. 4 (September 30, 2019): 100–110. http://dx.doi.org/10.33216/2220-6310-2019-91-4-100-110.

Full text
Abstract:
У статті наведено приклади проведення поточного оцінювання знань студентів з розділу «Електрика та магнетизм» на основі застосування розрахунково-графічних робіт. Показано можливість організації комплексної перевірки знань з розділу на основі єдиного завдання. На відміну від інших видів робіт, розрахунково-графічні роботи найбільше підходять саме до організації комплексної перевірки та контролю знань. Найпростішим видом розрахунково-графічної роботи є роботи з шаблонним виконанням. Вони підкоряються у переважній більшості алгоритму. В свою чергу, це забезпечує у попередній підготовці активне використання взаємонавчання студентів та виступає черговим кроком в опануванні знаннями з метою подальшого професійного становлення. Завдання без передбаченого алгоритму виконання є значно складнішими та вимагають відразу докладного аналізу умови та комплексного підходу до створення технологічного ланцюжка у виконанні конкретного варіанту роботи. Вони дозволяють значно ширше диференціювати рівень набуття студентами відповідних компетентностей. Роботи комбінованого характеру незначно відрізняються від них та передбачають «шаблонність» виконання. Зазначений вид перевірочних завдань, порівняно із іншими видами робіт, дозволяє проводити моніторинг цілісності знань, вмінь та навичок студента незалежно від форми організації навчання та територіального розташування основних суб’єктів навчального процесу. Такий підхід дозволяє формувати професійну компетентність майбутніх фахівців через інтеграцію знань як в межах однієї навчальної дисципліни, так і в межах комплексу суміжних дисциплін. Ключові слова: навчальний процес, фізична задача, оцінювання, перевірка, контроль, послідовність, повторюваність, алгоритм, компетентність.
APA, Harvard, Vancouver, ISO, and other styles
6

Кучер, З. С., and І. В. Божко. "АКТУАЛЬНІ ПРОБЛЕМИ ФОРМУВАННЯ ГРАФІЧНОЇ КУЛЬТУРИ СТУДЕНТІВ ТЕХНОЛОГО-ПЕДАГОГІЧНИХ ФАКУЛЬТЕТІВ." Educational Dimension 30 (February 25, 2010): 135–43. http://dx.doi.org/10.31812/educdim.4821.

Full text
Abstract:
Аргументовано, що знання основ графічної грамотності є важливою складовою технологічної підготовки студентів – майбутніх учителів технологій, що навчаються за спеціальністю «конструювання і моделювання одягу». Проаналізовано міжпредметні зв’язки таких навчальних дисциплін: креслення, конструювання і моделювання одягу, інформатика, комп’ютерна графіка. Наголошено, що процес здійснення художньо-конструкторської діяльності тісно пов'язаний з формуванням графічних умінь та навичок виконувати ескізи, проектувати різноманітні предмети дизайну. З’ясовано, що при навчанні студентів конструюванню важливим є розвиток аналітичних здібностей.
APA, Harvard, Vancouver, ISO, and other styles
7

Гевко, Ігор Васильович, Ольга Ігорівна Потапчук, Ірина Богданівна Луцик, Олександр Богданович Ящик, and Леся Леонідівна Макаренко. "МЕТОДИКА ВИКОРИСТАННЯ 3D-МОДЕЛЮВАННЯ ТА ДРУКУ У ГРАФІЧНІЙ ПІДГОТОВЦІ МАЙБУТНІХ ФАХІВЦІВ ГАЛУЗІ ЦИФРОВИХ ТЕХНОЛОГІЙ." Information Technologies and Learning Tools 87, no. 1 (March 1, 2022): 95–110. http://dx.doi.org/10.33407/itlt.v87i1.4710.

Full text
Abstract:
У статті проаналізовано специфіку графічної підготовки майбутніх фахівців у галузі цифрових технологій; обґрунтовано актуальність впровадження проєктних технологій у методику навчання 3D-моделюванню та друку, що дозволить підвищити рівень практичних умінь та навичок студентів відповідно до вимог ринку праці. Визначено особливості реалізації проєктних технологій у методиці навчання технологіям просторового моделювання з використанням спеціалізованого програмного забезпечення. З огляду на це проаналізовано сучасні програмні засоби для тривимірного моделювання і друку. Встановлено, що для побудови моделей архітектурних об’єктів найбільш ефективним є програмне середовище ArchiCAD, використання якого сприяє підвищенню якості виконуваних графічних робіт і надає можливість зробити їх більш наочними для оцінювання проєктних рішень, зокрема в процесі створення цифрових просторових моделей на основі використання BIM-технологій. У дослідженні здійснено порівняльний аналіз програмного забезпечення для 3D-друку макету та виокремлено програмне середовище Cura. Встановлено його переваги відповідно до критеріїв зручності та інтуїтивно зрозумілого інтерфейсу на етапі вивчення студентами технологій 3D-друку. Розроблено методику графічної підготовки майбутніх фахівців у галузі цифрових технологій, яка представлена на прикладі побудови моделі архітектурної споруди – університетського храму. Здійснено експериментальну перевірку доцільності використання запропонованої методики шляхом проведення педагогічного експерименту та доведено її ефективність, яка сприяє формуванню у майбутніх фахівців практичних навичок роботи з 3D-технологіями. Визначено перспективи подальших розвідок, які полягають у розробці відповідного методичного забезпечення та його впровадженні в освітній процес. Зазначено, що в подальшому є потреба у вдосконаленні методики навчання студентів технологіям 3D-моделювання та друку, зокрема для відтворення внутрішнього інтер’єру змодельованого об’єкта із використанням відповідних програмних засобів.
APA, Harvard, Vancouver, ISO, and other styles
8

Хоменко, Олексій Ігорович, and Анатолій Володимирович Гірник. "Методика опанування графічним пакетом Allplan в закладах технічної інвентаризації." New computer technology 4 (November 1, 2013): 61–62. http://dx.doi.org/10.55056/nocote.v4i1.32.

Full text
Abstract:
Використання засобів автоматизації суттєво підвищує продуктивність праці техніків та спеціалістів з технічної інвентаризації і стає одним з факторів, що спроможні мінімізувати таке негативне явище, як нескінченні черги до бюро. Ключова компонента таких засобів – програмне забезпечення персональних комп’ютерів. Згідно з рішеннями уряду України усі галузі господарства країни мають використовувати легальне (ліцензійне) програмне забезпечення. Таким чином, одна з головних проблем автоматизація діяльності БТІ – вибір програмного забезпечення, що забезпечує необхідну функціональність за мінімальної ціни. Одним з перспективних рішень цієї проблеми є використання графічного пакету Allplan. Цей пакет активно просувається на ринок України німецьким концерном Nemetschek AG за цінами, доступними для переважної більшості користувачів, а його функціональність навіть надлишкова для задач створення інвентаризаційних справ, технічних паспортів, тощо. Великою перевагою пакету є маніпулювання тривимірними об’єктами: хоча усі креслення для технічної інвентаризації є двовимірними, це значно спрощує та прискорює створення креслення. Крім цього, пакет забезпечує зручне комбінування двовимірних та тривимірних об’єктів. І, нарешті, неперевершена гнучкість у налаштуванні окремих функцій та елементів користувацького інтерфейсу у відповідності до потреб технічної інвентаризації та галузевих інструкцій робить цей пакет висококонкурентноздатним у порівнянні з іншими якісними графічними додатками.Певна річ, такий складний та багатофункціональний програмний додаток потребує певного часу на його опанування, що є небажаним з огляду на неминуче суміщення процесу навчання з виробничим процесом. Дещо спрощує ситуацію той факт, що концерн Nemetschek AG надає потенційним користувачам безкоштовну повнофункційну версію пакету Allplan Junior за умови, що цю версію не буде використано у комерційних цілях. Додатково час навчання можна скоротити за рахунок раціональних методик вивчення можливостей програми та особливостей роботи з нею. Відповідна методика навчання та посібник розроблені відділом №610 ДНДІАСБ. У основі цієї методики лежить наступна послідовність дій.1. Оскільки користування графічним додатком конче потребує досить високих навичок у роботі з персональним комп’ютером, перш за все у осіб, що навчаються, оцінюється рівень володіння персональною обчислювальною технікою: елементарні знання та навички по роботі у операційнім середовищі, вміння запускати програмні додатки та виходити з них, швидкість роботи на клавіатурі та вправність у маніпулюванні мишею, тощо. При необхідності особа, що опановує пакет Allplan, одержує відповідні навички окремо і додатково.2. Роз’яснюється та демонструється основна відмінність пакету Allplan від інших програм аналогічного призначення: орієнтація на дію, а не на об’єкт цієї дії, та головна і дуже зручна особливість користувацького інтерфейсу, що витікає з цього: єдині для усіх об’єктів загальні функції редагування. Паралельно з цим іде вивчення модулів, інструментів та прийомів двовимірного креслення та елементів користувацького інтерфейсу, пов’язаних з цими функціями. Роз’яснюються поняття шарів моделі об’єкту нерухомості та шарів атрибутів та відмінність цих понять від аналогічних, прийнятих у інших графічних додатках. Цей етап оволодіння пакетом закінчується створенням умовних графічних позначок, текстових позначок, налаштуванням вигляду розмірних ліній, тощо.3. Роз’яснюється поняття тривимірного архітектурного елементу та його відмінність від звичайного тривимірного тіла. Особи, що навчаються, вивчають по черзі можливості інструментів тривимірного креслення (“Стіна”, “Дверний проріз”, “Віконний проріз”, “Сходи”, тощо) та здобувають навички роботи з ними. Одночасно опановуються прийоми комбінування тривимірних архітектурних елементів з двомірними об’єктами (позначки, макроси, написи, тощо).4. Розглядаються прийоми створення об’єкту “Приміщення” та його позначення, проставлення розмірів.5. Після опанування базовим інструментарієм пакету вивчаються способи компонування креслень, створення стандартних, або типових рамок, написів, тощо, та прийомів друку готових документів.Запропоновану методику перевірено під час навчання користувачів пакету Allplan у НДІАСБ і доведено її вищу ефективність при навчанні працівників БТІ у порівнянні з опануванням програмою за підручником, запропонованим його виробником.Навчання співробітників БТІ здійснюється в Києві (в НДІАСБ) періодично по мірі надходження заявок та набору груп. Термін навчання не перевищує трьох-чотирьох повних робочих днів. Можливий також виїзд фахівців НДІАСБ для проведення навчання на місці.
APA, Harvard, Vancouver, ISO, and other styles
9

Швець, Василь, and Наталія Першина. "ФОРМУВАННЯ УМІНЬ МАТЕМАТИЧНОГО МОДЕЛЮВАННЯ ПІД ЧАС РОЗВ’ЯЗУВАННЯ ПРИКЛАДНИХ ЗАДАЧ ЕКОНОМІЧНОГО ЗМІСТУ." Physical and Mathematical Education 33, no. 1 (April 2, 2022): 57–62. http://dx.doi.org/10.31110/2413-1571-2022-033-1-010.

Full text
Abstract:
Формулювання проблеми. У статті звертається увага на проблему формування в старшокласників умінь і навичок математичного моделювання під час навчання математики. Під математичним моделюванням розуміється процес створення математичних моделей, їх математичне опрацювання та інтерпретація отриманих результатів (розв’язків). У повному і завершеному обсязі такий процес представлений у статті у вигляді графічної схеми (велике коло), зміст якої був розкритий в публікаціях В. Блума та Д. Лейса. Однак в такому аспекті його реалізувати під час навчання математики в старшій школі неможливо в силу багатьох причин. Зокрема тому, що старшокласники ще недостатньо підготовлені до цього інтелектуально, та й визначені програмні вимоги середньої освіти цього не передбачають. Мета статті: проілюструвати на конкретному прикладі методику розв’язання прикладних задач економічного змісту, зміст і застосування запропонованих порад, їх особливість. Матеріали і методи. Використано теоретичні методи наукового пізнання (аналіз, синтез, зіставлення, моделювання) та емпіричні (спостереження). Результати. У статті пропонується урізана графічна схема (мале коло), автором якої є В. Швець. Згідно з нею процес математичного моделювання пропонується розглядати під час навчання учнів розв’язуванню прикладних задач. Він має включати наступні етапи: математизацію, математичне опрацювання й інтерпретацію отриманих розв’язків на мові тієї галузі знань, на якій була сформульована прикладна задача. До кожного з етапів пропонуються методичні рекомендації як допомагати учням застосовувати запропонований метод. Висновки. Описані етапи і методичні поради ілюструються на прикладі розв’язання прикладних задач економічного змісту. Автори вважають, що економічна грамотність випускників середньої школи має бути високою. Тому разом з формуванням у старшокласників математичних компетентностей (графічної, аналітичної, обчислювальної, дослідницької тощо) мають формуватися і ключові, до яких відноситься і економічна. Тому є потреба в створенні добірки таких задач як для кожної з навчальних тем курсу алгебри і початків аналізу, так і для повторення вивченого на попередніх уроках, підсумкового повторення вивченого матеріалу з математики за курс середньої школи, підсумкової атестації у вигляді ДПА чи ЗНО.
APA, Harvard, Vancouver, ISO, and other styles
10

Карпова, Олена Олегівна. "Застосування мультимедійних засобів у процесі навчання іноземної мови в економічному ВНЗ." Theory and methods of e-learning 3 (February 10, 2014): 113–19. http://dx.doi.org/10.55056/e-learn.v3i1.326.

Full text
Abstract:
Перебудова зовнішньоекономічної діяльності України, розвиток нових форм співробітництва, поширення англійської мови як засобу міжнародного ділового спілкування висувають нові вимоги до майбутніх економістів стосовно їх професійних знань, здібностей, та рівня володіння іноземною мовою. Окрім того, поширення ІКТ в освітньому процесі вищої школи створює нові можливості, і разом з тим, висуває нові вимоги щодо їх ефективного використання в процесі навчання іноземної мови.Впровадження ІКТ є пріоритетним напрямом розвитку педагогічної освіти в Україні. Вже зараз технології навчання конкретизуються в нових формах навчання. Як наслідок, відбувається зміна ролі викладача, якому, окрім високого рівня професіоналізму в своїй предметній сфері, необхідно бути готовим до діяльності в новій системі відкритої освіти. Викладач повинен уміти сам розробляти інформаційні матеріали та використовувати інші ресурси із сфери інформаційних технологій [6].Пошук інноваційних технологій навчання іноземної мови у ВНЗ стали причиною зміни застарілих технічних засобів навчання на сучасні.Актуальність статті зумовлена необхідністю застосування мультимедійних засобів навчання іноземної мови у практиці економічних ВНЗ.Метою статті є визначення шляхів використання мультимедійних засобів в процесі навчання іноземної мови професійного спрямування студентів-економістів.ІКТ та їх вплив на зміст освіти, методику та організацію навчання іноземної мови є актуальною темою педагогічних досліджень. Останніми роками все більшу увагу педагогів та вчених привертає застосування мультимедійних технологій та мультимедійних засобів в процесі навчання. Проблемами комп’ютеризації навчання та використання мультимедіа в освіті займались такі вчені як Я. В. Булахова, Л. С. Шевченко, Т. І. Коваль, Н. Ю. Іщук, Н. С. Анісімова, Т. Ю. Волошина, Н. Х. Фролов, С. Н. Антонова та ін.На думку Л. А. Карташової, застосування викладачем ІКТ в процесі навчання суттєво впливає на формування нового змісту освіти та модифікацію організаційних форм і методів навчання, значно розширюються можливості методів самостійної наукової і науково-дослідної роботи та навчання студентів [7].Н. І. Бойко вважає, що ефективне використання засобів ІКТ удосконалює процес організації самостійної роботи студентів, стимулює навчально-пізнавальну діяльність студентів при вивченні теоретичного матеріалу, розв’язанні практичних завдань, контролю та оцінки навчальних досягнень студентів [1].Г. М. Кравцова та Л. В. Кравцов під мультимедіа розуміють комплекс апаратних та програмних засобів, що дозволяють застосовувати ПК для роботи з текстом, звуком, графікою, анімацією і відеофільмами [4]. М. Ю. Бухаркіна зазначає, що мультимедіа є комп’ютерною технологією, яка використовується для презентації інформації не тільки тексту, але й графіки, кольору, анімації, відео зображення у будь-якому поєднанні [2].Реалізація мультимедійних технологій в процесі навчання іноземної мови неможлива без використання мультимедійних засобів.На відміну від технічних засобів навчання (ТЗН), під якими розуміють обладнання та апаратуру, що застосовуються в навчальному процесі з метою підвищення його ефективності [6], мультимедійні засоби навчання (МЗН) є сукупністю візуальних, аудіо- та інших засобів відображення інформації, що інтегровані в інтерактивному програмному середовищі. Серед мультимедійних засобів навчання виділяють апаратні та програмні засоби. Так, серед апаратних засобів розрізняють основні й спеціальні. До основних засобів мультимедіа відноситься: комп’ютер, мультимедіа-монітор, маніпулятори (миша, клавіатура трекбол, графічний планшет, світлове перо, тачпад, сенсорний екран, pointing stick, ігрові маніпулятори – джойстик, геймпад). Зокрема, останнім часом особливої уваги заслуговує використання в практиці навчання графічних планшетів або дигитайзерів, тобто пристроїв для введення графічних зображень безпосередньо до комп’ютера за допомогою плоского ручного планшету й спеціального пера. До спеціальних засобів відносяться приводи CD-ROM, TV-тюнери, графічні акселератори, звукові плати та акустичні системи [9].Окрім того, до мультимедійних засобів, що можуть бути використані в навчальному процесі, належать інтерактивна дошка, мультимедійний проектор, лептоп або нетбук, мультимедійний програвач, смартфони та комунікатори тощо.Таким чином, використання сучасних інформаційних технологій потребує наявності персонального комп’ютера, програмного забезпечення та прямого доступу до освітніх сайтів Інтернету. Що стосується програмного забезпечення, то воно передбачає наявність ПК, CD і DVD-дисків, програм обробки електронних даних, мультимедійних навчальних програм, а також HD-DVD дисків, для зберігання повнометражних фільмів високої якості.До основних видів комп’ютерних навчальних програм відносять електронний підручник, що забезпечує можливість самостійно засвоїти навчальний курс або його розділ; програми для перевірки та оцінювання знань, умінь і навичок; тренажери – засоби формування та закріплення навичок, перевірки досягнутих результатів та ігрові програми як розважальні, так і професійної спрямованості [8].Основними напрямками використання мультимедійних засобів в процесі навчання є:– створення авторських мультимедійних продуктів викладачами за навчальними програмами;– співпраця з іншими навчальними закладами й організаціями, що займаються розробкою мультимедійних продуктів та мають відповідні мультимедійні засоби навчання;– створення єдиного координуючого центру з упровадження й використання мультимедіа в межах усіх навчальних закладів країни;– розвиток зв’язків із закордонними виробниками мультимедійних продуктів та інструментальних засобів [3].Визначення оптимальної кількості засобів мультимедіа для проведення лекції чи практичного заняття, залежить від об’єму та характеру навчального матеріалу з певної дисципліни. Метою застосування мультимедійних засобів є підвищення інформативності заняття, мотивація навчання, реалізація принципу наочності, економія навчального часу, а також вміння працювати з сучасними інформаційними технологіями.Окрім того, добираючи мультимедійні засоби, викладач має визначити, чи виконує навчальну функцію обраний мультимедійний продукт і відповідає навчальній програмі та змісту навчального матеріалу дисципліни, дотримуватися критеріїв добору мультимедійних засобів навчання, передбачити на яких етапах заняття будуть застосовуватися мультимедійні засоби, перевірити їх роботу до початку заняття, визначити час роботи студентів з мультимедійним продуктом, а також проаналізувати навчальний матеріал з метою виявлення доцільності створення власних мультимедійних продуктів [5].Як показує досвід, використання мережі Інтернет та застосування мультимедійних засобів у процесі навчання іноземної мови професійного спрямування в Одеському національному економічному університеті є передумовою втілення мультимедійних технологій в освітній процес.Ми вважаємо, що систематичне застосування мультимедійних засобів в процесі навчання іноземної мови сприяє підвищенню рівня володіння іноземною мовою майбутніми економістами, зростанню продуктивності практичного заняття, реалізації міжпредметних зв’язків, структуруванню навчального матеріалу та вмінню застосовувати сучасні інформаційні технології як потужний інструмент для навчання та ефективної роботи в майбутній професійній діяльності.Так, застосування мультимедійного проектора дозволяє демонструвати мультимедійні презентації, навчальний відеоматеріал, таблиці та схеми, а також мультимедійні ігри професійної спрямованості. Поєднання графіки, анімації, фото, відео та звуку в інтерактивному режимі навчання, активізує роботу усіх сенсорних каналів студентів та створює інтегроване інформаційне середовище, в якому відкриваються нові можливості для навчання іноземної мови в економічному ВНЗ.Для роботи в малих групах достатньо застосування лептопу або мультимедійного програвача для презентації нової теми, розвитку навичок аудіювання, роботи з електронним підручником чи посібником, а також з робочим зошитом з Multi-ROM, перегляду навчального відеоматеріалу, написання ділових електронних листів або перегляду сайтів передових іноземних періодичних видань за наявності доступу до Інтернету, використання мультимедійних навчальних програм з іноземної мови, перевірки самостійної роботи студентів, наприклад, у вигляді мультимедійної презентації тощо.Таким чином, комп’ютер у комплексі з переліченими вище мультимедійними засобами може застосовуватись в процесі навчання іноземної мови професійного спрямування як потужне джерело інформації, як засіб індивідуалізації навчання, засіб оцінювання та контролю знань, а також як засіб активізації творчої діяльності студентів та заохочення до навчання.Окрім того, застосування планшетного комп’ютера в процесі навчання іноземної мови дасть можливість майбутнім економістам ознайомитися з можливостями цього засобу, що дозволить показувати презентації, малювати схеми, графіки, працювати з графічними та офісними додатками, читати електронні книги іноземною мовою тощо. Перевагами застосування такого засобу в навчальному процесі є портативність, незначна вага, зручність у використанні та наявність необхідного програмного забезпечення.Слід зазначити, що зручними засобами при вивченні іноземної мови стали смартфони та комунікатори, що дозволяють студентам завантажувати електронні словники, які можуть використовуватись при перекладі соціально-економічних текстів на занятті; зберігати дані в електронному вигляді; створювати презентації та знаходити необхідну інформацію в Інтернеті.Використання Інтернет-технологій, які також є невід’ємною складовою мультимедійних технологій, надає додаткові можливості пошуку матеріалів для розширення світогляду студентів та їх соціокультурних знань, актуалізує поняття самостійної роботи студентів, дозволяє безперешкодне спілкування з носіями мови, що відіграє значну роль при вивченні іноземної мови. Прямий зв’язок із мультимедійними технологіями Інтернет мають такі засоби, як електронні (мультимедійні) підручники, довідкові матеріали (словники, енциклопедії, бази даних); електронні бібліотеки автентичної текстової, графічної, звукової інформації й відеоінформації; віртуальні музеї, виставки та ін.У зв’язку зі скороченням аудиторних годин, студентам можна рекомендувати спеціалізовані сайти, що пропонують вивчення англійської мови он-лайн та дозволяють задовольнити освітні потреби найактивніших студентів. Так, на офіційному сайті BBC Learning English (http://www.bbc.co.uk/worldservice/learningenglish/index.shtml) студентам різних рівнів володіння англійською мовою надаються фонетичні, граматичні та лексичні вправи, навчальні аудіо- та відеоматеріали, тести тощо.Отже, мультимедійні технології та засоби навчання дозволяють зробити процес викладання та вивчення іноземної мови інтерактивним, цікавим, творчим, а також гнучким по відношенню до соціальних та культурних відмінностей між студентами, їх індивідуальних стилів навчання та інтересів.На нашу думку, застосування мультимедійних засобів в процесі навчання іноземної мови повинно відбуватись у три етапи:1) на першому етапі студенти ознайомлюються та засвоюють навички роботи з мультимедійним засобом;2) на другому етапі студенти навчаються самостійно працювати з необхідними програмними засобами для розв’язання будь-яких навчальних або професійних задач, та створювати мультимедійні продукти;3) на третьому етапі студенти створюють власні мультимедійні продукти та виконують завдання пошуково-дослідного характеру.Нарешті, застосування мультимедійних засобів дозволяє викладачу створювати власні мультимедійні продукти та мультимедійну навчально-методичну базу даних з дисципліни для вдосконалення та оновлення процесу навчання.На сьогодні, кафедрою іноземних мов Одеського національного економічного університету, як і іншими кафедрами, з метою збагачення навчального плану та оновлення змісту освіти використовуються такі мультимедійні продукти, як освітні мультимедійні програми, тренувальні тестові програми (тренажери), мультимедійні презентації та реферати, електронні підручники, посібники, збірники задач, а також електронні словники, енциклопедії, довідники тощо.Використання мультимедійних продуктів дозволяє забезпечити позитивне ставлення до предмета, що вивчається, підвищити інтерес та урізноманітнити форми навчання, є гарним мотивом навчання, підвищує якість знань студентів.Окрім того, для ефективного застосування мультимедійних засобів в процесі навчання іноземної мови в нашому університеті здійснюється підготовка викладачів та студентів для набуття практичних навичок роботи в новому інформаційному середовищі, розробляються мультимедійні навчальні комплекти, створено спеціальну групу викладачів для розробки, апробації та впровадження новітніх засобів навчання іноземних мов на базі інформаційно-комунікаційних технологій, розроблені викладачами навчальні матеріали розміщуються на сайті університету, а також планується участь у семінарах та конференціях щодо використання ІКТ в навчальному процесі.Однак, серед проблем застосування мультимедійних засобів в економічних ВНЗ можемо виділити: а) недостатнє матеріально-технічне забезпечення навчальних закладів; б) труднощі у створенні мультимедійних навчальних програм; в) готовність викладачів до їх застосування; г) недостатність досліджень психолого-педагогічного спрямування стосовно впливу ІКТ на фізичний та психічний розвиток студентів; д) необхідність значного проміжку часу для повноцінної організації процесу навчання з усіма необхідними мультимедійними засобами та мультимедійною навчально-методичною базою.Отже, застосування мультимедійних засобів в процесі навчання іноземної мови в економічному ВНЗ активізує навчальну діяльність студентів, індивідуалізує процес навчання іноземної мови, урізноманітнює форми проведення занять, а також сприяє розвитку розумових і творчих здібностей студентів, підвищує інтерес до навчання та рівень володіння іноземною мовою.Подальшого вивчення потребує проблема розробки мультимедійних продуктів з іноземної мови, створення мультимедійної навчально-методичної бази з дисципліни, втілення сучасних підходів до навчання іноземної мови професійного спрямування з використанням мультимедійних технологій.
APA, Harvard, Vancouver, ISO, and other styles
11

БРАТКО, Артем. "ОСНОВИ ТОПОГРАФІЧНОЇ ПІДГОТОВКИ ОФІЦЕРІВ ЗАГАЛЬНОВІЙСЬКОВИХ ТА ПРИКОРДОННИХ ПІДРОЗДІЛІВ." Збірник наукових праць Національної академії Державної прикордонної служби України. Серія: військові та технічні науки 81, no. 3 (September 16, 2020): 7–17. http://dx.doi.org/10.32453/3.v81i3.434.

Full text
Abstract:
У статті наведено актуальність вивчення дисципліни "Військова топографія" під час підготовки офіцерських кадрів загальновійськових та прикордонних підрозділів. Проаналізовано та надано рекомендації щодо створення навчальних програм, які за своїм змістом відповідають базовому курсу. Наявність теоретичних та практичних питань з військової топографії надасть змогу майбутнім офіцерам уміти швидко і правильно вивчати місцевість, орієнтуватися на ній і визначати рівень її впливу на хід бою. Військова топографія є однією з найважливіших складових бойової підготовки особового складу всіх військових формувань. Вона надає знання про місцевість, способи та засоби вивчення її під час організації та ведення бою; навчає прийомів та способів орієнтування на місцевості, вмілого використання топографічних карт у вирішенні бойових завдань, допомагає оволодіти практичними навичками роботи з картою на місцевості, складання бойових графічних документів та схем місцевості. Питання, що вивчаються військовою топографією, стосуються і практичної діяльності особового складу під час виконання різних бойових завдань. Набуті знання та навички з військової топографії дозволяють краще оцінити обстановку, прийняти найбільш доцільне рішення, краще організувати спостереження, систему вогню і управління підрозділами в ході бою, повною мірою використовувати тактичні і захисні властивості місцевості в інтересах успішного ведення бойових дій, підрозділам у бойовій обстановці успішно застосовувати сучасне високоточне озброєння і бойову техніку на незнайомій, складній для орієнтування місцевості за різної погоди, пори року та часу доби. Уміле використання місцевості значною мірою сприяє підвищенню бойових можливостей своїх військ щодо маневру приховано та несподівано наносити удари по противнику й більш ефективно застосовувати всі види сучасного озброєння та техніки.
APA, Harvard, Vancouver, ISO, and other styles
12

Сілков, Валерій, and Ельвіра Сілкова. "РІЗНІ ФОРМИ РОБОТИ ПРИ ВИВЧЕННІ ТАБЛИЦЬ МНОЖЕННЯ І ДІЛЕННЯ В ПОЧАТКОВІЙ ШКОЛІ." Інноватика у вихованні 1, no. 13 (June 15, 2021): 200–212. http://dx.doi.org/10.35619/iiu.v1i13.348.

Full text
Abstract:
У статті розглядаються різні форми роботи при вивченні таблиць множення і ділення. У курсі математики початкової школи винятково важливе місце займає тема «Табличне множення і ділення». На думку більшості методистів головне завдання цієї теми полягає, по-перше, у формуванні в учнів повноцінних обчислювальних навичок, а по-друге, добре продуманій перспективній підготовці до введення та наступного засвоєння ними прийомів і алгоритмів усного й письмового множення і ділення. Знання таблиці множення і відповідних випадків ділення повинно бути сформоване на рівні автоматизованої навички. Засвоєння дітьми змісту того чи іншого математичного поняття повинно розпочинатися з розуміння його необхідності, корисності. Недостатня увага до цього і є однією з причин формалізму у знаннях учнів, який підсилюється завдяки недостатній увазі до мотивації навчальної діяльності кожного школяра у відповідності з його потребами. Отже, з самого початку слід показати дітям, що математичні поняття обумовлені потребами життя. Дослідженнями психологів доведено, що людина, як правило, запам’ятовує лише те, що їй цікаво, і тільки те, що має для неї особистісну значимість. Для реалізації такого завдання пропонується: показувати учням застосування математики в житті, в трудовій діяльності людини; вправляти їх у застосуванні математичних знань для виконання обчислювальних, розрахункових, графічних і вимірювальних робіт. Цим підвищується інтерес школярів до вивчення математики, закладаються основи правильного розуміння значення математики в житті людей. При складанні стовпчиків таблиць слід демонструвати учням різні «секрети» множення; розглядати традиційні та нетрадиційні способи вивчення таблиць множення і ділення; проводити вивчення таблиць множення і ділення в ігровій формі задля полегшення запам’ятовування результатів табличного множення і ділення. Завдяки такому підходові підвищуватиметься інтерес школярів до вивчення математики, закладатимуться основи правильного розуміння значення математики в житті людей.
APA, Harvard, Vancouver, ISO, and other styles
13

Борщевич, Лариса Вікторівна, and Надія Вікторівна Стець. "Мультимедійні засоби в науці та освіті." Theory and methods of e-learning 4 (February 13, 2014): 13–18. http://dx.doi.org/10.55056/e-learn.v4i1.363.

Full text
Abstract:
Серед пріоритетних напрямів розвитку галузі освіти, визначених у «Національній доктрині розвитку освіти», важливе місце займає застосування освітніх інновацій, інформаційних технологій, створення індустрії сучасних засобів навчання та виховання. Комп’ютеризація та інформатизація є новітніми процесами, що впроваджуються у сферу навчання, набуваючи статус не лише об’єкта вивчення, але й засобу навчання тієї чи іншої дисципліни, зокрема хімії.Мультимедійні технології є на сьогоднішній день найбільш необхідним та новим напрямом використання інформаційно-комп’ютерних технологій у сфері освіти. Мультимедійному навчанню присвячений багато фундаментальних досліджень [1; 2] як в теорії педагогіки, так і в частинних методиках викладання окремих навчальних дисциплін. Однак, незважаючи на це, проблема використання мультимедіа, як в теорії навчання, так і в реальній педагогічній практиці залишається дуже актуальною і викликає гострі дискусії.З 2012-2013 навчального року на хімічному факультеті Дніпропетровського національного університету ім. О. Гончара введена нова дисципліна «Мультимедійні засоби в науці та освіті». Вона викладається студентам ІІІ курсу (34 години лекційні та 34 години відведено на практичні заняття) та IV курсу (відповідно 32 та 16 годин).Цілями даної дисципліни є застосування знань у сфері комп’ютерних технологій при проведенні наукових досліджень та в освітньому процесі. Завданнями вивчення дисципліни є формування загальнотеоретичного кругозору, професійних знань і практичних навичок, необхідних бакалавру, спеціалісту та магістру напряму підготовки «Хімія» для успішної професійної діяльності в інформаційному суспільстві.Дисципліна «Мультимедійні засоби в науці та освіті» належить до вибіркової частини загальнонаукового циклу. Вона базується на знанні наступних предметів, що викладаються в рамках бакалаврату: педагогіка, інформатика, методологія наукових досліджень, методика викладання хімії тощо. Ця дисципліна носить узагальнюючий характер. Знання та навички, отримані при вивченні дисципліни, сприяють більш успішній роботі над дипломними та магістерськими роботами.У результаті освоєння дисципліни «Мультимедійні засоби в науці та освіті» студент повинен знати базис сучасних комп’ютерних технологій, основи організації сучасних інформаційних мереж, перспективи розвитку комп’ютерних технологій в науці та освіті. Студенти повинні вміти використовувати мережні та мультимедіа-технології в освіті і науці, виконувати підготовку документів (тези доповідей, реферати, аналітичні довідки, плани-конспекти уроків, лекцій та практичних занять, науково-дослідні роботи), використовуючи різні методи обробки інформації.Після вивчення даної дисципліни студенти володітимуть методами розв’язування спеціальних завдань із застосуванням комп’ютерних та мультимедіа-технологій у професійній і науковій діяльності з хімії, термінологією сучасних інформаційних технологій та навичками забезпечення інформаційної безпеки науково-технічної та освітньої інформації. Засоби мультимедіа сприяють:– стимулюванню когнітивних аспектів навчання, таких як сприйняття та усвідомлення інформації;– підвищенню мотивації студентів до навчання;– розвитку навичок самостійної роботи студентів;– глибшому підходу до навчання, формуванню глибшого розуміння навчального матеріалу [3].У широкому сенсі «мультимедіа» означає спектр інформаційних технологій, що використовують різноманітні програмні та технічні засоби з метою найбільш ефективного впливу на користувача. Завдяки застосуванню в мультимедійних продуктах і послугах одночасної дії графічної, аудіо (звукової) і візуальної інформації, ці засоби мають великий емоційний заряд і активно включають увагу користувача.Засобами мультимедіа можна осмислено і гармонійно інтегрувати різні види інформації. Це дозволяє за допомогою комп’ютера подавати інформацію в різноманітних формах: зображення, включаючи відскановані фотографії, креслення, карти і слайди; звукозапис, звукові ефекти і музику; відео, складні відеоефекти; анімації та анімаційне імітування [4].До засобів мультимедіа можна віднести практично будь-які засоби, здатні привнести в навчання та інші види освітньої діяльності інформацію різних видів. В даний час широко використовуються:– засоби для запису і відтворення звуку (електрофони, магнітофони, CD-програвачі);– системи та засоби телефонного, телеграфного та радіозв’язку (телефонні апарати, факсимільні апарати, телетайпи, телефонні станції, системи радіозв’язку);– системи та засоби телебачення, радіомовлення (теле- та радіоприймачі, навчальне телебачення і радіо, DVD-програвачі);– оптична та проекційна кіно- і фотоапаратура (фотоапарати, кіно-камери, діапроектори, кінопроектори, епідіаскопи);– поліграфічна, копіювальна, розмножувальна та інша техніка, призначена для документування і розмноження інформації (ротапринти, ксерокси, різографи, системи мікрофільмування);– комп’ютерні засоби, що забезпечують можливість електронного подання, обробки і зберігання інформації (комп’ютери, принтери, сканери, графічні пристрої), телекомунікаційні системи, що забезпечують передачу інформації по каналах зв’язку (модеми, мережі дротових, супутникових, радіорелейних та інших видів каналів зв’язку, призначених для передачі інформації) [5].Про всі ці мультимедійні засоби навчання студенти отримують інформацію під час вивчення дисципліни «Мультимедійні засоби в науці та освіті».Крім того, вони знайомляться з різноманітними програмними продуктами, що використовуються при викладанні хімічних дисциплін та в хімічних наукових дослідженнях. Ці продукти можна умовно класифікувати за основним призначенням (рис. 1) [6].Рис. 1. Програми, що використовуються при викладанні хімічних дисциплін Значна частина курсу «Мультимедійні засоби в науці та освіті» присвячена застосуванню мультимедійних засобів навчання у викладанні хімічних дисциплін, оскільки випускники хімічного факультету отримують після закінчення університету спеціальність «хімік, викладач хімії».Головним питанням сьогодення в системі нової освіти є опанування учнями вмінь і навичок саморозвитку особистості, що значною мірою досягається шляхом впровадження інноваційних технологій, організації процесу навчання. Нові форми розвитку вимагають нових правил і нових шляхів досягнення результатів. Така позиція вимагає від сучасної освіти реформаційних кроків щодо оновлення її змісту та застосування нових педагогічних підходів, впровадження інформаційних і комунікаційних технологій, що модернізують навчальний процес. У зв’язку з цим студенту, як майбутньому вчителю, слід вміти застосовувати інформаційні технології у викладанні хімії. Ці вміння вони формують при вивченні дисципліни «Мультимедійні засоби в науці та освіті».Мультимедійні засоби навчання є універсальними, оскільки можуть бути використані на різних етапах заняття:– під час мотивації як постановка проблеми перед вивченням нового матеріалу;– у поясненні нового матеріалу як ілюстрації;– під час закріплення та узагальнення знань;– для контролю знань.Майбутнім учителям та викладачам слід дати уявлення стосовно методичних аспектів застосування мультимедійних засобів на різних етапах викладання хімії. Студенти повинні засвоїти, що використання засобів мультимедіа з метою повторення, узагальнення та систематизації знань не тільки допомагає створити конкретне, наочно-образне уявлення про предмет, явище чи подію, які вивчаються, але й доповнити відоме новими даними. При цьому відбувається не лише процес пізнання, відтворення та уточнення вже відомого, але й поглиблення знань. Студенти повинні усвідомлювати, що під час роботи з навчальною програмою важливо зосередити увагу учнів на найбільш складну для засвоєння частину, активізувати самостійну пошукову діяльність учнів [7].Метою застосування відеоматеріалів та інших мультимедійних засобів є ліквідація прогалин у наочності викладання хімії в середніх загальноосвітніх та вищих навчальних закладах. На одному з практичних занять з дисципліни «Мультимедійні засоби в науці та освіті» студенти створюють відеофрагменти хімічних демонстраційних дослідів, які можна використовувати на уроках хімії в середніх навчальних закладах та на лекціях з курсу «Загальна та неорганічна хімія». При розробці та виготовленні відеофрагментів студенти застосовують основні принципи створення відеоматеріалів з демонстраційного експерименту:– ілюстративність (надають можливість ілюструвати матеріал, що викладається, не розкриваючи зміст теми замість викладача);– фрагментарність (надають можливість дозовано викладати матеріал, залежно від швидкості сприйняття учнями та студентами);– методична інваріантність (відео фрагменти можна використовувати на розсуд викладача на різних етапах заняття);– лаконічність (ефективного викладення більшої кількості інформації за короткий час);– евристичність (подання нового матеріалу настільки зрозуміло, щоб нові знання виявились доступними для свідомого засвоєння учнями та студентами).Створені студентами відео продукти розглядаються на узагальнюючому занятті, обговорюються всіма членами групи та викладачем, що проводить практичне заняття. Найкращі з них застосовуються під час проведення педагогічного практикуму та на заняттях з «Методики викладання хімії».Використовуючи мультимедійні засоби навчання, можна проводити повноцінні уроки і заняття з хімії поза кабінетом хімії або в кабінетах без спеціального обладнання: витяжної шафи, демонстраційного стола, водопроводу тощо. Це дає змогу розширити можливості проведення уроків хімії в інших навчальних кабінетах, забезпечуючи мобільність.Засоби мультимедіа дозволяють одночасно використовувати різні канали обміну інформацією між комп’ютером і навколишнім середовищем. Одним із достоїнств застосування засобів мультимедіа в освіті є підвищення якості навчання.Розвиток сучасної освіти дозволяє чітко визначити місце та роль мультимедійних технологій у системі засобів навчання. Викладачі різних дисциплін використовують мультимедійні засоби в процесі відбору й накопичення інформації з даного предмету, систематизації й передачі знань, організації навчальної діяльності, створення різних її видів і форм. Це сприяє розробленню різноманітних мультимедійних навчальних продуктів та методичних рекомендацій щодо їх застосування в загальноосвітній та вищій школі. Модернізація системи освіти, яка характеризується впровадженням мультимедійних технологій у навчальний процес, призводить до значної корекції навчальних планів, програм, підручників, методичних розробок. Усвідомлення особливої ролі мультимедійних технологій приведе до ще більшої суттєвої інтеграції навчальних дисциплін. У зв’язку із зростаючим значенням комп’ютеризації виникає потреба в усвідомленому використанні цього потужного інтелектуального засобу. А це під силу буде лише досвідченому кваліфікованому спеціалісту-викладачу. Саме введення нової дисципліни «Мультимедійні засоби в науці та освіті» дозволить майбутнім фахівцям з хімії набути відповідних знань і вмінь.
APA, Harvard, Vancouver, ISO, and other styles
14

Дутин, Цзю. "Фахова компетентність як головний чинник підготовки майбутніх фахівців з графічного дизайну." Professional Art Education 2, no. 1 (April 15, 2021): 20–27. http://dx.doi.org/10.34142/27091805.2021.2.01.03.

Full text
Abstract:
У статті висвітлені окремі аспекти щодо професійної підготовки майбутніх графічних дизайнерів. Проаналізовано категоріально-понятійний апарат проблемного поля дослідження. Визначено організаційно-методичні умови професійної підготовки майбутніх дизайнерів. Вказано на інтеграційні можливості загально-художніх та професійно орієнтованих знань у формуванні цілісної системи вмінь майбутніх графічних дизайнерів. Обґрунтовано роль творчо-компетентнісного підходу в дизайн-освіті, з його інтегральною характеристикою, що сприяє активізації творчості, вирішенні творчих завдань, допомагає у професійній підготовці майбутніх фахівців з графічного дизайну. Визначено, що фахова компетентність формує індивідуальний аспект готовності майбутнього графічного дизайнера до професійного розвитку та визначається рівнем отриманих фахових знань, умінь і навичок. Навчальна діяльність, яка являє собою процес засвоєння цих знань, формування навичок (прийомів) і умінь (способів придбання і використання знань) впливає на опрацювання та продукування сучасних методик, які застосовуються до професійної підготовки графічного дизайнера. У процесі дослідження виокремлено єдність теоретичної і практичної готовності до здійснення творчої діяльності. Визначені програмні компетентності які студенти набувають у процесі професійної підготовки. Зокрема, з’ясовано, що багаторівневе застосування візуальної комунікації відноситься до спеціальної професійної підготовки, а загально-художній аспект навчання графічного дизайнера є необхідним компонентом цілісної системи його професійної освіти і формує основу фундаментальних знань фахівця.
APA, Harvard, Vancouver, ISO, and other styles
15

Балюба, Іван Григорович, Володимир Ісидорович Поліщук, Борис Федорович Горягін, and Жанна Володимирівна Старченко. "Використання комп’ютера при викладанні графічних дисциплін." New computer technology 5 (November 1, 2013): 05–06. http://dx.doi.org/10.55056/nocote.v5i1.49.

Full text
Abstract:
На кафедрі «Інженерна та комп’ютерна графіка» Донбаської національної академії будівництва і архітектури студенти спеціальності «Будівництво» активно використовують можливості комп’ютера при вивченні і виконанні графічних робіт. Початкові етапи використання комп’ютера як креслярського інструмента базуються на використанні «Панели рисования» в системі Microsoft Word. Можливості панелі споріднені з ручним виконанням креслень, дають можливість першого знайомства з формуванням комп’ютерних зображень, дозволяють спостерігати побудову більш складних інструментів графічних комп’ютерних систем. Для цього на кафедрі виконано методичні розробки – чотири уроки опанування можливостей текстового редактора Microsoft Word для виконання рисунків, текстів, таблиць. Перший урок розраховано для студентів, що можуть включити і виключити комп’ютер. Освоєння матеріалів другого і третього уроків дозволяють вільно виконувати пояснювальні записки зі схемами і рисунками до курсових і дипломних робіт. Четвертий урок призначається для професіонального використання «Панели рисования» вдизайні листів пояснювальних записок.Особливе місце в академії і на кафедрі приділяється комп’ютеру як інформаційному каналу одержання студентами знань. Лекції з нарисної геометрії, які читаються в аудиторіях, можна одержати як в електронному так і в друкованому варіанті. Причому такі електронні варіанти лекцій включають історичні довідки, приклади, рисунки, які доповнюють аудиторні варіанти.Для більш глибокого дослідження та наукового обґрунтування до тематичного плану держбюджетних науково-дослідних робіт академії в межах другої половини робочого дня викладачів кафедри включено на 2006-2010 рр. науково-дослідну роботу К-2-09-06: «Створення курсу та розробка предметної моделі спеціаліста з дисципліни «Нарисна і обчислювальна геометрія, Інженерна та комп’ютерна графіка» на основі інженерії знань».Для забезпечення можливостей дистанційної підготовки спеціалістів будівельного профілю академія провела значну підготовчу дослідницько-практичну роботу, залучаючи для роботи, на платній основі, свої кафедри. Протягом двох років нами підготовлено російськомовний повний дистанційний курс нарисної геометрії, що включає:теоретичний курс з самотестуванням, для самостійного визначення студентом свого рівня освоєння;практичні заняття для одержання навиків розв’язання задач з самотестуванням, для самостійного визначення студентом свого рівня освоєння;робочий зошит для засвоєння навиків розв’язання задач з самотестуванням, для самостійного визначення студентом свого рівня освоєння;тести по курсу для проведення самоекзамену і екзамену і офіційного визначення рівня освоєння навчального курсу «Нарисна геометрія».Кафедра працює над створенням відповідного українськомовного варіанта комп’ютерного дистанційного курсу «Нарисна геометрія».Автори мають багаторічний досвід викладання дисципліни «Комп’ютерна графіка» зі студентами старших курсів з використанням графічних систем AutoCAD і КОМПАС. Була проведена значна методична робота по забезпеченню навчального процесу [1–4].Ведуться інтенсивні пошуки можливостей створення дистанційного курсу «Креслення» Проводяться дослідження, створення і апробація варіантів розділів курсу. Основна проблема – організація дистанційного одержання студентами навичок практичного виконання креслень.
APA, Harvard, Vancouver, ISO, and other styles
16

Чередніченко, Наталія, and Леся Тенцер. "РЕЗУЛЬТАТИ ВПРОВАДЖЕННЯ КОМПЛЕКСНОЇ СИСТЕМИ КОРЕКЦІЇ ФОНЕТИКО-ГРАФІЧНИХ ПОМИЛОК У МОЛОДШИХ ШКОЛЯРІВ ІЗ ДИСГРАФІЄЮ." Педагогічні науки: теорія, історія, інноваційні технології, no. 8(102) (October 27, 2020): 40–57. http://dx.doi.org/10.24139/2312-5993/2020.08/040-057.

Full text
Abstract:
У статті представлено аналіз результатів комплексної корекції порушень письма в дітей 2–3-х класів загальноосвітніх шкіл. Обґрунтовано та висвітлено напрями подолання дисграфічних фонетико-графічних помилок у молодших школярів. Розкрито зміст авторської методики «Письмо без зошита і ручки», спрямованої на реалізацію корекційних завдань. Підкреслено, що ефективність корекційнорозвивального впливу залежить від розуміння логопедом структури дисграфічного порушення, урахування збережених та порушених ланок мовленнєвої системи, що забезпечують засвоєння фонетичного принципу письма. Статистично доведено, що система корекційного навчання, розроблена з урахуванням мовленнєвих та немовленнєвих механізмів дисграфічних помилок, забезпечує значне покращення кількісних і якісних показників стану сформованості навичок письма учнів із дисграфією.
APA, Harvard, Vancouver, ISO, and other styles
17

Tytarenko, V. V. "Development advertising creation skills in graphic editors in the training of design and decoration works’ specialists." Science and Education a New Dimension IX(252), no. 99 (April 25, 2021): 48–51. http://dx.doi.org/10.31174/send-pp2021-252ix99-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Потапчук, Тетяна Володимирівна. "ВИКОРИСТАННЯ ІННОВАЦІЙНО-ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ НА УРОКАХ МУЗИЧНОГО МИСТЕЦТВА." Інноватика у вихованні, no. 9 (June 11, 2019): 17–25. http://dx.doi.org/10.35619/iiu.v0i9.129.

Full text
Abstract:
Процеси інформатизації сучасного освітнього простору нерозривно пов’язані з активним упровадженням інноваційно-інформаційних технологій, що урізноманітнює форми навчання й виховання. Застосування цих технологій в освіті завдяки їх специфічним властивостям значно посилює наочність у навчанні, емоційний вплив на учнів, сприяє поглибленню міжпредметних зв’язків, інтенсифікації роботи учнів, покращує організацію навчальної діяльності. Інноваційно-інформаційні технології відкривають нові можливості використання на уроках текстової, звукової, графічної та відеоінформації, збагачують методичні можливості уроку. Сьогодні використання цих технологій стає невід’ємною складовою вивчення будь-якого предмета. Використовуючи в навчальному процесі створені учнями мультимедійні презентації, публікації та веб-сайти, можна розвивати в них навчальні вміння та навички. Як зазначають дослідники, існує безліч мультимедійних програм для роботи з комп’ютером на уроці музичного мистецтва, а саме: музичний програвач, програма для співу карооке, музичний конструктор, музичні енциклопедії, навчальні програми, табличний процесор. Використання інноваційно-інформаційних технологій стає невід’ємною складовою вивчення будь-якого предмета. Упровадження інноваційно-інформаційних технологій у систему музичної освіти дозволяє розширити можливості навчання.
APA, Harvard, Vancouver, ISO, and other styles
19

Kotvitska, A. A., I. V. Kubarieva, and M. S. Beketova. "ОСВІТНЬО-НАУКОВІ АСПЕКТИ РОЗВИТКУ ПАЛІАТИВНОЇ ДОПОМОГИ В УКРАЇНІ." Фармацевтичний часопис, no. 3 (December 3, 2021): 64–73. http://dx.doi.org/10.11603/2312-0967.2021.3.12389.

Full text
Abstract:
Мета роботи. Визначення актуальних напрямків імплементації в освітній процес питань організації та надання паліативної допомоги шляхом аналізу сучасного рівня знань та навичок у фармацевтичних працівників у зазначеному сегменті охорони здоров'я. Матеріали і методи. У дослідженні з визначення рівня теоретичних знань та практичних навичок з питань організації та надання паліативної допомоги хворим, взяли участь 387 респондентів – фармацевтичних працівників з фаховою освітою різного освітнього рівня. У роботі використано соціологічний метод дослідження, математичні та статистичні методи обробки даних. З метою наочного представлення результатів застосовано графічні прийоми аналізу. Результати й обговорення. За середнім показником результатів проведеного опитування фармацевтичних фахівців з питань організації та надання паліативної допомоги, встановлено, що 67% анкетованих продемонстрували середній рівень поінформованості; 34% опитаних мали високий рівень знань; 21% опитаних низький рівень знань, відповідно. Детальний аналіз відповідей респондентів дозволив визначити, що у фармацевтичні фахівці володіють окремими аспектами паліативної допомоги. Респонденти продемонстрували належний рівень знань у питаннях основних потреб паліативних хворих та складових фармацевтичних послуг при наданні паліативної допомоги. Також виявлено низку питань, в яких фармацевтичним фахівцям бракує знань. Зокрема, знання положеннь основних законодавчих актів щодо регулювання обігу та застосування лікарських засобів у паліативній допомозі, переліку захворювань які потребують надання паліативної допомоги. Залежності рівня знань респондентів щодо організації паліативної допомоги від набутого освітнього рівня фармацевтичної освіти не встановлено. Висновки. У статті обгрунтовано доцільність упровадження заходів освітньо-наукового спрямування з метою підвищення ефективності надання паліативної допомоги в Україні з урахуванням світових тенденцій розвитку охорони здоров'я та напрямків розвитку вітчизняної паліативної допомоги.
APA, Harvard, Vancouver, ISO, and other styles
20

Prokhorchuk, Polina. "ПРОБЛЕМА ФОРМУВАННЯ ПРОФЕСІЙНО-ЕТИЧНОЇ КУЛЬТУРИ У ПСИХОЛОГО-ПЕДАГОГІЧНІЙ ЛІТЕРАТУРІ." Науковий вісник Інституту професійно-технічної освіти НАПН України. Професійна педагогіка, no. 16 (November 14, 2018): 68–73. http://dx.doi.org/10.32835/2223-5752.2018.16.68-73.

Full text
Abstract:
Володіння нормами загальної та професійної культури представлені в статті як важливі якості сучасного фахівця, необхідні для успішного розвитку його особистісної та професійної кар’єри. Обґрунтовано необхідність розвитку цих якостей у процесі професійної підготовки майбутніх графічних дизайнерів, як фахівців, професійна діяльність яких пов’язана з образотворчою діяльністю, покликаних створювати візуальні художні образи та оперувати ними. Здійснено аналіз сутності понять «професійна культура» та «педагогічні умови». Зазначено, що в сучасній науково-педагогічній літературі існують різні визначення названих понять. Показано різні погляди сучасних дослідників на обґрунтування сутності поняття «педагогічні умови формування професійно-етичної культури». З’ясовано, що цей педагогічний феномен пояснюється здебільшого як: сукупність дій, спрямованих на поетапне моделювання й ефективне функціонування процесу становлення й розвитку належного рівня професійно-етичної культури; процес становлення особистості в результаті об’єктивного впливу спадковості, середовища, виховання, самовиховання й педагогічного управління індивідуальним становленням людської особистості. У результаті наукового аналізу психолого-педагогічної літератури виявлено й охарактеризовано основні педагогічні умови, що забезпечують процес формування професійної, етичної, моральної та професійно-етичної культури. Узагальнення поглядів учених дало змогу зробити висновок про те, що найбільш оптимальними для організації професійної підготовки майбутніх графічних дизайнерів можуть бути: вдосконалення знань про механізми творчого саморозвитку, використання інноваційних технологій для формування професійних умінь і навичок, формування позитивної мотивації до професійного успіху.
APA, Harvard, Vancouver, ISO, and other styles
21

Ільченко, Ольга Ігорівна, and Тетяна Володимирівна Козицька. "Застосування мультимедійних технологій як допоміжний фактор впровадження проблемного навчання у вищих навчальних закладах." Theory and methods of e-learning 4 (February 28, 2014): 109–14. http://dx.doi.org/10.55056/e-learn.v4i1.378.

Full text
Abstract:
Сучасне суспільство характеризується швидкими змінами у всіх сферах життя, що особливо впливає на розвиток інформаційного, зокрема й освітянського простору. Освітня сфера, яка є основоположницею формування світогляду, духовного становлення особистості, зазнає значних трансформаційних процесів. Простір, де стикаються нові цінності і технології, нові стилі життя вимагає нових, сучасних освітніх підходів, які б зберегли кращі надбання та підготували б людину, майбутнього фахівця до роботи, творчості, до реалізації особистості в суспільстві.Знання, вміння, які молодь набуває, навчаючись у вищому навчальному закладі є беззаперечно важливими, але поряд з цим є актуальним поняття компетентності. На думку багатьох міжнародних експертів, компетентності є тими індикаторами, що дозволяють визначити готовність випускника вищого навчального закладу до життя, його подальшого особистого розвитку й до активної участі в житті суспільства [1].Уже декілька років європейське освітнє співтовариство існує під знаком Болонського процесу, суть якого полягає в формуванні в перспективі загальноєвропейської системи вищої освіти [2; 3].Сучасна освіта знову трансформується. Почався перехід від «індустріального століття» до «гнучких виробничих технологій», «виробництва на замовлення», стало звичним вести мову про індивідуалізацію навчання, гнучкі освітні траєкторії. Реалізація таких моделей вимагає якісно нового підходу до створення і використання навчальних матеріалів. Потрібні не просто курси, а модулі інформації, за допомогою яких педагог може будувати потрібні йому блоки відповідно до потреб навчального процесу «тут і зараз» [4].Саме тому мультимедійні технології є на сьогодні найбільш перспективним напрямком використання інформаційно-комп’ютерних технологій у сфері освіти. Однак, на наш погляд, упровадження їх в освітній процес повинно стати допоміжним фактором для реалізації та подальшого розвитку проблемного навчання.Термін «проблема» в перекладі з грецької означає «завдання, ускладнення». За словником іншомовних слів, проблема – «складне теоретичне або практичне запитання, що потребує розв’язання, вивчення, дослідження» [5].І. Я. Лернер визначає основну концепцію проблемного навчання: «Проблемне навчання полягає в тому, що в процесі творчого вирішення учнями проблем і проблемних завдань у певній системі відбувається творче засвоєння знань і умінь, оволодіння досвідом творчої діяльності, формування суспільної активності високорозвиненої, свідомої особистості» [6].Одне із найповніших, на нашу думку, визначень проблемного навчання наводить Г. К. Селевко [7]: це така організація навчального процесу, яка передбачає створення у свідомості учнів під керівництвом вчителя проблемних ситуацій і організацію активної самостійної діяльності їх розв’язання, в результаті чого відбувається творче оволодіння знаннями, уміннями й навичками та розвиток розумових здібностей. Проблемне навчання базується на створенні особливого виду мотивації – проблемної, тому потребує адекватного конструювання дидактичного змісту навчального матеріалу у вигляді ланцюга проблемних ситуацій.Проблемні методи передбачають активну пізнавальну діяльність учнів, яка полягає в пошуку та вирішенні складних питань, що вимагають актуалізації знань, аналізу, уміння бачити за окремими фактами і явищами їх суть та закономірності.Проблема в навчанні – це пізнавана трудність, для подолання якої студенти мають здобути нові знання або докласти інтелектуальних зусиль. Коли ще не існує наукового розв’язання проблеми, вона має об’єктивний характер [8].Крім того, у навчанні самих студентів також потрібно впроваджувати мультимедійні технології, які допоможуть зробити навчальний матеріал більш насиченим, наочним, яскравим і доступним.У «Енциклопедії освіти» вказано, що мультимедійні засоби навчання – це комплекс апаратних і програмних засобів, що дозволяють користувачеві спілкуватися з комп’ютером, використовуючи різноманітні, природні для себе середовища: графіку, гіпертексти, звук, анімацію, відео. Відповідно, технології, які дають можливість за допомогою комп’ютера інтегрувати, обробляти і водночас відтворювати різноманітні типи сигналів, різні середовища, засоби і способи обміну інформацією, називають мультимедійними [10].О. П. Пінчук мультимедійною технологією вважає технологію, яка окреслює порядок розробки, функціонування та застосування засобів обробки інформації різних модальностей [11]. Підґрунтям запровадження мультимедійних технологій до освітнього простору є властивість мультимедійних засобів – гармонійне інтегрування різних видів інформації.З появою нових засобів навчання на базі нових комп’ютерних технологій навчальний процес став більш різноманітним і багатовимірним. На сьогодні мультимедійні технології є одними з найбільш перспективних і популярних педагогічних інформаційних технологій, які дають змогу створювати цілі колекції зображень, текстів і даних, що супроводжуються звуком, відео, анімацією та іншими візуальними ефектами. Розвиток мультимедійних засобів в інформаційному суспільстві справедливо порівнюють за значущістю з появою кіно в індустріальному суспільстві [10].Враховуючи всі відомі переваги проблемного та мультимедійного навчання, викладачі кафедр біології і гістології та ембріології Національного медичного університету імені О. О. Богомольця постійно перебувають у творчому науково-педагогічному пошуку. Протягом кількох років основний наголос у педагогічному процесі ставиться на запровадженні та удосконаленні сучасних новітніх технологій навчання. це стосується як лекційного курсу, так і практичних занять [12-18].На наш погляд, однією з найдавніших і найпоширеніших форм навчання у ВНЗ є лекція. Вона завжди вважалася і вважається сьогодні дієвим способом передавання знань. Лекція є інформаційно насиченою, передбачає системний виклад дисципліни, відображає найважливіший матеріал, який подається в чіткому, лаконічному викладенні, що розвиває аналітичне мислення студентів, допомагає спростити засвоєння знань і підвищити якість навчального процесу.Завдяки використанню мультимедійних технологій лекція набуває нового прочитання. Але досягнення поставленої мети її удосконалення залежить від багатьох причин.Для підвищення інформативності мультимедійної презентації і кращого засвоєння матеріалу студентами вважаємо за доцільне керуватися принципами, запропонованими А. П. Огурцовим та ін. у [19]: логічності (графічний засіб повинен містити лише ті елементи, які необхідні для передавання суттєвої інформації); узагальнення й уніфікації (не слід уводити елементи, які позначають незначні деталі об’єктів, символи, які позначають одні й ті ж об’єкти, повинні мати єдине графічне рішення); акцентування на основних смислових елементах (виділення розмірами, формою, кольором тощо); автономності (зображення, які передають самостійні повідомлення, слід уособити, оскільки розподіл складної графічної інформації на простіші складові полегшує сприймання і розуміння); структурності (найважливіше зображення має відрізнятися від інших частин); стадійності (залежно від стадій – послідовних розділів викладу науково-технічної і навчальної інформації – слід вибрати склад повідомлень, які відображаються в графічній формі); знакового супроводу ілюстрацій (розшифрування цифрових і буквених позначень); зручності користування ілюстраціями (перегляд ілюстраційно-графічного матеріалу без перегортання сторінок); естетичності ілюстрацій (демонстрування культури, а не примітивізму, відбір найкращого матеріалу).Ми також поділяємо думку С. С. Риженко, що мультимедійні засоби навчання дають змогу підвищити інформативність лекції; стимулювати мотивацію навчання; підвищити наочність навчання за рахунок структурної надмірності; здійснити повтор найбільш складних моментів лекції (тривіальна надмірність); реалізувати доступність сприйняття інформації за рахунок її паралельного представлення в різних модальностях: візуальної і слухової (перманентна надмірність); організувати увагу аудиторії в фазі її біологічного зниження (25-30 хвилин після початку лекції та останні хвилини лекції) за рахунок художньо-естетичного виконання слайдів-заставок або за рахунок доцільно застосованої анімації та звукового ефекту; здійснити повтор (перегляд, коротке відтворення) матеріалу попередньої лекції; створити викладачу комфортні умови роботи на лекції [20].І, нарешті, ми вважаємо, що будь-яка мультимедійна презентація лекції студентській аудиторії невід’ємно пов’язана з особистістю викладача-лектора. Ми неодноразово піднімали це питання у своїх роботах [21; 22; 23], але і сьогодні наголошуємо, що для вдалого проведення презентації на високому рівні, викладач повинен нагадувати актора, який грає свій невеликий спектакль. Його особистісні якості повинні включати емоційність, високу ерудицію, багатий словниковий запас, почуття гумору, уміння керувати аудиторією. І, як вдало підкреслено Н. М. Стеценко [24], «основна ж вимога до лектора – це ентузіазм і настрій на досягнення мети, бо саме поставлені цілі визначають вибір форм і методів навчання, які дозволяють швидше досягти мети заняття; впливають на підвищення мотивації студентів та ступінь засвоєння навчального матеріалу, здатність до тривалого запам’ятовування нових знань; сприяють формуванню умінь використовувати одержані знання і навички в роботі; спонукають до творчого підходу використання знань; стимулюють потребу в їхньому вдосконаленні і поглибленні».
APA, Harvard, Vancouver, ISO, and other styles
22

Svidrak, I. H., V. I. Topchiy, M. P. Kushynov, and O. R. Maksysko. "Методика комп’ютерного моделювання та анімації будівництва індивідуального житлового будинку на схилах для навчального процесу у вишій школі." Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies 19, no. 75 (March 12, 2017): 19–22. http://dx.doi.org/10.15421/nvlvet7504.

Full text
Abstract:
Стаття присвячена опрацюванню методики моделювання індивідуального житлового будинку на схилах та створення анімаційних послідовностей для презентаційних переглядів в середовищі графічної системи AutoCAD. Характерною ознакою розвитку сучасної будівельної індустрії є застосування на стадії розробки систем комп’ютерного проектування (САПР). Вивчення та засвоєння студентами графічної системи AutoCAD, яка є однією із поширеніших комп’ютерних систем інженерного рівня, базується, зокрема, на методичному забезпеченні лабораторних та практичних занять з інженерної та комп’ютерної графіки. Адже в умовах інформаційного суспільства навчальний процес повинен проходити як засіб професійного розвитку студентів, а головне завдання освіти – створення умов для самоосвіти, пов’язаної з розвитком творчого та критичного мислення студента при наявності певної кількості знань та навичок, необхідних майбутньому спеціалістові. Тенденція до зменшення кількості аудиторних годин у ВШ вимагає самостійного опрацювання студентами багатьох тем по спеціальності. Багато з напрямків досліджень, які надаються студентам на самоопрацювання, пов’язані з розв’язанням складних інженерних завдань. Актуальною розробкою для районів із змінним рельєфом є будівництво на схилах. В статті розглянуто особливості такого будівництва та підходи до проектування будівлі з використанням найсучасніших методів моделювання та новітніх технологій у будівництві. Результати представленої роботи покладені в основу одного з розділів навчально-методичного посібника для студентів інженерно-будівельного напрямку підготовки з курсу інженерної та комп’ютерної графіки, який дозволить набути теоретичних знань та відпрацювати методику моделювання житлових будинків на схилах в середовищі системи AutoCAD.
APA, Harvard, Vancouver, ISO, and other styles
23

Hrynkevych, S. S., Z. D. Sorokina, and M. A. Sitarchuk. "ТАРГЕТОВАНА РЕКЛАМА У СОЦІАЛЬНИХ МЕРЕЖАХ: ЇЇ ПОПУЛЯРНІСТЬ ТА ЕФЕКТИВНІСТЬ." Actual problems of regional economy development 2, no. 17 (November 30, 2021): 115–23. http://dx.doi.org/10.15330/apred.2.17.115-123.

Full text
Abstract:
Метою статті є дослідження популярності та ефективності таргетованої реклами в якості інструменту маркетингових комунікацій. Для досягнення визначеної мети використано комплекс методів: теоретичних – аналіз, синтез і систематизація наукової літератури з проблематики застосування таргетованої реклами в якості інструменту маркетингових комунікацій – для з’ясування сучасного стану дослідженості проблеми, наявності платформ для таргетингу у соціальних мережах, видів таргетованої реклами; емпіричних – бесіда, спостереження, опитування - для з’ясування основних навичок і компетенцій сучасного таргетолога, необхідних у професійній діяльності. Інформаційну базу даного наукового дослідження склали праці вітчизняних та зарубіжних науковців, статистичні дані, дані веб-аналітиків, експертів-фахівців. Доведено популярність, а також ефективність таргетованої реклами у соціальних мережах. Сформовано основні вимоги щодо навичок і компетенцій таргетолога, а саме вміння проводити маркетинговий аналіз, писати тексти, які «продають», працювати в графічних і відеоредакторах, в системах веб-аналітики. Охарактеризовано та систематизовано таргетовану рекламу за видами, зокрема до основних видів віднесено: націлювання на поведінку (націлювання на аудиторію), контекстне націлювання, пошуковий ретаргетинг, ретаргетинг сайту, прогнозне націлювання, демографічне та географічне націлювання. Проведено оцінювання ефективності таргетованої реклами у соціальних мережах та проаналізовано соціальні мережі як основні майданчики для запуску таргетованої реклами (Facebook, Instagram, Twitter, Viber, Telegram, Tik Tok, QQ, WeChat, Tumblr, Sina Weibo). Окреслено основні платформи для таргетингу у соціальних мережах – Facebook та Instagram. Наведено приклади використання таргетованої реклами роздрібною мережею Sephora, Tesco та благодійним фондом «Аманда». Наукова новизна одержаних результатів полягає у формуванні основних навичок і компетенцій сучасного таргетолога. Одержані результати дослідження можуть бути використані при підготовці фахівців-таргетологів та при організації процесу підготовки до запуску таргетованої реклами.
APA, Harvard, Vancouver, ISO, and other styles
24

БОНДАРЕНКО, Інна. "ТЕХНОЛОГІЧНА КУЛЬТУРА В ПАРАДИГМІ ПОЛІТЕХНІЧНОЇ." Scientific papers of Berdiansk State Pedagogical University Series Pedagogical sciences 1 (April 2020): 194–200. http://dx.doi.org/10.31494/2412-9208-2020-1-1-194-200.

Full text
Abstract:
У статті актуалізовано проблему технологічної освіти в закладах загальної середньої освіти. Увагу сконцентровано на можливостях допрофільної підготовки та старшої профільної школи для розвитку сучасного компетентного учня, здатного реалізуватися в інформаційному просторі. Посилення практичної спрямованості шкільної освіти вимагає запровадження компетентнісного підходу в технологічній освіті. Компетентність у галузі технологічної освіти розглядається як досвід, освіченість, ерудованість учня у сфері виробничих технологій, у різних видах предметно-перетворювальної діяльності, його уміння і навички, підготовленість, знання та ерудиція, а також здатність до визначення шляхів і можливостей їх набуття та функціонування за допомогою свідомості й мислення. Завдяки інтеграції знань із різних галузей наук і виробництва впроцесі технологічної освіти успішно здійснюється формування ключових компетенцій: навчальної (графічна, технічна, технологічна, проектна), культурної, здоров’язберігаючої, інформаційної, соціальної, підприємницької. Якісна технологічна освіта учнів потребує й обґрунтованої системи науково-методичного забезпечення, засобів навчання. Науково-методичне забезпечення передбачає: програмне забезпечення (розроблення нових та вдосконалення чинних навчальних програм для початкової, основної і старшої школи); інформаційне забезпечення (підручники, посібники, довідники, хрестоматії, методичні рекомендації, розробки тощо); засоби навчання (таблиці, плакати, схеми, діаграми, моделі, муляжі, електронні програмові засоби навчання, інформаційні ресурси тощо). На основі аналізу нормативних документів, наукових досліджень учених-педагогів, психологів та власного педагогічного досвіду зроблено висновок, що для вдосконалення технологічної освіти необхідна наступність на всіх рівнях навчання. Організація такого підходу в освітній практиці сприяє поступовому і неперервному оволодінню системою технологічних знань, практичних умінь та технологічних якостей, які забезпечать у подальшому результативність професійної підготовки. Ключові слова: освітній процес, політехнічна освіта, технологічна освіта, ключові компетентності, методика навчання.
APA, Harvard, Vancouver, ISO, and other styles
25

Денисенко, Людмила. "КОМПОЗИЦІЙНИЙ АНАЛІЗ ЯК ОСНОВА СИСТЕМИ ВПРАВ НАВЧАЛЬНОЇ ДИСЦИПЛІНИ «ІСТОРІЯ КОСТЮМА» ДЛЯ МАЙБУТНІХ ДИЗАЙНЕРІВ ОДЯГУ." Мистецька освіта: зміст, технології, менеджмент, no. 14 (December 28, 2019): 217–31. http://dx.doi.org/10.37041/2410-4434-2019-14-15.

Full text
Abstract:
У статті розглянуті принципи та структура побудови системи дидактичних вправ навчальної дисципліни «Історія костюма» для майбутніх дизайнерів. Обґрунтовано доцільність побудови системи вправ і завдань, у якій системоутворюючим фактором є композиційний аналіз костюма. Доведено важливість формування навичок композиційного аналізу майбутніми дизайнерами одягу. Розкрито зміст поняття «композиційний аналіз історичного костюма». Розглянуто найважливіші елементи композиції костюма, що складають основу змісту розробленої системи вправ: силует, форма, кольорова гама, пропорції, орнаментація, оздоблення, ритм, статика-динаміка, симетрія-асиметрія, контраст-нюанс-тотожність. Наведено стислі характеристики кожного типу дидактичних вправ з історії костюма. Враховано, що в різних історичних костюмах, значення окремих складових композиції не є однаковим. У статті наголошується на доцільності структурування розроблених вправ і завдань за складністю. Доведено значущість її поступового зростання від репродуктивних, спрямованих на просте розпізнавання, відтворення, доповнення – до самостійних творчих, таких, що передбачають аналіз, порівняння і самостійну розробку нових форм одягу з опорою на композиційні елементи історичного костюма. Представлено три групи класифікації вправ розробленої системи: підготовчі – такі, що допомагають ліквідувати прогалини в опорних знаннях з основ композиції; тренувальні – для формування умінь і навичок аналізувати окремі елементи та композиції костюма в цілому; завершальні, які передбачають застосування набутих знань, умінь, навичок в нових умовах. Вказано, що різні типи вправ включають завдання порівняльного характеру, за інструкцією, за зразком, за завданням. У статті підкреслюється доцільність включення в систему цікавого історичного матеріалу з метою позитивного впливу на мотиваційну сферу студентів, підвищення їх інтересу до вивчення історичного костюма та їх майбутньої професійної діяльності. Враховується перспективність використання даної системи в майбутньому, зокрема можливість застосування сучасних технічних навчальних засобів, комп'ютерних графічних програм.
APA, Harvard, Vancouver, ISO, and other styles
26

Горошкіна, Олена Миколаївна, Марія Михайлівна Греб, Ігор Олександрович Горошкін, and Станіслав Олександрович Караман. "ФУНКЦІЇ QR-КОДІВ У СТРУКТУРІ ПІДРУЧНИКА УКРАЇНСЬКОЇ МОВИ." Information Technologies and Learning Tools 78, no. 4 (September 11, 2020): 32–46. http://dx.doi.org/10.33407/itlt.v78i4.3360.

Full text
Abstract:
У статті розглянуто проблему використання QR-кодів як складника сучасного підручника. Обґрунтовано актуальність уведення QR-кодів до змісту підручників української мови. Уточнено визначення QR-коду, під яким визначено компактний носій навчальної інформації обсягом близько трьох тисяч байт, закодованої за допомогою спеціальних програм або сервісів і графічно представленої як чорно-білий або кольоровий квадрат. Установлено, що QR-код уможливлює розширення й поглиблення теоретичних відомостей із навчального предмета. У підручниках української мови матеріали, вміщені на QR-кодах, розширюють і поглиблюють теоретичні відомості й дидактичний матеріал, сприяють удосконаленню орфоепічних, граматичних, правописних умінь і навичок учнів, виконують функцію контролю, пропонуючи тестовий та інший матеріал для встановлення рівня сформованості знань, умінь і навичок учнів. Визначено й обґрунтовано функції QR-кодів у структурі підручників української мови – мотиваційну, інформаційну, розвивальну, виховну, рефлексійну, контрольну. Здійснено аналіз змісту підручників української мови для 10 класу та рукопису підручника для 11 класу, що містять QR-коди. Наведено відомості про експериментальну перевірку ефективності застосування QR-кодів, у процесі якої учні експериментальних класів систематично залучалися до роботи з QR-кодами, уміщеними в підручнику української мови, що передбачали опрацювання теоретичних відомостей, які розширювали й поглиблювали зміст підручника, виконання творчих, дослідницьких завдань, що спонукали учнів до спостережень над мовою, виконання вправ на редагування, тестових завдань. Визначено принципи відбору теоретичного матеріалу для QR-кодів, до яких віднесено доступність матеріалу, його комунікативну значущість, новизну, емоційність, роль у формуванні предметної компетентності учнів. Наведено конкретні приклади кодування інформації в підручниках української мови: теоретичних відомостей, матеріалів засобів масової інформації (інтерв’ю, телепередач, виступів) для аналізу їх учнями, тестових завдань, прикладів правильних відповідників девіантних текстів, запропонованих учням для редагування тощо.
APA, Harvard, Vancouver, ISO, and other styles
27

Черненко, Сергій, Олег Олійник, Юрій Сорокін, and Олег Коваль. "ХАРАКТЕРИСТИКА ОСВІТНЬОГО ПРОЦЕСУ ПІДГОТОВКИ МАЙБУТНІХ ФХІВЦІВ З ФІЗИЧНОЇ КУЛЬТУРИ І СПОРТУ." Вісник Прикарпатського університету. Серія: Фізична культура, no. 36 (January 22, 2021): 86–94. http://dx.doi.org/10.15330/fcult.36.86-94.

Full text
Abstract:
Мета. Встановити системність підготовки майбутніх тренерів- викладачів у закладі вищоїосвіти. Методи. У дослідженні взяли участь 30 студентів першого і 20 другого курсів. Вибір методів,що використані в статті, обумовлений логічною моделлю процесу дослідження, що склалася впедагогічній науці. Теоретичний аналіз науково-методичної літератури проводився для вивчення основ-них концепцій управління підготовки майбутніх фахівців зі спеціальності 017 – фізична культура іспорт. Вивчення педагогічної та навчально-нормативної документації вищої школи дало змогу встано-вити проблеми в розумінні студентів процесу освіти в галузі фізичної культури. Анкетування, конс-татуючий експеримент, методи математичної статистики (графічне відображення даних, аналізпараметрів розподілу) дозволили визначити стан підготовки майбутніх викладачів фізичного вихованняу вищому навчальному закладі. Результати. Встановлено, що професійно-педагогічна підготовка тре-нера-викладача спрямована на формування наступних компонентів: мотиваційно-педагогічного (відоб-ражає спрямованість, мотиви, потреби в навчанні, ціннісні орієнтації), когнітивно-педагогічного (знан-ня вікової психології, вікових морфо-функціональних особливостей людини), конструктивно-педаго-гічного (формуванням цілей діяльності, складанням планів і програм, плануванням занять із фізичноговиховання і спорту), організаційно-педагогічного (здатність і готовність організовувати навчально-тренувальний процес, управляти і моніторити його ефективність), педагогічно-технологічного (пси-холого-педагогічні вміння та навички розв’язувати завдання спортивного тренування дітей і підлітків)та педагогічно-рефлексивного (вміння вивчати, адаптувати і застосовувати кращий досвід в управлінніфізичною підготовкою). Найбільший вплив на професійно-педагогічну мотивацію студентів першого ідругого курсів чинять дисципліни, розташовані у загально-професійному та професійному блоці. Вияв-лений низький рівень зацікавленості студентів у здійсненні науково-дослідницької діяльності. Висновок.Встановлено, що для здобуття освітньої кваліфікації тренер-викладач на початкових етапах навчання(1–2 курси) для студентів найважливішими є дисципліни професійної підготовки.Ключові слова: професійно-педагогічні компетентності, навчальні дисципліни, студенти.
APA, Harvard, Vancouver, ISO, and other styles
28

Бугайова, Наталія, and Ірина Андрющенко. "Розвиток емпатії студентів-психологів як складової майбутньої професійної діяльності." Теоретичні і прикладні проблеми психології, no. 2(55) (2021): 5–17. http://dx.doi.org/10.33216/2219-2654-2021-55-2-5-17.

Full text
Abstract:
У статті проведено аналіз наукової літератури з проблеми вивчення емпатії. Надано визначення поняттю «емпатія». Розглянуто структурні компоненти емпатії. Представлено результати емпіричного дослідження розвитку емпатії студентів-психологів як складової майбутньої професійної діяльності. Графічно відображено результати дослідження за методиками психологічної діагностики емпатії. Показано, що в процесі опанування психологічними знаннями, вміннями та навичками здобувачі вищої освіти набувають досвід щодо майбутньої професійної діяльності. Дані нашого дослідження розвитку емпатії як складової майбутньої професійної діяльності свідчать про зв’язок між формуванням емпатійності і навчанням у закладі вищої освіти, а також саморозкриттям, саморозвитком. Протягом навчання здобувачі беруть участь в наукових семінарах, конференціях, соціально-психологічних тренінгах, виховних заходах, де оволодівають навичками ефективної комунікації, вчаться відчувати інших людей, будувати взаємодію, розрізняти якості та стани власного «Я», розвивають здібності щодо ефективної професійної діяльності, зокрема, емпатію. Високоемпатійні студенти свої невдачі в навчанні, міжособистісній взаємодії схильні пояснювати внутрішніми причинами, тоді як студенти з низькими показниками емпатії дають їм екстернальну оцінку. Емпатія є суттєвим психологічним елементом цілісної, системної навчальної діяльності. Збагачена відповідними інструментальними можливостями, емпатійна взаємодія у навчальному процесі дозволяє викладачеві створювати оптимальні психологічні умови для розвитку здобувача як унікального суб'єкта навчальної діяльності та поведінки. Емпатію можливо формувати та розвивати у процесі професійного навчання здобувачів при проходженні виробничих практик, за спеціально розробленими програмами, що передбачають опанування відповідною технологією взаємодії як в повсякденному житті так і в професійній діяльності. Емпатія як психічне особистісне утворення, досягнувши своєї вираженості саме у період студентства, є надалі стимулятором до самореалізації та саморозкриття, побудови професійної, моральної поведінки, необхідної при взаємодії в професійній діяльності в системі «людина-людина». Запропоновано рекомендації щодо розвитку емпатії здобувачів вищої освіти – майбутніх психологів. Ключові слова: взаємодія, емпатійні здібності, емпатійне сприйняття, емпатія, здобувач вищої освіти, ідентифікація, комунікація, моральність, навчальна діяльність, особистість, професійна діяльність, співпереживання, співчуття, тренінг.
APA, Harvard, Vancouver, ISO, and other styles
29

Солошич, Ірина, Олена Кобильська, and Віктор Ляшенко. "ВИКОРИСТАННЯ СИСТЕМ КОМП’ЮТЕРНОЇ МАТЕМАТИКИ ПІД ЧАС ВИВЧЕННЯ НАВЧАЛЬНОЇ ДИСЦИПЛІНИ ФІЗИКА." Physical and Mathematical Education 32, no. 6 (January 27, 2022): 41–48. http://dx.doi.org/10.31110/2413-1571-2021-032-6-007.

Full text
Abstract:
Формулювання проблеми. Студенти вищих навчальних закладів повинні мати уявлення про комп'ютерні моделі, вільно орієнтуватися у сучасних програмних продуктах, зокрема системах комп’ютерної математики та вміти використовувати їх під час розв’язування фізичних задач. Застосування системи комп’ютерної математики Mathcad сприяє отриманню навичок аналізу та пошуку оптимальних рішень проблем, що виникають не тільки при вивченні навчальної дисципліни «Фізика», а й під час розв’язання професійних задач, підвищує зацікавленість студентів до вивчення фізики, покращує результати навчальних досягнень. Матеріали і методи. У процесі дослідження використовувались наступні методи: теоретичні (аналіз науково-методичної літератури для виявлення стану розробленості проблеми використання можливостей систем комп’ютерної математики під час вивчення навчальної дисципліни «Фізика»); емпіричні (спостереження, аналіз та систематизація). Для розв’язування задач розділу «Кінематика» запропоновано використовувати систему комп’ютерної математики Mathcad. Показано, як за допомогою інструментів Mathcad можна інтегрувати вирази, будувати графіки функції, розв’язувати систему рівнянь (блок Given-Find), здійснювати пошук максимального значення (блок Given-Maximize). Результати. В роботі досліджуються методичні аспекти застосування системи комп’ютерної математики Mathсad під час виконання практичних задач з навчальної дисципліни «Фізика». Розглянуто ряд задач розділу «Кінематика», зокрема задачі, в яких визначаються екстремальні значення шуканих величин (максимальна висота, максимальний кут нахилу). Для розв’язування задач запропоновано використовувати систему комп’ютерної математики Mathcad. Показано, що система Mathcad дозволяє ефективно реалізовувати такі важливі етапи розв’язання задачі пошуку екстремуму як побудова графіка, диференціювання, пошук екстремуму за допомогою спеціальних функцій в Mathcad. Застосування систем комп’ютерної математики у навчальному процесі при вивченні дисципліни «Фізика» студентами завдяки потужній графіці, засобам візуального програмування позитивно впливає на оволодіння навичками практичного використання професійних знань на основі законів фізики. Висновки. У сучасних реаліях в умовах запровадження інформаційних технологій в навчальний процес одним із актуальних шляхів підвищення ефективності вивчення навчальної дисципліни «Фізика» є використання систем комп’ютерної математики для числових розрахунків під час розв’язання задач, обробки експериментальних даних і вивчення фізичних явищ. Впровадження системи комп’ютерної математики Mathcad під час вивчення навчальної дисципліни «Фізика» показало його ефективність, адже широкий набір можливостей даного програмного пакету дає змогу ефективно розв’язувати задачі різного рівня складності, сприяє більш глибокому розумінню фізичних законів і явищ як під час аудиторних занять, так і при самостійному опрацюванні.
APA, Harvard, Vancouver, ISO, and other styles
30

ПЕРЕГУДОВА, Валентина. "MIND MAP ЯК ЗАСІБ ВІЗУАЛІЗАЦІЇ ТЕХНОЛОГІЧНИХ ПРОЦЕСІВ." Scientific papers of Berdiansk State Pedagogical University Series Pedagogical sciences 3 (December 2020): 88–97. http://dx.doi.org/10.31494/2412-9208-2020-1-3-88-97.

Full text
Abstract:
АНОТАЦІЯ Потужне зростання кількості інформації потребує вдосконалення підходів до її знаходження і передачі в освітньому процесі. Одним із шляхів подолання цієї проблеми є використання засобів візуалізації, серед яких ментальні карти (mind map), що мають дидактичну ефективність, особливо в поєднанні з можливостями комп’ютерних технологій. Метою статті є дослідження сучасних можливостей візуалізації наукової інформації під час вивчення технічних дисциплін. Проаналізовано поняття візуалізації, що стала невід'ємним елементом обробки складної інформації про структуру досліджуваних об'єктів; методи, принципи та наукові підходи візуалізації. Обґрунтовано доцільність і ефективність використання mind map з метою візуалізації технологічних процесів. Доведено, що використання комп’ютерних ментальних карт сприяє підвищенню рівня запам’ятовування інформації за рахунок деталізації основних понять, їх систематизації, класифікації та узагальнення; формування навичок роботи з графічною інформацією. Визначено умови ефективності використання мультимедійних ментальних карт, дотримання яких гармонізує освітній процес для всіх його учасників. Визначено переваги використання ментальних карт, серед яких активне осмислення навчального матеріалу в процесі самостійного створення власних карт розуму, що дає можливість активно засвоювати наукову інформацію, набувати навичок самостійного її структурування, відслідковувати логіку зв'язків різних одиниць, знаходити нові ідеї і розвивати асоціативне мислення. Застосування засобів візуалізації, зокрема інтелект-карт, в освітньому процесі є можливим як під час вивчення нового матеріалу на лекції, самостійної роботи, так і під час контролю засвоєння і розуміння наукової інформації, за встановленням зв’язків між її складовими, умінням структурувати інформацію. Mind map є продуктивною альтернативою традиційним способам обробки та передачі інформації в освітньому процесі, яка перетворює студента в активного здобувача вищої освіти. Ключові слова: наукова інформація, візуалізація, ментальна карта, технологічний процес.
APA, Harvard, Vancouver, ISO, and other styles
31

ГОНЧАРУК, О. М., Л. М. ШУСТ, and С. Є. ВІРСТА. "ОСОБЛИВОСТІ ЗАСТОСУВАННЯ ТЕКСТОВОЇ ОСНОВИ МАЛИХ ЖАНРІВ ФОЛЬКЛОРУ ПІД ЧАС ФОРМУВАННЯ МОВНО-МОВЛЕННЄВИХ УМІНЬ І НАВИЧОК ЗДОБУВАЧІВ ПОЧАТКОВОЇ ОСВІТИ." АКАДЕМІЧНІ СТУДІЇ. СЕРІЯ «ПЕДАГОГІКА» 2, no. 3 (November 18, 2021): 165–71. http://dx.doi.org/10.52726/as.pedagogy/2021.3.2.25.

Full text
Abstract:
У статті акцентовано на тому, що формування компетентності вільного володіння державною мовою залежить від рівня розвитку видів мовленнєвої діяльності й осмисленого ставлення до мовних понять і явищ. Визначено, що вивчення мови молодшими школярами як цілісного явища вимагає комплексного підходу до вивчення слова (з фонетичного, орфоепічного, лексичного, морфологічного, словотворчого, синтаксичного, сти- лістичного, орфографічного боку) через комплексний аналіз тексту. Зазначено, що ефективність засвоєння молодшими школярами більшості лінгвістичних понять залежить від вдало підібраної текстової основи, аналіз змісту якої пробуджує пізнавальний інтерес учнів, сприяє прояву пози- тивних емоцій. Наведено приклади таких текстових основ, як-от: скоромовки, чистомовки, закликанки, лічилки, приказки, прислів’я, загадки. Окреслено ознаки, що надають перевагу текстам малих жанрів фольклору, зокрема лаконічність, невеликий обсяг, легкість для запам’ятовування школярами, емоційну насиченість. Розглянуто прийоми використання текстів малих жанрів фольклору у процесі засвоєння мовних понять і явищ молодшими школярами й доведено ефективність застосування малих жанрів фольклору у розвитку мовленнєво- творчих умінь і навичок та збагаченні емоційно-чуттєвого досвіду. Визначено, що загадки, прислів’я, скоромовки вносять до освітнього процесу елементи гри, що психологіч- но виправдано у навчанні дітей початкової ланки. Робота над скоромовками, чистомовками, закликанками спри- яє успішному засвоєння учнями фонетичної та графічної системи, Закликанки є ефективними під час засвоєння школярами мовного поняття «Звертання». Під час вивчення учнями явища антонімії ефективним є використання прислів’їв. Робота над тлумаченням прислів’я є прийомом, який сприяє формуванню текстотворчих умінь школярів. Окреслено ефективність використання загадок під час дослідження молодшими школярами явища синонімії й у процесі формування вмінь будувати тексти-описи. Продемонстровано прийоми роботи з підготовчими, тренувальними та завершальними вправами на дослі- дження мовних понять і явищ, текстовим матеріалом яких є малі жанри фольклору. Доведено, що використання текстів малих жанрів фольклору є прийомом заохочення до осмислення лінгвіс- тичних явищ і понять, сприяє формуванню активності у навчанні, формуванню позитивного емоційного підґрунтя в освітній діяльності.
APA, Harvard, Vancouver, ISO, and other styles
32

Belgorodskaya, E., E. Konshina, and E. Kucherenko. "DEPICTING EXTERIOR OF INTERNAL ENCLOSED SPACE AS ONE OF THE STAGES OF DEVELOPMENT OF GRAPHIC ART SKILLS AND ABILITIES IN ARCHITECTURE STUDENTS (USING DEPICTION OF ODESSA COURTYARDS AS AN EXAMPLE)." Problems of theory and history of architecture of Ukraine, no. 19 (April 11, 2019): 349–57. http://dx.doi.org/10.31650/2519-4208-2019-19-349-357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Хоменко, Олексій Ігорович, and Максим Анатолійович Гірник. "Розвиток методики вивчення програми AllPlan працівниками бюро технічної інвентаризації." New computer technology 5 (November 10, 2013): 98–99. http://dx.doi.org/10.55056/nocote.v5i1.103.

Full text
Abstract:
Автоматизована система технічної інвентаризації об’єктів нерухомості ОРІОН [1] на базі САПР AllPlan від концерну Nemetschek AG (Німеччина) широко розповсюджується останнім часом в бюро технічної інвентаризації (БТІ) України. AllPlan достатньо складний програмний пакет для освоєння його в режимі самовивчення. Це обумовило організацію курсу підготовки фахівців-користувачів графічного пакету AllPlan, узгодженого з Асоціацією БТІ “Укртехінвентаризація”.Застосування методики вивчення графічного пакету Allplan, розробленої та втіленої в ДНДІАСБ [2], показало непогані результати під час навчання працівників БТІ, що періодично проводиться в інституті з метою якнайшвидшого та безболісного переходу до використання легального програмного забезпечення. В процесі навчання нами виявлено деякі вади вказаної методики, що обумовило необхідність її подальшого вдосконалення.Як і раніше, методикою передбачено орієнтувати майбутнього користувача на кінцевий результат. Але з метою підвищення зацікавленості слухачам пропонується привезти з собою та надати як приклад ескіз креслення (абрис) з реальної інвентаризаційної справи. Наявність кількох реальних ескізів дозволяє виконати попередній аналіз та встановити наявність загальних елементів, що виконуються однаковими прийомами та за допомогою однакових інструментів програми. За рахунок цього ті, хто навчається, починають розуміти зв’язок між внутрішньою логікою програми і структурою навчального курсу та творчо підходити до процесу навчання, привчаються з самого початку обирати оптимальні інструменти та прийоми роботи.Крім того, на базі реальних ескізів створено та запропоновано слухачам декілька прикладів, що відтворюють найтиповіші креслення. Користуючись ними, як шаблонами, слухачі на практиці здобувають навички правильного користування інструментами програми.Методикою було передбачено послідовне вивчення інструментів програми від простих до більш складних з обов’язковою прив’язкою теоретичних відомостей до практичних завдань, що виникають у повсякденній діяльності БТІ. Але, на жаль, індивідуальні рівні підготовки окремих працівників БТІ, що навчаються, дуже відрізняються навіть у межах одного й того ж бюро. Тому часто-густо виникає ситуація, коли частина навчальної групи ще не опанувала якихось навичок і потребує повторення, а інша частина вже готова йти далі і зовсім не зацікавлена у цьому.Для забезпечення безперервності процесу навчання повинні бути передбачені додаткові завдання для більш підготовленої частини групи, які, з одного боку, дадуть змогу приділити більше уваги менш підготовленим слухачам за рахунок самостійної роботи більш підготовлених, а з іншого боку будуть спрямовані на створення командного доробку, тобто на поповнення бібліотеки умовних позначень, макровизначень, стандартних елементів, тощо.Важливо одразу зробити акцент на необхідності командної роботи та весь час приділяти особливу увагу інструментам та заходам обміну таким доробком та його тиражуванням.Нарешті, на початку навчання програма Allplan позиціонувалася тільки як потужний графічний додаток [3] для створення креслень для інвентаризаційних справ, технічних паспортів тощо. Але оскільки можливості програми значно ширші і вона містить у собі інструменти, що дають принципову можливість створювати всі частини інвентаризаційних документів, доцільно одразу орієнтувати тих, хто навчається, на цю можливість, стимулювати їхній творчий пошук, що підвищує зацікавленість у найбільш повному оволодінні програмою.Навчання співробітників БТІ здійснюється в Києві (в учбовому центрі Державного науково-дослідного інституту автоматизованих систем в будівництві) періодично по мірі надходження заявок та набору груп. Термін навчання не перевищує трьох-чотирьох повних робочих днів.Можливий також виїзд фахівців НДІАСБ в БТІ для проведення навчання на місці.
APA, Harvard, Vancouver, ISO, and other styles
34

Крамаренко, Тетяна Григорівна. "Деякі аспекти вивчення курсу “Інформаційно-комунікаційних засобів навчання математики”." New computer technology 5 (November 6, 2013): 51–52. http://dx.doi.org/10.55056/nocote.v5i1.74.

Full text
Abstract:
Особистісна орієнтація освіти, запровадження освітніх інновацій, ІКТ, створення індустрії сучасних засобів навчання і виховання є пріоритетними напрямами державної політики щодо розвитку освіти в Україні. Відбувається інтенсивний пошук методик комп’ютерно-орієнтованого навчання, зокрема і математики. Ефективне використання ІКЗН математики дозволить здійснювати навчання розвиваючими методами, що в найбільшій мірі відповідає особистісно-орієнтованій парадигмі сучасної освіти.Широке впровадження комп’ютерних технологій в навчальний процес вимагає підвищення кваліфікації вчителя в цій галузі, підготовки педагогічних кадрів, здатних вміло використовувати ІКТ в навчанні учнів та з метою саморозвитку. Тому нами було розроблено програму навчального курсу з інформаційно-комунікаційних засобів навчання математики за вимогами кредитно-модульної системи навчання. При підготовці бакалаврів за спеціальністю “Педагогіка і методика середньої освіти. Математика” вивчення курсу передбачається в шостому семестрі. Курс є інтегрованим і опирається на знання студентів, уміння і навички, отримані при вивченні інформаційних технологій і методики навчання математики. Загальна кількість годин (72 год.), що відводиться на вивчення курсу, ділиться на лекції (4 год.), лабораторні (32 год.) та самостійну роботу студентів (36 год.).Курс складається з двох модулів – використання ІКЗН в навчанні алгебри основної школи і геометрії.Метою навчального курсу є доповнення знання студентів з методики навчання математики та інформаційних технологій; формування теоретичної бази знань про структуру методичної підсистеми навчання математики з використанням ІКТ; про сутність, психолого-педагогічні засади і технологічні основи впровадження ІКЗН математики; вироблення у студентів практичних умінь і навичок застосування ППЗ в процесі навчання математики; забезпечення умов для неперервної самоосвіти на основі систематичної самостійної роботи студентів; для підвищення рівня знань і розвитку творчих здібностей особистості.Курс орієнтовано на проектні технології, на активні форми навчання: проведення навчальних експериментів, підготовку дидактичних та методичних матеріалів, розробок уроків алгебри і геометрії, доповідей, презентацій. Закінчується навчання захистом індивідуальних проектів, розроблених матеріалів. Індивідуальні розробки дидактичних засобів, методичних матеріалів включаються до спільного проекту курсу “Методична скарбничка вчителя математики основної школи”. В ході вивчення курсу студенти набували умінь та навичок працювати з такими ППЗ як GRAN1, Терм_7, Математика-5, Математика-6, Евристико-дидактичні конструкції, пакети динамічної геометрії DG, GRAN-2D, GRAN-3D. Для самостійного ознайомлення пропонувалася система комп’ютерної математики Derive або система комп’ютерної алгебри Advanced Grapher.Наведемо перелік робіт, які виконувалися студентами, і оцінювалися певною сумою балів: план-конспект уроку з алгебри і з геометрії (обов’язкові документи 20 балів), підготовлені за допомогою текстового редактора Microsoft Word чи OpenOffice.orgWriter з малюнками, з гіперпосиланнями на відповідні файли, створені за допомогою ППЗ; презентація до уроку алгебри чи геометрії; малюнки, побудовані графіками функцій; розв’язані за допомогою GRAN1 завдання математичної статистики; лабораторні роботи по вивченню GRAN1, Терм_7, динамічної геометрії; динамічне креслення до теореми чи задачі на дослідження, доведення, до геометричних перетворень, включаючи калейдоскопи; динамічні креслення до задач на побудову з підказками у вигляді написів, кнопок; завдання, виконане за допомогою самостійно освоєного програмного засобу; захист проекту (обов’язковий вид роботи, 10 балів). Для отримання заліку студенту необхідно було набрати 65 балів і більше.Для підготовки студентами власних навчальних продуктів були запропоновані зразки до кожного із завдань, наведено перелік рекомендованих джерел, надана можливість додатково працювати в комп’ютерному класі самостійно в зручний для студента час. Кожен зі студентів міг вчасно отримати диференційовану допомогу як з боку викладача, так і своїх однокурсників. Студенти завершили вивчення курсу здійсненням рефлексії та самооцінки власної праці, змін, що відбулися в них стосовно знання предмету, в умінні навчати інших, в своїх особистісних якостях. Дослідження показали, що найскладніше студентам було здійснити цілепокладання, розпланувати власну діяльність, налаштуватися на індивідуальне виконання завдань, на значний обсяг самостійної роботи. Більше 80% студентів висловили задоволення своєю роботою, відмітили появу бажання до самовдосконалення. В навчанні майбутні вчителі математики мали змогу удосконалювали уміння добирати засоби та методи навчання з використанням комп’ютерної техніки, розробляти план вивчення навчального матеріалу з поєднанням традиційних та нових інформаційних технологій, використовувати програмні засоби для обробки результатів проведених психологічних, педагогічних і методичних досліджень; проводити комп’ютерні експерименти з метою встановлення нових закономірностей; інтерпретувати, аналізувати та узагальнювати результати розрахунків чисельного експерименту; володіти знаряддєвим застосуванням комп’ютера, систем опрацювання текстової, числової та графічної інформації; вміти коректно скласти конспект уроку чи інший документ.
APA, Harvard, Vancouver, ISO, and other styles
35

Чжен, Дай. "Підготовка дизайнерів мультимедійного профілю у китайській професійній системі освіти." Professional Art Education 2, no. 1 (April 15, 2021): 4–11. http://dx.doi.org/10.34142/27091805.2021.2.01.01.

Full text
Abstract:
У статті розглядається професійна підготовка фахівців мультимедійного дизайну у вищих закладах освіти КНР. Здійснено спробу визначити сутність професійної компетентності фахівців з мультимедійного дизайну, що полягає в інтегральній якості особистості, яка реалізує готовність і здатність майбутнього фахівця до здійснення професійної творчої діяльності: використання комп’ютерних технологій, що дозволяють створити новий відео-арт продукт, інтерактивний об'єкт або інтерактивні цифрові твори як в рамках галузі сучасного мистецтва, так і виходячи за ці межі за допомогою ілюзії руху об’ємних і площинних зображень, а також здатність керувати інформаційними потоками у вигляді текстів, музики, анімації, графічних зображень та ін. на основі сформованих знань, умінь, навичок. Теоретично обґрунтовані психолого-педагогічні особливості та організаційно-педагогічні умови розвитку професійної підготовки фахівців мультимедійного дизайну у вищих закладах освіти мистецького профілю КНР. Проведено систематизацію, осмислення й узагальнення результатів дослідження; встановлені особливості і загальні тенденції сучасної медіагалузі та її вплив на стан розвитку професійної підготовки фахівців мультимедійного дизайну у вищих закладах освіти; окреслено характеристики медіасередовища, обґрунтовано зміст і структуру мультимедійної діяльності, виявлено її класифікацію. Уточнено сутність базових понять дослідження (професійна підготовка, мультимедійний дизайн, медіа-дизайн). Визначено доцільність головних навчальних блоків, що забезпечують активізацію творчих можливостей та професійну підготовку фахівців мультимедійного дизайну у вищих закладах освіти; розкрито суть їх складових; уточнені теоретичні висновки, визначені перспективи вивчення досліджуваної проблеми.
APA, Harvard, Vancouver, ISO, and other styles
36

Krut, A. G. "Здоров’я порожнини рота підлітків як потенціал зміцнення загального здоров’я." Health of Society 10, no. 5 (March 7, 2022): 141–45. http://dx.doi.org/10.22141/2306-2436.10.5.2021.274.

Full text
Abstract:
Актуальність. У підлітковому віці вперше відбуваються або підсилюються негативні для здоров’я поведінкові патерни з наслідками в наступних вікових періодах. Погіршення здоров’я призводить до втрати або зменшення в популяції інтелектуального, економічного, соціального, культурного, духовного потенціалу, що негативно впливає на національну безпеку держави. Мета: провести теоретичний аналіз стану здоров’я порожнини рота підлітків України та чинників, що обумовлюють його розлади; запропонувати підходи до його покращання. Матеріали та методи. Дані державної й галузевої статистики, міжнародних баз даних здоров’я населення; наукова інформація; методи: бібліосемантичний; контент- та статистичного аналізу; графічний; узагальнення. Результати. Поширеність хвороб порожнини рота українських підлітків висока – 33,9 на 100 тис. населення відповідного віку, при меншій чисельності контингенту, ніж осіб 10-14 та 20-24 років. Регіональні відмінності ураження карієсом виглядають наступним чином: у Волинській області – 96,67%; Луганській – 75,0%; Дніпропетровській – 78,33%; Київській – 95,0%; Полтавській – 63,33%; Одеській – 76,0%; м. Львів – 80,0%. Високі рівні виявлені у містах Біла Церква Київської області, Тернопіль, Харків, Полтава, Чорноморськ Одеської області. Поширеність запалення тканин пародонту становила по регіонам 53,2%, симптому кровоточивості ясен – 37,9%. Показано, що для підлітків характерні низька фізична активність, порушення режиму й складу раціону харчування, вживання алкоголю, тютюнопаління, низький рівень гігієнічних навичок; це сприяє розладам загального здоров’я, зокрема, порожнини рота. Висновки. Існує нагальна потреба у: підвищенні ефективності профілактики захворювань порожнини рота шляхом впливу на чинники ризиків через тісну взаємодію сім’ї й суспільних інституцій; комплексному лікуванні патологій дітей і підлітків; покращанні доступності стоматологічної допомоги.
APA, Harvard, Vancouver, ISO, and other styles
37

Маркова, Євгенія Сергіївна. "Аналіз напрямків використання засобів ІКТ у педагогічній діяльності вчителя початкової школи." Theory and methods of e-learning 3 (February 10, 2014): 179–83. http://dx.doi.org/10.55056/e-learn.v3i1.337.

Full text
Abstract:
Рівень розвитку країни значною мірою визначається рівнем розвитку освіти, яка повинна на нинішньому етапі розвитку цивілізації швидко й адекватно реагувати на потреби суспільства. Одним із важливих чинників реформування освіти є її інформатизація. Процеси інформатизації суспільства та освіти взаємопов’язані та взаємозумовлені. Підвищення загального рівня інформатизації освіти в цілому вимагає підготовки фахівців всіх освітніх ланок, які володіють сучасними комп’ютерно-орієнтованими технологіями. Тому перед вищими педагогічними закладами гостро постала проблема вдосконалення підготовки майбутніх учителів початкової школи, які б могли у своїй майбутній професійній діяльності поєднувати глибокі фундаментальні теоретичні знання і практичну підготовку з постійно зростаючими вимогами інформаційного суспільства.Методика впровадження ІКТ в навчально-виховний процес загальноосвітньої школи, теорія і досвід розробки педагогічних програмних засобів та використання їх у навчальному процесі, принципи та методи навчання з використанням комп’ютера висвітлені в роботах В. Ю. Бикова, Р. Вільямса, А. М. Гуржія, А. П. Єршова, М. І. Жалдака, Ю. О. Жука, В. В. Лапінського, В. М. Монахова, Н. В. Морзе, О. М. Пєхоти, І. П. Підласого, М. І. Шкіля та інших.Психологічні аспекти використання інформаційних технологій у навчальному процесі досліджені в працях В. П. Беспалька, В. М. Бондаревської, П. Я. Гальперіна, В. П. Зінченка, Ю. І. Машбиця, М. Л. Смульсон, Н. Ф. Тализіної та інших.Аналіз праць цих та інших науковців засвідчив, що в педагогічній науці накопичено певний досвід дослідження проблем підготовки вчителя в умовах інформатизації освіти, в тому числі вчителя початкової школи. Водночас ряд аспектів потребує подальшого вивчення, зокрема недостатньо чітко визначені напрямки педагогічної діяльності вчителя, орієнтовані на комп’ютерну підтримку навчального процесу, і не розроблена методика їх практичного наповнення.Метою цієї статті є визначення напрямків практичного використання засобів інформаційно-комунікаційних технологій майбутніми вчителями початкової школи в їх педагогічній діяльності.Педагогічна діяльність – це професійна активність учителя, в якій за допомогою різних засобів впливу на учнів реалізуються задачі навчання й виховання [1]. Виділяють різні види педагогічної діяльності, такі як: навчальна, виховна, організаторська, управлінська, консультаційно-діагностична, діяльність з самоосвіти та ін.Структура педагогічної діяльності:1) дидактичне проектування навчання школярів: конкретизація мети, завдань навчання; конкретизація змісту навчання; планування методів, засобів, форм навчання;2) організація дидактичного процесу, процесу, під час якого відбувається засвоєння учнями змісту освіти: формування позитивного ставлення до навчання; організація сприйняття; організація усвідомлення, узагальнення; організація закріплення; організація застосування знань;3) контроль і оцінка результатів навчання, корекція процесу навчання.На сучасному етапі розвитку програмного та технічного забезпечення можна виділити декілька напрямків використання засобів ІКТ для підтримки педагогічної діяльності вчителя в початковій школі.1. Традиційні друковані посібники. Майбутній вчитель повинен володіти комп’ютером як засобом автоматизації та технологізації його професійної діяльності. Вміння структурувати, моделювати і створювати друковані матеріали повинні засновуватись на вміннях використовувати символи, списки, графічні компоненти і таблиці, оформлювати текстових документів складної структури (з поданням тексту у вигляді колонок та розбиттям документа на розділи, наприклад, хоча б конспекту уроку).Використання офісних додатків дозволяє самостійно виготовляти потрібні наочні посібники, призначені для друку: набори варіантів самостійних і контрольних робіт, картки з завданнями і тестами, головоломки, пазли, анаграми, ребуси, кросворди тощо. Матеріали до завдань можливо дібрати як із традиційних існуючих посібників для початкової школи або спроектувати за власним розсудом і потребами.Таким чином, одним з напрямків використання ІКТ в початковій школі є підготовка майбутніми вчителями посібників у друкованому вигляді. Набори завдань, призначених для друку, накопичуються у студентів уже під час навчання у педагогічному ВНЗ. Це – чудова база для їх майбутньої успішної професійної діяльності, фахового вдосконалення і поширення передового педагогічного досвіду, яка дозволить інтенсифікувати навчально-виховний процес та підвищити мотивацію учнів до навчання.2. Інтенсивне проникнення в практику роботи навчальних закладів нових засобів подання навчального матеріалу, а саме комп’ютерів з дисплейним відображенням інформації, дозволяє виділити і розглядати відеометод як важливий метод навчання. Навчальна і виховна функції даного методу обумовлюються високою ефективністю впливу мультимедійних наочних образів і можливістю управління подіями за допомогою комп’ютера, який оснащено технічними засобами мультимедіа, де можна використовувати відео- і аудіо повідомлення одночасно. Тому неодмінно необхідно формувати у майбутніх учителів початкової школи навички щодо розробки власних мультимедійних посібників.На сьогодні існує велике різноманіття програмних оболонок, призначених для створення мультимедійних посібників. За допомогою цих програм можна створити різноманітні мультимедійні засоби: презентацію, тест, навчальну гру, кросворд, ребус, лото тощо.Під час подання, засвоєння, узагальнення й систематизації знань та для визначення рівня навчальних досягнень можна використовувати мультимедійні посібники, які мають розгалужену структуру. Візуалізовані, анімовані завдання на слайдах викликають зацікавлення в учнів молодшого шкільного віку, активізується їх пізнавальна діяльність, збільшується інтерес до обраної теми. Працюючи з такими мультимедійними презентаціями наодинці, учень має змогу повторювати, закріплювати навчальний матеріал з урахуванням своїх індивідуальних особливостей засвоєння і реакції.Використання мультимедійних засобів в педагогічній діяльності дозволяє розширити горизонти і забезпечити глибину знань, які необхідні дітям, модернізувати навчально-інформаційний матеріал; зробити процес отримання знань більш яскравим, захоплюючим, невимушеним і різноманітним.3. На сьогодні надзвичайно актуальним стає використання електронних інтерактивних посібників для навчання учнів усіх вікових груп, починаючи з початкової школи. Термін «інтерактивний» англійського походження та означає «взаємодіючий». Інтерактивність означає здатність до взаємодії чи саму взаємодію, діалог з ким-небудь (наприклад, викладачем, іншими учасниками навчально-виховного процесу). Інтерактивне навчання – це найперше діалогове навчання, під час якого здійснюється взаємодія між суб’єктами процесу. Отже, інтерактивний документ – це такий документ, який реагує на дії користувача.Інтерактивний посібник може складатися з кількох окремих файлів, кожний з яких може бути представлений як звичайним текстом, так і даними будь-якого іншого виду. В залежності від дій користувача змінюється порядок перегляду, автоматично відкриваються інші зв’язані документи (відтворюються аудіо-, відеофайли, мультимедійні файли, тестові документи різних форматів та ін.).Інтерактивні електронні документи використовують такий інструментарій, як гіперпосилання, макроси, форми, а також включають об’єкти, вставлені в ці документи (текст, таблиці, графіку, мультимедіа та ін.).4. Комп’ютерні форми оцінювання результатів навчального процесу сьогодні набули великого поширення, тож неодмінною ознакою високого професіоналізму майбутнього вчителя початкової школи є оволодіння сучасними існуючими програмними засобами оцінювання. Активне впровадження тестової форми визначення рівня навчальних досягнень учнів потребує поширеного використання інструментальних програмних оболонок, призначених для розробки і проведення тестування.Тестові технології використовуються з метою вирішення навчальних, виховних і розвивальних завдань на всіх етапах педагогічної діяльності. У системі моніторингу якості тестовому контролю приділяється особлива роль, оскільки він дозволяє одержати найбільш оперативну й досить об’єктивну оцінку навчальних досягнень учня, поліпшити діагностичність і прогностичність всієї системи моніторингу.Тому доцільно ознайомлювати студентів факультетів підготовки вчителів початкової школи з можливостями використання інструментальних програмних оболонок для розробки і проведення тестування рівня навчальних досягнень молодших школярів.5. Слід підкреслити необхідність ознайомлення майбутніх учителів початкової школи з існуючими педагогічними програмними засобами для дітей молодшого шкільного віку, а також придбання практичних навичок аналізу і вибору тих фрагментів, що є методично корисними і коректними для психологічного і розумового розвитку учнів початкової школи. «Поняття педагогічний програмний засіб, пакет прикладних програм навчального призначення, навчальне забезпечення і т.ін. інколи використовують як синоніми поняття комп’ютерна навчальна система, а інколи в більш вузькому значенні» [2, 15]. Безперечно, застосування ППЗ забезпечує додаткові можливості щодо підвищення ефективності викладання навчальних предметів та розвитку учнів початкової школи, впровадження творчих форм навчальної діяльності, сприяє розробці нових прогресивних технологій навчання.6. З широким розповсюдженням Інтернет перед освітніми установами розкрилися принципово нові можливості використання ресурсів всесвітньої мережі в освітніх цілях. Глобальна мережа Інтернет надає у розпорядження майбутнього вчителя безкінечну кількість інформаційних матеріалів: банки методичних розробок, рефератів, дипломних, курсових робіт; велику кількість підручників, навчальних посібників в електронному вигляді, програмне забезпечення, відео-, аудіо-файли тощо.Вчитель може використовувати можливості мережі Інтернет у педагогічній діяльності у наступних цілях: самоосвіта, самостійне підвищення своєї кваліфікації на основі інформації, що міститься в мережі, вивчення досвіду своїх колег; отримання нормативно-довідкових документів із серверів МОНмолодьспорту, обласних, міських і районних відділів освіти; отримання інформації про новітні педагогічні технології; використання на уроках і позакласних заходах методичних і дидактичних матеріалів, наявних в мережі; розробки власних матеріалів і публікація їх в мережі; тестування школярів на основі контрольно-оцінюваних матеріалів, що зберігаються в мережі; знайомство з новими книгами, підручниками, методичною літературою і придбання їх в Інтернет-магазинах; участь в заочних конференціях і конкурсах; створення власного сайту вчителя; пошук однодумців і колег в інших регіонах, листування з колегами і друзями.Існує велика кількість сайтів, на яких кожен вчитель початкових класів знайде корисні посібники як для подання навчального матеріалу, так і для оцінювання успішності.Отже, у контексті вимог сьогодення до оновлення системи освіти, орієнтація на прикладне застосовування комп’ютерних технологій у навчальному процесі, в ході інформаційної підготовки майбутніх учителів початкової школи ми виділяємо наступні напрямки практичного використання засобів інформаційно-комунікаційних технологій в педагогічній діяльності: підготовка та виготовлення традиційних друкованих посібників; створення мультимедійних посібників з використанням мультимедійних проектора або дошки; виготовлення інтерактивних посібників, заснованих на принципі взаємодії з користувачем; застосування інструментальних програмних тестових оболонок; використання існуючих педагогічних програмних засобів; використання ресурсів глобальної мережі Інтернет.
APA, Harvard, Vancouver, ISO, and other styles
38

Крамаренко, Тетяна Григорівна, Галина Ігорівна Іванова, and Тетяна Валентинівна Олексійченко. "Використання інформаційної системи для моніторингу навчання теорії ймовірностей." New computer technology 11 (November 22, 2013): 107–10. http://dx.doi.org/10.55056/nocote.v11i1.162.

Full text
Abstract:
Одним із шляхів реформування освіти у вищій школі є модернізація її на компетентнісних засадах, зокрема, через широке запровадження інформаційно-комунікаційних технологій навчання. Особливої ваги набуває генералізація знань, посилення функції теорії у науці, інтеграція і диференціація знань. Компетентності вчителя математики, зокрема математичні і методичні, розглядаємо як особистісні утворення фахівця, які формуються на основі здобутих знань, досвіду діяльності, вироблених ціннісних орієнтацій, ставлень та оцінок.Оскільки підґрунтям для набуття компетентностей виступають знання і вміння майбутніми вчителями застосовувати основні теоретичні положення і розв’язувати задачі, то необхідно регулярно здійснювати моніторинг сформованості відповідних компетентностей, а тому і рівня знань студентів. Акцент при цьому слід робити на взаємоконтроль та самоконтроль. Для забезпечення рівневої диференціації навчання доцільно пропонувати студентам для виконання рівневі тести: 1) вхідний тест (попередній) – система завдань закритої форми, призначених для актуалізації та корекції опорних знань; 2) початковий тест (формувальний, тест початкового розуміння) – система тестових завдань закритої форми з вибором відповіді на впізнавання і розпізнавання; 3) тест базового рівня (формувальний, діагностичний) – система тестових завдань закритої форми або з короткою відповіддю; 4) тест навчальних досягнень (підсумковий) – призначений для встановлення фактичного рівня засвоєння знань і умінь з теми.В якості механізму здійснення поточного (вхідне, тематичне, модульне та інші) та підсумкового контролю знань та умінь студентів доцільно застосовувати систему комп’ютерного тестування, виважене використання якої надає можливість не лише визначати рівень підготовленості студентів, але й здійснювати дистанційне навчання.Теоретичне обґрунтування питань, пов’язаних із використанням комп’ютерного тестування в якості контролю рівня знань, проблеми педагогічного вимірювання та використання тестових технологій у вищій школі розглядали Л. І. Білоусова, О. Г. Колгатін, С. А. Раков, А. М. Калинюк [3], В. О. Шадура [4], С. В. Домашенко [1] та ін.Можна виокремили певні переваги комп’ютерного тестування у порівнянні з традиційними формами контролю:– швидке отримання результатів і вивільнення викладача від трудомісткої роботи по опрацюванню результатів тестування;– об’єктивність оцінки;– виникає можливість студентам здійснювати самоконтроль;– студенти відзначають, що тестування з використанням програмного забезпечення для них є цікавішим у порівнянні з традиційними формами опитування, що створює позитивну мотивацію;– підвищення ефективності роботи викладача шляхом перенесення акцентів у спілкуванні зі студентами на проблемні питання, завдання творчого, евристичного характеру.І хоча акценти у сучасному навчанні робляться не на запам’ятовування і відтворення, а на «мислення» і «розмірковування», осмислення взаємозв’язків теорії з практикою в теорії ймовірностей не можна здійснювати без знання формул, властивостей випадкових подій, випадкових величин, основних законів розподілу. Тому важливо на проміжних етапах вивчення теми здійснювати перевірку сформованості вмінь та навичок розв’язування типових завдань, яка не повинна займати багато часу, але при цьому має якісно діагностувати.Існує значна кількість вільного програмного забезпечення для здійснення тестового контролю (Moodle, iTest та OpenTEST 2). Тестування за допомогою програмного забезпечення Moodle в найбільшій мірі використовуємо при вивченні курсів «Інформаційно-комунікаційні засоби навчання», теорії ймовірностей та математичної статистики. За допомогою Moodle відносно зручно опрацьовувати результати тестування і представляти графічні характеристики.Мета нашого дослідження полягає в розробці початкових тестів і тестів базового рівня до теми «Одновимірні дискретні і неперервні випадкові величини», здійсненні тестування з використанням інформаційної системи LOGIT [2], опрацюванні результатів тестування, побудові профілів питань і профілів респондентів, а також перевірці на практиці того, наскільки дане програмне забезпечення охоплює повний життєвий цикл тесту.Тест в LOGIT проходить стадії створення та наповнення, рецензування, багаторазового випробування та удосконалення. У зв’язку з цим інформаційною системою передбачені такі рівні доступу: адміністратор, менеджер, користувач, гість. В свою чергу, користувачі системи мають певні ролі або їх комбінації, а саме: тестувальник, рецензент, автор. Зрозуміло, що розподіл прав та надання ролей відповідає процесу розроблення тесту.Першою стадією є розроблення тесту, на яку тест переходить після надання йому теми та опису автором і призначення менеджером адміністратора. На цій стадії автор визначає розділи тесту та наповнює не менш як тридцятьма питаннями кожний з них. Тест створюється лише у вигляді системи тестових завдань закритої форми з вибором однієї правильної відповіді. Рецензенти аналізують створене і, при необхідності, роблять зауваження, які в подальшому повинні бути враховані або прокоментовані автором тесту. Після цього автор робить запит до адміністратора тесту на перехід до наступної стадії. Якщо виконуються всі необхідні умови, то адміністратор тесту переводить тест на наступну стадію – випробування. На вказаному етапі користувачі-тестувальники проводять пробне тестування з групами респондентів за всіма розділами. Після отримання результатів тестування системою LOGIT здійснюється статистичний аналіз за певними групами респондентів. Завдяки автоматизації процесу розрахунків та побудові профілів в інформаційній системі, користувачі можуть використовувати її для вдосконалення тестів навіть без глибоких знань із статистики та математики. Результат розрахунку профілів питань окремого розділу та респондентів певних груп подається зведено у вигляді карток з основними показниками. Передбачено і побудову графічних характеристик. Після оптимізації тест переводиться на стадію «застосування», яка не передбачає змін.Провести тестування за допомогою LOGIT можна як безпосередньо за комп’ютером, так і у звичайному паперовому зошиті (із бланком для відповідей), які потім переносяться у систему автором чи користувачами-тестувальниками. Послідовності питань для тесту генеруються, тому кількість варіантів для групи може бути довільною, що виключає можливість списування. Розробниками LOGIT передбачено окремі технічні можливості, використання яких гарантує високий рівень вірогідності тестування та зменшує його похибку.Наведемо приклади розроблених тестових завдань для початкового тесту з курсу теорії ймовірностей, які завантажували в LOGIT.Обрати з поданих формул таку, за допомогою якої задають функцію розподілу для одновимірної неперервної випадкової величини.Обрати з поданих графік щільності рівномірного розподілу.Яка з представлених випадкових величин може бути моделлю для біноміального розподілу ймовірностей? В якості дистракторів пропонувалося: «число картоплин у мішку певної ваги»; «число викликів, які надійдуть на станцію автоматичного зв’язку за проміжок часу T»; «число влучень в ціль при 10 пострілах, якщо немає можливості дізнатися про результат попадання після кожного пострілу»; «число молекул у певному об’ємі речовини».Яка з перерахованих властивостей функції розподілу може не виконуватися для певних випадкових величин? Варіанти: невід’ємна; неперервна; значення не більші одиниці; неспадна. Наші дослідження показали, що LOGIT доцільно використовувати як інструмент для здійснення насамперед поточного контролю знань з дисципліни «Теорія ймовірностей та математична статистика».Комп’ютерне тестування, реалізоване в інформаційній системі LOGIT, демонструє перевагу у порівнянні з Moodle при побудові профілів питань та респондентів для питань у вигляді системи тестових завдань закритої форми з вибором однієї правильної відповіді. За допомогою комп’ютерного тестування у стислі терміни можна діагностувати і усунути недоліки у подальшому вивченні певного курсу.З метою формування гносеологічного та праксеологічного компонентів методичної компетентності у майбутніх вчителів доцільно залучати їх безпосередньо до розробки тестових завдань, тестування та статистичного опрацювання отриманих результатів. Попередньо слід ознайомити майбутніх вчителів з основами педагогічного вимірювання та використання тестових технологій у навчанні учнів та студентів, наприклад, на заняттях з методики навчання математики.
APA, Harvard, Vancouver, ISO, and other styles
39

Рубан, Юрій Якович, Анатолій Іванович Вовк, and Анатолій Володимирович Гірник. "Навчально-тестова web-система для оцінки та вдосконалення володіння програмними продуктами САПР 2D-проектування." Theory and methods of e-learning 3 (February 11, 2014): 267–72. http://dx.doi.org/10.55056/e-learn.v3i1.348.

Full text
Abstract:
Вступ. Державний науково-дослідний інститут автоматизованих систем в будівництві на протязі останніх років проводить атестацію інженерних кадрів будівельної галузі. Наразі проходять атестацію інженери-проектувальники. Виникає проблема автоматизованої оцінки рівня знань та тренування навичок володіння програмними продуктами систем автоматизованого проектування (САПР), зокрема, таких як BudCAD, AutoCAD, AllPlan, Revit. Результатом цієї публікації є презентація навчально-тестової Web-системи для оцінки рівня знань та вдосконалення володіння програмними продуктами САПР в частині 2D-проектування.Структура навчально-тестової Web-системиНавчально-тестова Web-система для оцінки рівня знань та вдосконалення володіння програмними продуктами систем автоматизованого проектування в частині 2D-проектування (TestCAD-2d) являє собою комплекс програм, який умовно можна розділити на декілька частин:програми взаємодії між базою даних, розміщеній на сервері, і клієнтами;плагін для інтерфейсу з вихідними файлами формату DXF (AutoCAD 2004 ASCII (dxf)), що містять інформацію про креслення, виконані за допомогою САПР (BudCAD, AutoCAD, AllPlan, Revit), та для взаємодії з сервером;власне САПР;файли креслень у форматі DXF.Вище згадані САПР можуть використовуватися самі по собі, як повні редактори креслень. Проте в деяких програмах, наприклад, в представленій в цій публікації Web-системі тестування, виникає необхідність аналізувати креслення, створені таким системами за допомогою інших програм.База даних креслень САПР зберігається в дуже стислому форматі DWG (Drawing), тому програмами користувача безпосередньо прочитати цю інформацію важко. Крім того, різні машинні реалізації САПР можуть використовувати різні внутрішні формати для бази даних, дібрані для отримання максимальної продуктивності обчислювальної машини, на якій функціонує САПР. Для забезпечення можливості обміну файлами креслень між різними машинними реалізаціями САПР, а також між САПР та іншими програмами був визначений формат файлу обміну кресленнями DXF (Drawing eXchange Format).Даний формат сприймається усіма машинними реалізаціями вищезгаданих САПР, і існує можливість його перетворення як в їх внутрішній файл креслення, так і навпаки. Саме цей формат і був вибраний для реалізації комплексу TestCAD-2d.Інтерфейс зв’язку комплексу TestCAD-2d з файлами формату DXF аналізує інформацію двох типів. До першого типу відноситься інформація про об’єкти із секції ENTITIES. Цей тип відрізняється хорошою сумісністю з програмами, для яких DXF не є рідним форматом. Другий тип використовує набагато більш складний синтаксис і читає інформацію (вірніше, деяку частину інформації) про об’єкти із секції BLOCKS.DXF – відкритий формат файлів для обміну графічною інформацією між застосуваннями САПР. Був створений фірмою Autodesk для системи AutoCAD. Підтримується практично всіма CAD-системами на платформі PC [1]. DXF був вперше представлений в грудні 1982 року як частина AutoCAD 1.0, в якості обмінного формату даних, що надає ту ж інформацію, що і закритий внутрішній формат AutoCAD – DWG, специфікація на який ніколи не надавалася. В даний час на сайті Autodesk можна знайти специфікації всіх версій DXF, починаючи з AutoCAD Release 13 (листопад 1994) по AutoCAD 2012. Починаючи з AutoCAD Release 10 (жовтень 1988 р.), крім текстового варіанта DXF, підтримується також і двійкова версія – DXB.Не зважаючи на те, що нові об’єкти в специфікації формату DXF з часом описувалися не повністю або не описувалися зовсім, формат DXF залишився де-факто одним з двох стандартів для векторних зображень у відкритих операційних системах та застосуваннях (інший стандарт – SVG). Опис формату DXF доступний на сайті розробника [2].Відомі також методи тестування, що використовують відкритий формат XML, зокрема, наприклад, система IMS QTI (Instructional Management Systems Question and Test Interoperability), заснована на IMS –одному з ключових стандартів у галузі e-Learning, яка підтримується консорціумом IMS Global Learning Consortium [3]. Ці системи набули розповсюдження для різних видів тестування [4], зокрема, математичного тестування [5] та інших застосувань, але не досліджені у сфері графічних програмних засобів.Види тестових завданьРозглянемо варіант тестового завдання, наведеного на рис. 1, яке виконане у першій вітчизняній системі автоматизованого проектування BudCAD (розробник – Державний науково-дослідний інститут автоматизованих систем в будівництві). Скриншот результуючого вікна системи TestCAD-2d, суміщеного з вікном BudCAD, наведений нижче. Рис. 1 Тестова робота для проектувальника полягає у виконанні креслення в пакеті САПР визначених завданням примітивів та виконанні кількох операцій по їх редагуванню (перетин, масштабування, обрізання тощо, прив’язка).Результат виконаної роботи зберігається у файлі DXF (використана версія 2004) засобами самого пакету БудКАД.Особливість цього тесту в тому, що він є навчальним, оскільки видає «протокол» (лог-файл) дій учасника тестування, який порівнюється з відповідним протоколом дій викладача. Складність оцінки правильності виконання завдання полягає в тому, що викладач і учень можуть виконувати елементи креслення різними способами, навіть в рамках заданої інструкції. Наприклад, трикутник може бути накреслений з використанням методів ВІДРІЗОК або ПОЛІЛІНІЯ з операцією ЗАМКНУТИ або без неї.Тепер розглянемо завдання, наведене на рис. 2, яке виконане в інтегрованій системі будівельного проектування Allplan (Nemetschek, Німеччина).Рис. 2 Результат збережено у форматі DXF версії 2002. Слід відмітити, що штриховка, виконана в AllPlan, не прив’язана до об’єкту ПРЯМОКУТНИК, на відміну від BudCAD.Ще один приклад демонструє вміння суб’єкта тестування створювати блоки та вставляти їх в креслення. Результат виконання такого типу тестового завдання наведений на рис. 3. Рис. 3 Тести для оцінки знань відмінні від навчальних тестів лише відсутністю протоколу дій учасника тестування.Програмні аспекти системи тестуванняПлагін для тестування навиків володіння САПР має наступну структуру вхідних параметрів:<OBJECT classid="clsid:F1687401-5C57-476D-BD6F-B57994DE87F1" tabindex="1" codebase="http://bil.gov.ua/ActiveBudCADProj1.ocx"><param NAME="CAD" VALUE="BudCAD"><param NAME="TestNum" VALUE="107"><param NAME="CorrectAnswer" VALUE="CIRCLE: 5,55,0;45.3$LINE: 10,10,0;10,100,0$LINE: 10,10,0;50,50,0$ LINE: 10,100,0;50,50,0"></OBJECT>Відмітимо, що тут наведено «миттєвий знімок» HTML-коду завдання, представленого на рис. 1, оскільки значення параметрів CAD, TestNum і CorrectAnswer формуються «на льоту» за допомогою програмного забезпечення, розміщеного на сервері. Крім цього, цей плагін має ще одну можливість – він відсилає варіант відповіді на сервер.ВисновокВ статті розглянуті питання розробки навчально-тестових Web-систем для оцінки рівня кваліфікації та навчання спеціалістів будівельної галузі з використанням Web-технологій. Розглянуто ряд типів тестових завдань для тестування роботи в САПР в частині 2d-проектування, як простих, так і більш складних.
APA, Harvard, Vancouver, ISO, and other styles
40

Білоусова, Людмила Іванівна, Тетяна Василівна Бєлявцева, Олександр Геннадійович Колгатін, and Лариса Сергіївна Колгатіна. "Навчальні дослідження при вивченні методів обчислювальної математики." Theory and methods of learning mathematics, physics, informatics 5, no. 3 (November 26, 2013): 26–30. http://dx.doi.org/10.55056/tmn.v5i3.207.

Full text
Abstract:
Постановка проблеми. У підготовці майбутніх фахівців в області математики курс чисельних методів відіграє значну роль, оскільки при його вивченні студенти опановують способи і засоби розв’язування тих математичних задач, що виникають на практиці і непідвласні строгим методам чистої математики.Курс чисельних методів можна розглядати як своєрідний “місток” між логічно вивіреними математичними теоріями і реальністю. Аналізуючи чисельні методи, легко помітити, що вони часто являють собою прямий наслідок з теорем чистої математики, їхню проекцію на практичні задачі. Серед них є методи настільки прості й очевидні, що їх можна вивести не з теоретичних посилок, а попросту спираючись на здоровий глузд чи геометричну інтерпретацію задачі. Однак, є і такі методи, що вражають уяву оригінальністю і своєрідністю ідеї, нестандартністю підходу до розв’язування задачі.Постановка курсу чисельних методів являє собою досить складну проблему. Це зумовлено низкою факторів, з яких наведемо основні.Теоретична частина курсу досить важка для сприйняття студентами, оскільки обґрунтування чисельного методу, з одного боку, вимагає широкого залучення апарату чистої математики з різних її областей; з іншого боку, математична основа чисельних методів ґрунтується на оцінках, що не завжди виглядають досить переконливими. Більш того, багато з них студент повинен прийняти на віру, тому що їхнє послідовне виведення виходить за межі навчального курсу і найчастіше навіть не наводиться в підручниках.Усе сказане вище ускладнюється ще і тією обставиною, що поряд з теоретично встановленими нормами застосування того чи іншого методу існують і практичні правила – “неписані закони”, що не мають строгого обґрунтування, але якими проте зручно і доцільно керуватися на практиці. Згідно з цими правилами встановлюється реальна сфера дії чисельного методу, що звичайно виходить за рамки тієї, котра визначена теорією; умови застосовності методу одержують конкретизацію з врахуванням реальних технічних можливостей, а для контролю обчислювального процесу й оцінювання досягнутої точності рішення задачі пропонуються досить прості прийоми і співвідношення.Використання практичних правил дозволяє додати процедурі застосування чисельного методу технологічність. Разом з тим, недоведеність практичних правил залишає деякий сумнів у їхній правомірності, усунути який дозволяє лише досвід багаторазового контрольованого застосування чисельного методу – той самий досвід, що і породив ці правила.Слід зазначити також, що світ чисельних методів надзвичайно різноманітний, кожен з них має свою специфіку, свою область ефективного застосування, тому основною задачею обчислювача є правильний вибір методу, найбільш придатного для розв’язування поставленої конкретної задачі, вміле сполучення різних методів на різних етапах її розв’язування, для чого вимагаються не тільки і не стільки теоретичні знання в галузі чисельних методів, скільки інтуїція, що здобувається в міру нагромадження знову ж такі особистого досвіду застосування цих методів.Таким чином, курс чисельних методів, у силу свого явно вираженого практичного характеру, з необхідністю має спиратися на лабораторний практикум, якість постановки якого значною мірою визначає результати навчання за курсом у цілому.Метою даної роботи є висвітлення цілей, способу і результатів реалізації навчально-дослідницького лабораторного практикуму з чисельних методів.У стандартній постановці лабораторний практикум з чисельних методів зводиться до виконання розрахунків, необхідних для розв’язування задачі за відомим алгоритмом. Використання засобів обчислювальної техніки дозволяє цю роботу полегшити або автоматизувати, однак, у будь-якому випадку, коли це використання здійснюється на рівнях, що не виходять за рамки виконання обчислень або програмування, діяльність студента зводиться до відтворення алгоритму методу і кропіткої роботи з числами, що фактично призводить до заміщення змістовної задачі рутинною роботою.У такому режимі за час, що відводиться на вивчення курсу, вдається лише випробувати окремі методи на прикладі розв’язування якої-небудь однієї задачі. У такому усіченому і, можна сказати, збитковому виді курс чисельних методів утрачає свою привабливість і внутрішню красу і, цілком природно, виявляється нудним і нецікавим для студентів.Наше глибоке переконання полягає в тому, що істотних змін у постановці курсу чисельних методів і, як наслідок, у математичній підготовці студентів, можна досягти лише перетворенням лабораторного практикуму на цикл навчальних досліджень. При цьому дуже істотними є дві обставини: навчальні дослідження не вкрапляються окремими епізодами в тканину практикуму, а складають сутність кожної лабораторної роботи; використання обчислювальної техніки здійснюється на рівні середовища підтримки професійної математичної діяльності.Перша обставина змушує переглянути весь курс, надавши лекціям характеру тематичних оглядів, а практикуму – систематичності, що є необхідною умовою для поетапного розвитку, поглиблення й ускладнення навчальних досліджень студентів з опорою на набутий досвід такої діяльності та дослідницькі уміння і навички, які формуються.Необхідно відзначити, що епізодичне використання навчальних досліджень у лабораторному практикумі за принципом "час від часу" недоцільно. Практика показала, що в такому випадку студенти не усвідомлюють суті запропонованих їм завдань, а недостатній рівень дослідницьких умінь привносить у їхню діяльність елементи хаотичності і безсистемності. В решті більш привабливою формою проведення практикуму для більшості студентів виявляється звична робота за інструкціями.Що стосується другої обставини, то орієнтація вузівського навчального процесу на використання сучасного професійного комп’ютерного інструментарію, а не на навчальні пакети, представляється найбільш доцільної. Така орієнтація, з одного боку, сприяє формуванню в студентів стійких навичок використання комп'ютера в професійних цілях, з іншого боку – визначає досить високий рівень постановки навчальних досліджень, відразу відтинаючи рутинну роботу.Професійні пакети підтримки математичної діяльності, що одержали широке поширення, не розраховані на застосування в навчанні. Вони забезпечують розв’язання широкого кола стандартних математичних задач, залишаючи схованими від користувача використані для розв’язання методи. Разом з тим, такі пакети оснащені досить потужними і зручними вбудованими засобами, що дозволяють розширити функції пакета, у тому числі і такі, котрі пристосовують його для використання з метою навчання.Для постановки навчально-дослідницьких робіт з курсу чисельних методів нами був узятий за основу пакет MathCAD, засобами якого був розроблений комплект динамічних опорних конспектів (ДОК’ів), що підтримують виконання таких робіт із усіх тем курсу. Таким чином, фактично студенту була надана віртуальна лабораторія для проведення обчислювальних експериментів.Вибір пакета MathCAD зумовлений тим, що він широко застосовується для розв’язування прикладних задач математики і разом з тим йому притаманні такі якості, що дозволяють використовувати його в навчанні: можливість створення динамічної екранної сторінки, вільне переміщення курсору по екрану, досить розвинена вбудована мова і т.д. Створення ДОК’а в середовищі MathCAD зводиться до розробки програми, що реалізує алгоритм відповідного чисельного методу, і інтерфейсу, зручного для введення даних задачі і відображення на екрані процесу і результатів роботи алгоритму. Математичні можливості пакета були використані для оцінювання якості отриманих результатів.Кожен ДОК орієнтований на роботу з одним з чисельних методів і надає можливість багаторазових випробувань цього методу на різних задачах з виведенням на екран результатів у числовій і графічній формі. Проводячи навчальне дослідження, студент здійснює серію таких випробувань і на підставі спостереження за обчислювальним процесом, шляхом аналізу його характеристичних показників робить висновки.Необхідно відзначити, що задачі, розв'язувані студентом у ході навчального дослідження, істотно відрізняються від тих, котрі складають суть традиційної лабораторної роботи. Так, наприклад, при дослідженні чисельних методів розв’язування рівнянь студенту пропонується встановити, який критерій варто обрати для оцінки близькості знайденого наближення до шуканого значення кореня рівняння – точність, з якою це наближення задовольняє рівняння, чи точність, з якою це наближення повторює попереднє. У кожному дослідженні студенту пропонується вирішити такі задачі: експериментально оцінити порядок і швидкість збіжності методу; виділити основні фактори, що впливають на ці характеристики; встановити область ефективного застосування методу.При дослідженні, наприклад, інтерполяційних формул, де, на перший погляд, усе ясно – чим більше вузлів інтерполяції, тим вище ступінь полінома, точніше наближення, – студент має переконатися в тому, що далеко не завжди це й справді так. Для досягнення потрібної точності іноді доцільно змінити тактику: замість нарощування вузлів використовувати дроблення проміжку інтерполяції. Студенту пропонується побудувати найкраще можливе наближення функції на відрізку по заданій на ньому обмеженій кількості її значень. Як варто розпорядитися цими даними? Який спосіб інтерполяції дасть найбільш надійний результат? Вивчаючи питання про точність відновлення значення функції в проміжній точці таблиці за інтерполяційними формулами, студент експериментально встановлює правило для вибору тих табличних значень, на які варто спиратися для мінімізації похибки і т.д.Для того, щоб діяльність студента була осмисленої, націленою і забезпечувала досягнення прогнозованого навчального ефекту, нами було розроблено методичну підтримку практикуму у виді планів-звітів з кожної лабораторної роботи.Плани-звіти виконані за єдиною схемою і складаються з двох частин – інформативної й інструктивної. В інформативній частині повідомляється тема роботи, її ціль, програмне забезпечення роботи, наводиться характеристика вхідних і вихідних числових і графічних даних.Інструктивна частина містить порядок виконання роботи, де позначені і зафіксовані її ключові моменти. Для орієнтації студента на виконання дослідження йому спочатку пропонується ланцюжок відповідним чином підібраних питань. Деякі з них адресовані до інтуїтивних уявлень студента про досліджуваний метод, інші – на те, щоб наштовхнути його на думку про можливу помилковість таких уявлень. У ході обмірковування запропонованих питань студент одержує можливість зорієнтуватися в проблемі, усвідомити її та вибудувати робочу гіпотезу дослідження.Уся наступна – основна – робота студента спрямована на перевірку, уточнення, конкретизацію гіпотези. Ця робота виконується за запропонованим планом, що визначає окремі етапи дослідження, задачі, що розв’язуються на кожному етапі, експериментальний матеріал, який потрібно отримати, форму його подання і т.д. У міру просування практикуму інструкції студенту все менш деталізуються, здобуваючи характер рекомендацій. Деякі експерименти він повинний продумати, поставити і здійснити самостійно.Для виконання кожної з лабораторних робіт підібрані індивідуальні варіанти комплектів задач, на яких пропонується випробувати метод для отримання експериментального матеріалу, що відповідає меті роботи. При бажанні студент може доповнити ці комплекти задачами за власним вибором.Завершальним етапом дослідження є підведення його підсумків. Це пропонується зробити у вигляді висновків, контури яких з більшим чи меншим ступенем виразності намічені в плані-звіті. Підказки допомагають студенту зафіксувати результати роботи, структурувати їх, дозволяють звернути увагу на ті моменти дослідження, що можуть залишитися непоміченими.Виконання запланованого дослідження дає студенту досить глибоке розуміння властивостей і специфіки застосування досліджуваного методу, і це повинно знайти відображення в "творі на вільну тему": придумати таку практичну задачу, для якої найбільш ефективним інструментом рішення є саме досліджуваний метод.Зазначимо, що плани-звіти надаються студентам як у друкованому виді, так і в електронній формі. Остання використовується паралельно з ДОК’ом під час проведення лабораторної роботи, що зручно для перенесення експериментальних даних з ДОК’а в заготовлені таблиці, для підготовки звітних матеріалів.Висновки. Досвід впровадження описаного практикуму в навчальний процес на фізико-математичному факультеті Харківського національного педагогічного університету дозволяє зробити наступні висновки. Курс чисельних методів набув більшої значимості у формуванні математичної культури студентів, було істотно розширено коло апробованих методів і коло розглянутих задач. Навчальні дослідження, при наявності відповідного програмного і методичного забезпечення, а також при певній наполегливості викладача виявилися цілком посильною і результативною формою навчальної роботи студентів.
APA, Harvard, Vancouver, ISO, and other styles
41

Вдовіна, Олена Василівна, and Андрій Володимирович Полонський. "Досвід впровадження інтернет-технологій в організацію контролю знань студентів." Theory and methods of e-learning 3 (February 5, 2014): 45–49. http://dx.doi.org/10.55056/e-learn.v3i1.315.

Full text
Abstract:
Стрімкий розвиток мережевих інформаційних технологій, окрім помітного зниження бар’єрів часу і просторових бар’єрів у розповсюдженні інформації, відкрив нові перспективи у сфері освіти.Можна з упевненістю стверджувати, що в сучасному світі має місце тенденція злиття освітніх і інформаційних технологій і формування на цій основі принципово нових інтегрованих технологій навчання, заснованих, зокрема, на Інтернет-технологіях. З використанням таких технологій з’явилася можливість необмеженого і дуже дешевого тиражування навчальної інформації, швидкої і адресної її доставки. Навчання при цьому стає інтерактивним, зростає значення самостійної роботи тих, хто навчається, а також серйозно посилюється інтенсивність навчального процесу.Ці переваги зумовили активізацію роботи колективів вищих навчальних закладів І-ІІ рівнів акредитації, в тому числі колективу Дніпропетровського технікуму залізничного транспорту, щодо подальшого впровадження інформаційних технологій в традиційну модель навчального процесу.Прикладом інноваційного підходу до організації контролю знань студентів є використання методики проведення тестування в системі навчання за допомогою освітнього сервісу WEB-test конструктора – «Майстер-тест» (http://master-test.net) зі спеціальності «Обслуговування комп’ютерних систем і мереж». Даний інноваційний досвід роботи було адаптовано до умов навчального закладу і впроваджено студентами під час роботи над дипломним проектом.WEB-test конструктор «Майстер-тест» – це безкоштовний сучасний Інтернет-сервіс, який надає можливість легко створювати онлайн-тести, використовуючи сучасні Інтернет-технології. Для Інтернет-тестування на комп’ютер користувача непотрібно встановлювати ніяких додаткових програм. Також безперечним плюсом використання «Майстер-тест» є те, що на сторінках сайту немає реклами та надлишкової інформації, яка буде відволікати користувача від тестування. А викладачу, що створює тест, крім знань з дисципліни, необхідно мати лише початкові навички в користуванні комп’ютером та застосування Інтернет-технологій.В основі розробленого програмного продукту закладений принцип динамічного формування html-сторінки, що містить текст WEB-тесту. Для цього авторами був розроблений шаблон універсальної html-сторінки, яка включає в себе програми мовою JavaScript, написаної на основі вихідних даних (кількість і тексти завдань у тесті, кількість пропонованих відповідей і самі варіанти відповідей, «ціна» правильної відповіді і необхідні суми набраних балів для одержання тієї чи іншої оцінки, час, що відводиться на виконання тесту і ряд інших) формують Web-тест.При завантаженні html-документа в браузер робочої станції клієнта завантажується відповідна програма, написана на JavaScript, яка здійснює динамічне формування Web-тесту відповідно до вихідних даних. Інші скриптові програми, що містяться в документі, здійснюють контроль за правильністю заповнення полів форми, яка відсилається на сервер для реєстрації, роблять обробку результатів виконання тесту з виставленням оцінки і ведуть хронометраж роботи над тестом. Інструментальне середовище «Майстер-тест» має простий і зручний інтерфейс і дозволяє швидко скласти нове навчальне завдання чи відредагувати наявне.Дана програма написана в програмному середовищі Delphi і цілком інваріантна предметній області. Програма генерує html-файл тесту, що може використовуватися локально на комп’ютері користувача чи розміщуватись на Web-сервері. Програмою передбачена можливість реєстрації студентів (за допомогою заповнення ними відповідної форми) і результатів виконання тесту. Ці дані пересилаються на сервер і обробляються спеціальним CGI-скриптом.При роботі з програмою викладач може вводити тексти завдань і варіантів відповідей із вказуванням правильних, замовляти колір тексту і фону майбутнього документу. При формуванні тесту існує можливість вставки графічних зображень.Корисною властивістю розробленого програмного середовища є здатність включення в продукти також мультимедійних даних, що дозволяє створювати Web-тести з аудіо і відео супроводом. Крім того, передбачене використання гіперпосилань при формуванні завдань, що істотно розширює можливості тестування, дозволяючи використовувати для цього матеріали, що знаходяться в будь-якому місці Інтернет. «Майстер-тест» надає змогу додавати не тільки графічне зображення до питань тесту, а й надає можливість додавати його до будь-якого з варіантів відповідей.«Майстер-тест» включає розвинену систему допомоги, у якій міститься докладний опис всіх полів робочого вікна і розділів меню. Кількість варіантів відповідей на питання тесту – до 6. Кількість запитань у тесті може бути до 90000.«Майстер-тест» – одна з небагатьох програм, яка надає можливість коментувати та спілкуватись за допомогою власного інтерфейсу викладачу зі студентом. Однією з переваг застосування «Майстер-тест» є й те, що як викладач, так і студент має змогу працювати в зручний для нього час та у зручних умовах. Але головною прерогативою програми є обмеження доступу до програми та облікового запису викладача або студента.Описуючи інтерфейс «Майстер-тест», зупинимось детальніше на огляді процедури роботи з програмою.Робота з даною системою починається з реєстрації користувача. Кожен користувач системи має можливість обирати власних викладачів та студентів, додаючи їх через запрошення, надіслане на електронну скриньку. Якщо викладач надіслав студентові запрошення, то не має необхідності самостійно додавати викладача, замість цього потрібно лише перейти по посиланню в отриманому листі на сторінку реєстрації, заповнити поля «Ім’я», «Прізвище», «Пароль» та «Електронна пошта» і зареєструватися. Остаточним етапом реєстрації є отримання листа із запрошенням до активації користувача та перехід за цим посиланням.Після реєстрації користувач переміщується на головну сторінку облікового запису, де потрапляє в панель керування користувача. При першому вході в систему користувачу буде запропоновано вказати параметри налаштування часового поясу та визначитись, в якому статусі буде використана дана система – тобто будете ви, використовувати свій обліковий запис як викладач, чи як студент.«Майстер-тест» також має можливість одночасного застосування і облікового запису викладача і облікового запису студента. За для використання цього сервісу необхідно перемикатись між записами, вибираючи при цьому потрібне вкладення. Якщо обирається саме цей спосіб користування системою, то одночасно будуть доступними два меню, й можна буде користуватись обома сервісами, обираючи потрібну вкладку.Меню викладача складається з наступних пунктів: «Мої тести», в якому знаходиться опис списку існуючих тестів; «Результати студентів», де містяться результати проходження тестів студентами; «Мої групи» – даний пункт містить список груп, в які викладач може об’єднувати студентів (використання даного пункту буде раціональним якщо викладач має кілька десятків студентів); «Мої студенти» – в даному пункті знаходиться список студентів, для яких викладач може активувати online-тести.Система «Майстер-тест» має кілька способів додавання студентів до облікового запису викладача:1. За допомогою відправлення запрошення студенту на електронну скриньку.Процедура висилання запрошення проходить з використанням стандартної форми, яка міститься зліва на сторінці викладача. Для здійснення запрошення викладачу потрібно ввести електронну адресу студента та вибрати параметр виконання запрошення, а потім натиснути кнопку «Відправити». Система виведе на екран форму, в якій можна написати текст повідомлення, котре буде додане до листа запрошення. Після виконання процедури відсилання запрошення, студенту на електронну поштову скриньку надійде лист із посиланням на реєстрацію. Якщо студент зареєструється, скориставшись даним посиланням, то після проходження реєстрації він автоматично з’явиться у списку студентів.Якщо скористатись першим способом не має можливості, то існує ще один спосіб.2. Спосіб з використанням коду викладача – даний спосіб має на увазі, що студент самостійно реєструється в системі, не використовуючи при цьому запрошення викладача. Для цього потрібно повідомити студенту адресу ресурсу системи «Майстер-тест», де він повинен пройти процедуру реєстрації і надати йому персональний код викладача. Студенту ж для реєстрації викладача потрібно ввести заздалегідь отриманий від викладача персональний код та закінчити процедуру активації.Меню студента «Майстер-тест» складається з наступних пунктів: «Активні тести», де містяться активні тести, доступні на теперішній час (тести стають активними, тільки після того, як їх активує викладач); «Мої результати» – даний пункт містить результати пройдених студентом тестів; «Мої викладачі» – в пункті перераховані викладачі, які активують тести студентам.Після реєстрації та активації викладач має змогу користуватись сервісом створення тестів, для цього йому необхідно перейти на вкладення «Мої тести» та натиснути на кнопку «Створити новий тест». Після завантаження редактору online-тестів викладач додає запитання тесту, змінює титул тестових питань, задає опції результату та виконує пробний тест. Для завершення процедури створення тестів викладач натискає кнопку «Зберегти тест». Новостворений тест з’явиться у вкладці «Мої тести», де його потрібно активувати, або відкрити для подальшого редагування. При активації тесту викладач повинен визначитись, хоче він провести тестування одного чи групи студентів, хоче він опублікувати тест, чи завантажити його, як файл, та користуватися ним без підключення до мережі Інтернет. Надалі викладач визначає термін часу активації даного тесту та вибирає студента, або групу студентів для тестування.Студенти, яким призначено тест, у довільний час можуть пройти тестування, а саме: після проходження авторизації в системі, студентові потрібно зайти у вкладення «Активні тести» та вибрати тест необхідний для здачі. Вкладення «Активні тести» містить інформацію щодо назви тесту, прізвища викладача, терміну часу, виділеного на тест, та параметри обмеження часу, протягом якого буде існувати можливість проходження тестування. Після тестового контролю студент має можливість переглянути отримані результати. На екрані він побачить кількість набраних балів, відсоток проходження тесту, загальну кількість заданих питань, кількість наданих правильних та неправильних відповідей на запитання. Також студентові надається можливість більш детального аналізу пройденого тесту, а саме: система «Майстер-тест» виведе на екран всі тестові питання, в яких буде висвітлено правильну відповідь та відповідь, дану студентом.Викладач також може отримати розгорнуті результати відповідей студентів, для цього йому потрібно у власному обліковому записі зайти у вкладення «Результати студентів», де буде висвітлено детальні результати тестування, які при необхідності викладач може надрукувати.Запропоновані студентам тестові завдання з дисципліни «Комп’ютерні мережі» були підібрані так, що одні з них вимагали простого відтворення матеріалу, інші спонукали до порівнянь, треті передбачали застосування знань у нових ситуаціях. Аналіз впровадження даної форми тестового контролю у порівнянні з іншими формами тестування показав покращення якості на 10% при відсутності незадовільних оцінок, а в порівнянні з результатами останнього рубіжного контролю, підвищення якості склало більше 13 %.Отже, тестова перевірка має ряд переваг порівняно з традиційними формами і методами, вона природно убудована в сучасні педагогічні концепції, дозволяє більш раціонально використовувати зворотний зв’язок зі студентами і визначати результати засвоєння матеріалу, зосередити увагу на прогалинах у знаннях та внести відповідні корективи. Тестовий контроль не тільки полегшує роботу викладача, забезпечує одночасну перевірку знань студентів усієї групи та формує в них мотивацію для підготовки до кожного заняття, дисциплінує студентів, але й дозволяє вести навчання на якісно-новому, сучасному рівні та підвищує мотивацію навчальної діяльності студентів, одночасно знижуючи їхню емоційну напруженість у процесі контролю.
APA, Harvard, Vancouver, ISO, and other styles
42

Доброштан, Олена Олегівна. "Використання мережевого навчально-методичного комплексу у процесі вивчення природничо-математичних дисциплін для майбутніх судноводіїв." Theory and methods of e-learning 3 (February 10, 2014): 78–82. http://dx.doi.org/10.55056/e-learn.v3i1.320.

Full text
Abstract:
Впровадження інформаційно-комунікаційних технологій в освіту обумовило появу мережевих технологій навчання. Розвиток Інтернет-технологій відкриває нові шляхи для впровадження дистанційних технологій у вищу освіту та потребують необхідного сучасного мережевого навчально-методичного забезпечення. Специфікою вищого навчального закладу морського профілю є наявність проходження курсантами довготривалої морської практики, а в таких умовах найбільш ефективною є дистанційна форма навчання.Таким чином, створення мережевих освітніх ресурсів у вищому навчальному закладі морського профілю є актуальною проблемою, розв’язання якої обумовить перехід на новий рівень використання телекомунікаційних технологій, дозволить організацію навчальної діяльності на основі інформаційних освітніх ресурсів в глобальних мережах.Питання використання ІКТ у навчальному процесі ВНЗ розглядалися багатьма вітчизняними та закордонними науковцями такими, як Є. С. Полат, М. І. Жалдак, Н. В. Морзе, С. А. Раков, В. В. Олійник, О. В. Співаковський, В. Ю. Биков, В. М. Кухаренко та інші. У структурі інформаційної культури вчителя Н. В. Морзе серед інших складових виділяє культуру використання ІКТ і культуру спілкування через засоби ІКТ [3].Розробці методичної підтримки засобів ІКТ присвячені роботи таких науковців, як В. Ю. Биков, А. Ф. Верлань, Т. Л. Архіпова, О. М. Гончарова, А. М. Гуржій, Ю. О. Жук, Л. І. Білоусова та ін. У своїх працях науковці відмічають високу ефективність використання інформаційно-комунікаційних технологій в навчальному процесі. Значна кількість досліджень присвячених створенню нової системи інформаційного забезпечення освіти, розробленню автоматизованих навчальних систем тощо.О. В. Співаковський проводить дослідження методики викладання із використанням мультимедійних навчальних програм, застосування Інтернет-технологій, електронних бібліотек, мережевих навчальних систем; реалізації дистанційного навчання [4].В роботах Р. С. Гуревича, Л. В. Жиліної, Т. І. Чепрасової розглядається необхідність електронних навчально-методичних комплексів для якісного здійснення процесу навчання та його методичного забезпечення, структура яких включає: електронний навчальний посібник; комп’ютерний практикум лабораторного моделювання; систему тестування; мережеву Web-версію курсу тощо [1; 5].Визначення електронного навчально-методичного комплексу можна сформулювати так: навчально-методичний комплекс-це навчальна програмна система комплексного призначення, що забезпечує неперервність та повноту дидактичного циклу процесу навчання. Вона являє собою теоретичний матеріал, контроль рівня знань та умінь, інформаційно-пошукову діяльність, математичне та імітаційне моделювання з комп’ютерною візуалізацією та сервісні функції при умові здійснення інтерактивного зворотного зв’язку [2].Освітні мережеві навчально-методичні комплекси (МНМК) є програмно-інформаційним посередником між тими, хто навчаються і викладачами, тому функції навчально-методичного комплексу створенні підтримки користувачів.Мережеві навчально-методичні комплекси повинні забезпечувати всі традиційні форми навчання у вищому навчальному закладі:лекції, практичні заняття, консультації. В ході роботи з МНМК можуть бути також здійснені консультацій в он-лайн режимі з викладачем для студентів, що не мають змогу отримати допомогу на території ВНЗ.Мережевий навчально-методичний комплекс в процесі навчання подає навчальні матеріали у доступній формі, наочно, згідно змісту та методики навчання; грає роль помічника в розв’язанні вправ та контролера в прийнятті результатів тестувань, контрольних робіт, звітів тощо, наявність журналу успішності допомагає контролювати рівень засвоєння матеріалу. При розробці мережевого навчально-методичного комплексу необхідно поєднати технологічні етапи створення навчальних курсів з дидактичними принципами навчання та основними ступенями учбового процесу.Мережевий навчально-методичний комплекс містить всі необхідні матеріали такі, як план роботи, робоча програма, електронний лекторій, можливо відео лекторій, практикум, бібліотеку електронних посібників, тренажери, варіанти контрольних та розрахунково-графічних робіт, засоби он-лайн тестування, теми проектів, рефератів тощо.МНМК є основним засобом для організації навчального процесу в нових освітніх умовах для очної, заочної та дистанційної форм навчання. Навчально-методичний комплекс спонукає тих, хто навчається, до активної пошукової навчальної діяльності, самостійного оволодіння знаннями, шукати та знаходити джерела необхідної інформації, розвитку творчих здібностей тощо.Нами було створено МНМК навчання курсу «Вищої математики» майбутніх судноводіїв. При цьому самостійна робота курсантів стає переважаючою в структурі навчально-освітньої діяльності.МНМК курсу «Вища математика» складається з блоків: інструктивний, інформаційний, комунікативний та контролювальний (рис. 1). Рис. 1 Кожен блок являє собою комплект дидактичних ресурсів (рис. 2).МНМК є результатом розвитку та інформатизації традиційних навчально-методичних комплексів. Комплекс здатен забезпечити в належному об’ємі всі традиційні види занять у вузі (лекції, практичні заняття, науково-дослідницьку роботу, самостійну роботу, модульні контрольні роботи, заліки).Кожен курсант має вільний доступ до необхідного навчального матеріалу. Реєструючись у системі і отримуючи доступ до навчального матеріалу, який відповідає його спеціальності та академічному рівню, курсант може розпочати свою самостійну роботу скрізь, де є вільний доступ до мережі Інтернет.Весь матеріал комплексу розподілений на курси:1. Класики 1 курс.2. Класики 2 курс.3. СП 1 курс.4. СП 2 курс.5. Заочне відділення 1 курс.6. Заочне відділення 2 курс.7. СП заочне відділення 1 курс. Рис. 2 Мережевий навчально-методичний комплекс для забезпечення самостійної роботи курсантів Херсонської державної морської академії з вивчення курсу вищої математики, здійснення перевірки сформованості знань, вмінь та навичок курсантів розраховано і на користування викладачів інших спеціальностей кафедри.Сучасний судноводій або судновий механік – це людина, яка крім знання спеціальних дисциплін, повинна володіти ІКТ, вміти інтегрувати свої знання у інноваційні технологій, самостійно творчо вирішувати наукові, технічні, суспільні задачі, критично мислити, захищати свою точку зору. Він повинен вміти працювати в злагоді з оточуючими, постійно поповнювати і поновлювати свої знання шляхом самоосвіти, самовдосконалення. Вища школа реалізує цю задачу при особливій організації освітнього процесу, спрямовану на активну самостійну роботу курсантів.
APA, Harvard, Vancouver, ISO, and other styles
43

Лопай, Сергій Анатолійович, and Артем Володимирович Шипілов. "Тестова оболонка для автоматизованого контролю навчальних досягнень." Theory and methods of e-learning 3 (February 10, 2014): 167–73. http://dx.doi.org/10.55056/e-learn.v3i1.335.

Full text
Abstract:
Моніторинг якості навчання є однією з найважливіших складових сучасного навчально-виховного процесу й базується на ефективній організації контролю у процесі засвоєння змісту навчання. У системі моніторингу якості тестовому контролю відводиться особливе значення, оскільки він дозволяє отримати найбільш оперативну та достатньо об’єктивну оцінку навчальних досягнень. При цьому особливу роль в тестовому контролі відіграє застосування можливостей, що надають інформаційно-комунікаційні технології.Сьогодні існує велика кількість програмних продуктів для проведення тестування. У більшості своїй, існуючі навчальні та тестуючі програми є досить високоякісними мультимедійними продуктами, що непогано виконують функції, для яких були призначені. Вони дозволяють застосовувати нові адаптивні алгоритми тестового контролю, використовувати мультимедійні технології, прискорити підрахунок результатів, спростити адміністрування, підвищити оперативність тестування, знизити витрати на організацію та проведення тестування. Сучасний рівень розвитку технологій дозволяє реалізувати ще такі вимоги до тестових оболонок: підтримка тестування з різних предметів, наявність бази тестів, що легко створювати, редагувати та видаляти, можливість створювати завдання різних типів, зберігання всіх результатів тестування для подальшого аналізу, можливість проходження тестування декількома особами одночасно [6]. Теоретична значимість і практична важливість розглянутого питання й спричинили вибір теми дослідження.Метою даної статті є висвітлення основних функціональних характеристик розробленої тестової оболонки для автоматизованого контролю навчальних досягнень.Контроль рівня знань є однієї з основних складових процесу навчання. Він виконує у навчальному процесі контролюючу, навчаючу, діагностуючу, виховну, мотивуючу та інші функції. Для управління навчальним процесом на різних етапах педагог постійно повинен мати відомості про те, як ті, хто навчається, сприймають та засвоюють навчальний матеріал. Основною формою контролю у сучасному навчальному процесі є тестування.У своїх дослідженнях О. М. Мокров, Т. В. Солодка переконливо доводять переваги тестового контролю знань, умінь та навичок над іншими методами контролю [2; 5].Як зазначає І. Є. Булах [1], використання інформаційно-комуніка­ційних технологій дозволяє ефективно використовувати в якості методики контролю рівня знань, вмінь та навичок тестовий контроль та дає можливість реалізувати основні дидактичні принципи контролю навчання.Контроль з точки зору викладача – тривала й трудомістка частина роботи. Полегшити і систематизувати її можна шляхом використання так званих інструментальних програмних засобів. У такому разі проблема реалізації пов’язаних з контролем функцій розпадається на три напрями – функції підготовки до контролю, функції проведення контролю та функції забезпечення зворотного зв’язку в процесі навчання. Набір інструментальних засобів, пов’язаних з логікою та ідеєю, може становити інструментальну систему. Використання комп’ютерної інструментальної системи контролю виступає як засіб реалізації системи комп’ютерного контролю [4].Серед існуючих програмних засобів, призначених для здійснення автоматизованого контролю навчальних досягнень школярів та студентів, у літературі виокремлюють такі види [3]:окрема програма, що створена на певній мові програмування та вміщує у собі всі частини тестової системи: питання, варіанти відповідей, аналітичний модуль;тестова оболонка, в якій дані, які складають тест, і програма, що буде відтворювати тест, відокремлені один від одного. У таких системах файл з тестами розташований відокремлено від самої оболонки, що дає можливість розподіляти рівень доступу до оболонки й майже унеможливлює зміну оболонки під час редагування тестів. Разом з тим, при роботі з такими середовищами виникають ряд проблем, пов’язаних з сумісністю оболонок з різними операційними системами, неможливості одночасної роботи декількох користувачів, проблема зберігання результатів тестування залишаються. Кожний колектив вирішує зазначені проблеми у власний спосіб;мережева система. Тут існують два варіанти: а) бінарна програма, написана на якій-небудь мові програмування, що працює під певною операційною системою й має можливість обміну даними, використовуючи можливості комп’ютерної мережі; б) веб-додаток, що використовує для обміну даними протокол HTTP і мову розмітки гіпертексту HTML.Використовуючи сучасні можливості Web 2.0, можливості мови XHTML та технології CSS 3, загальні концепцій Web-дизайну, потенціал мови JavaScript і бібліотеки jQuery, нами було створено тестову оболонку для контролю навчальних досягнень студентів чи учнів з будь-якого предмета.Оболонка є динамічною й дозволяє використовувати практично довільну кількість тестів. Крім того, у межах одного тесту можна змінювати характери питань та відповідей, а також їх кількісні характеристики. Структуру розробленої тестової оболонки представлено нижче.Рис. 1. Структура роботи оболонки Використання оболонки починається з авторизації чи реєстрації у системі. Сторінка авторизації (рис. 2) містить поля для заповнення: логін і пароль. Користувачі, які ще не мають облікового запису в оболонці, повинні пройти реєстрацію, яка передбачає введення даних: логін, прізвище, ім’я по батькові, електронну адресу, пароль.У нижній частині сторінки кожний користувач має змогу ознайомиться з правилами та переглянути основні можливості оболонки. Для цього було використано асоціативні зображення, при наведенні на які з’являється опис відповідної характеристики оболонки.Після заповнення усіх параметрів обробляється внесена інформація й пропонується активувати обліковій запис.Головна сторінка оболонки (рис. 3) виконує інформативну й навігаційну функції. Зліва розташовано навігаційне меню з такими посиланнями:Головна – посилання на головну сторінку;Мої дані – персональна сторінка користувача, що містить раніше внесені відомості; Рис. 2. Сторінка авторизації Рис. 3. Головна сторінка оболонкиНовий тест – сторінка для створення нового тесту, до якої мають доступ лише користувачі, які зареєстровані як викладачі;Тести – основна сторінка, на якій містяться усі тести, що були створені в оболонці;Рейтинг – сторінка перегляду рейтингу проходження створених тестів (для викладачів) і перегляду досягнень для тестуючих;Оболонка – сторінка збору статистичних даних про оболонку в цілому;Розробники – сторінка, яка містить інформацію про розробників проекту.У нижній частині меню розташовано поле для введення пошукового запиту для проведення пошуку в базі знань оболонки.Під час створення нового тесту автор має змогу встановити параметру тесту, серед яких: тема тесту, назва тесту, опис тесту, можливість редагувати тест іншими викладачами, пароль на редагування, можливість проходження тесту, пароль на проходження, час на проходження тесту. Після заповнення параметрів тесту користувач матиме змогу заповнити тест питаннями (рис. 4). Рис. 4. Створення питання тесту При додаванні питань до тесту користувачу перш за все потрібно визначитись з типом тестового завдання. Оболонка дозволяє створювати такі: завдання на вибір однієї чи декількох правильних відповідей, завдання відкритої форми, завдання на встановлення відповідності, завдання на встановлення правильної послідовності.Обравши тип тестового завдання потрібно заповнити питання, його опис, варіанти відповідей, підказку чи коментар. Редактор питань дає можливість створювати опис питань за допомогою візуального редактору тексту, що дозволяє з легкістю форматувати текст питань, змінюючи положення тексту, колір, накреслення, розмір, стиль. Присутня підтримка вводу формул у форматі LaTeX, що дозволяє створювати питання з математичними формулами. Кількість відповідей може бути довільною. До кожного питання може бути додано графічний файл у форматі JPEG, GIF, BMP, PNG та відео файли формату FLV. Додавання мультимедійних файлів відбувається з використанням технології AJAX, яка дає можливість змінювати вміст контенту частини сторінки без повного перезавантаження усієї сторінки.Сторінка «Тести» містить у своїй структурі перелік усіх дисциплін, при натисканні на які випадає повний список тестів, що існують з відповідної дисципліни. Вміст даної сторінки залежить від прав користувача оболонки: студенти (чи учні) мають можливість лише проходити тести та переглядати статистику, а викладачі ще мають можливість редагувати та додавати питання до існуючих тестів.Обираючи конкретний тест, користувач у відповідності зі своїм рівнем доступу має можливість: пройти тест, продивитися статистику проходження даного тесту, додати нове питання до тесту, відредагувати питання тесту.Сторінка для перегляду рейтингу має різні рівні доступу: для викладачів та студентів (учнів). У студентів (учнів) ця сторінка відіграє роль статистики усіх пройдених тестів з оцінками, викладачі мають змогу за допомогою сторінки «Рейтинг» провести аналіз створених тестів, оцінок студентів та переглянути статистичні дані у формі графіків та діаграм.Сторінка «Оболонка» містить інформацію про статистичні дані використання оболонки в цілому: кількість тестів, проходжень тестів, кількість викладачів і студентів у системі, перелік охоплених галузей. Сторінка містить кругову діаграму, яка наочно демонструє популярність тестів оболонки, також на сторінці розміщено два спойлери, при відкритті яких користувач має змогу переглянути діаграми «популярність тестів» та «найдовші тести оболонки».Створена тестова оболонка для контролю навчальних досягнень має такі переваги:незалежність від навчальної дисципліни;наявність інтуїтивно зрозумілого інструментарію для підготовки тестових завдань та їх редагування; для підготовки тестових завдань не вимагаються знання основ програмування та основ створення веб-сторінок – процес підготовки тестових завдань є візуалізованим;оболонка припускає підготовку тестових завдань з використанням формул, малюнків, таблиць, графіків та діаграм, відео фрагментів, аудіо записів;підтримка використання транскрипції написання математичних формул LaTeX;наявність комплексу додаткових інструментів, що дозволяють обмежити тривалість виконання завдань, пропонувати завдання у випадковому порядку;можливість створення друкованого зразку тесту;аналітичні та статистичні дані виводяться як у вигляді таблиць, так й у вигляді графіків та діаграм;усі застосовані при створенні оболонки технології безкоштовні та розповсюджуються з відкритим програмним кодом;незалежність від встановленої платформи;доступ до оболонки здійснюється за допомогою глобальної мережі Інтернет.Тестова оболонка може бути використана вчителями загальноосвітніх шкіл, викладачами ВНЗ, студентами, школярами.
APA, Harvard, Vancouver, ISO, and other styles
44

Воронкін, Олексій Сергійович. "Конективізм і масові відкриті дистанційні курси." Theory and methods of e-learning 4 (February 13, 2014): 30–39. http://dx.doi.org/10.55056/e-learn.v4i1.366.

Full text
Abstract:
Вступ. Останнім часом теорія складних мереж стала ефективним інструментом дослідження складних структур: технологічних (наприклад, Інтернет-мережа, www, транспортні мережі), соціальних (мережі співробітництва, мережі мобільного телефонного зв’язку), біологічних (екологічні мережі, функціональні мережі мозку, мережі білкових взаємодій) [1]. Вузли в таких мережах – це елементи складних систем, а зв’язки між вузлами – взаємодії між елементами.Web 2.0 дозволив створити навчальні системи, засновані на принципах, так званої, кібернетики другого порядку. Учень тепер став активним елементом системи, яка не тільки контролює й направляє його діяльність, але й дозволяє своєю думкою впливати на функціонування й наповнення самої системи. Такий підхід є основою для виникнення системних ефектів [2].Дж. Сіменс і С. Даунс у власній теорії конективізму багато в чому продовжують ідеї, висловлені німецьким філософом В. Флуссером. У рамках конективізму, навчання – це процес створення мережі. Вузлами можуть бути люди, організації, бібліотеки, web-сайти, книги, журнали, бази даних або будь-яке інше джерело інформації. Сукупність зв’язаних вузлів стає мережею. Мережі можуть поєднуватися між собою. Кожний вузол у мережі може бути мережею більш низького рівня. Вузли, що втратили актуальність і цінність поступово зникають. Комплекси вузлів збуджують або гальмують один одного й у результаті їхнього взаємозв’язку утворюється блок. Збуджуючий або гальмуючий вплив один на одного можуть чинити й блоки – групи вузлів, кожен з яких видає власний загальний вихідний сигнал, що відповідає результуючій вазі всіх вхідних сигналів, отриманих від інших вузлів. Блоки організовані ієрархічно. Оскільки величезна кількість вузлів функціонує одночасно й на різних рівнях організації, обробка носить паралельний характер. Утворюючи персональну навчальну мережу, в мозкових структурах слухача згідно конекціонізму формується нейронна мережа.Конективізм і масові відкриті дистанційні курси. Застосування ідей конективізму знайшло відображення у практиці масових відкритих дистанційних курсів (МВДК), які останнім часом досить широко використовуються у закордонній педагогічній діяльності.З метою вивчення тенденцій розвитку МВДК в листопаді 2012 року автором було проведено дослідження «Конективізм і масові відкриті дистанційні курси» [3]. У результаті Інтернет-анкетування було опитано 62 респондента з України, Росії, Білорусії, Азербайджану, Грузії, Лівану та Німеччини (рис. 1). Переважну кількість учасників опитування (77 %) склали викладачі й наукові співробітники, 8 % – керівники відділів освітніх установ, 5 % – аспіранти (рис. 2). Враховуючи те, що були задіяні респонденти зайняті в сфері дистанційної освіти, можна говорити про високу вірогідність відомостей, отриманих у ході дослідження (випадково опинилися на сайті з опитуванням лише 2% учасників). а бРис. 1. Розподіл учасників: а – за країнами, б – за віком При перебуванні в Інтернет-мережі переважна більшість опитаних витрачає значну долю свого часу на пошук інформації (92 %), а вже потім на навчання й спілкування (рис. 3). Рис. 2. Склад вибіркової сукупностіРис. 3. Розподіл витрат часу учасників при перебуванні в Інтернет Особливістю отриманих результатів є те, що 71 % респондентів не вважають конективізм повноцінною (самостійною) теорією навчання, з них 45 % відносять конективізм до різновиду неформального навчання, що реалізується в контексті концепції освіти впродовж всього життя, 18% вважають конективізм педагогічною ідеєю (рис. 4). Рис. 4. Чи можна вважати конективізм повноцінною теорією навчання 60 % респондентів приймали участь у МВДК, з них 40 % задоволені результатами свого навчання, 18 % не можуть оцінити результат, а 2 % залишилися розчарованими (рис. 5).76 % вважають, що ідеї конективізму сприяють підвищенню ефективності навчальної діяльності (рис. 6). Рис. 5. Задоволеність від власної участі в МВДКРис. 6. Чи сприяють конективістські ідеї підвищенню рівня ефективності навчальної діяльності 40 % вважають, що найголовніше у МВДК – це уміння працювати в співробітництві, 32 % вважають, що найголовнішим є вміння самостійно організовувати та проводити такі курси, 24 % вважають, що МВДК – це засіб для апробацій положень конективізму (рис. 7).На питання, чи можливо отримати реальні знання при навчанні у МВДК думки учасників розділилися майже порівну: 52 % вважають, що це цілком можливо, а 42 % вважають, що отримані знання можуть бути тільки фрагментарними (рис. 8). Рис. 7. Найважливіше при навчанні в МВДК Рис. 8. Чи можливо отримати реальні знання при навчанні в МВДК Понад 50 % вважають, що велику кількість учасників МВДК можна пояснити нульовою ціною та відсутністю зобов’язань сторін (рис. 9).До основних переваг процесу навчання у масових відкритих дистанційних курсах учасники віднесли:відсутність вікових, територіальних, освітніх і професійних обмежень,відкритість і безкоштовність, гнучкість навчання,отримання нової інформації безпосередньо від фахівців предметної області,самомотивація та самоорганізація слухачів,обмін досвідом і колективна робота у співробітництві,формування умов взаємного навчання в спілкуванні,охоплення широкої (масової) аудиторії,пряме використання всіх переваг комп’ютерної підтримки навчального процесу (від електронних підручників до віртуальних середовищ),процес участі й навчання в МВДК допускає обмін не тільки інформацією, але й, що особливо цінно, напрямами її пошуку,розширення персональної навчальної мережі,можливість неформального підвищення знань,можливість оцінювання робіт інших слухачів курсу,використання в курсах різноманітного навчального контенту (текстова, аудіо-, відео- і графічна інформація), а також форумів і блогів,основний інформаційний матеріал знаходиться поза сайтом курсу. Рис. 9. Чи можна пояснити ріст числа учасників МВДК тільки нульовою ціною та відсутністю зобов’язань сторін До основних недоліків процесу навчання в масових відкритих дистанційних курсах учасники віднесли:відсутність особистого контакту конкретного слухача й педагога, як наслідок, довіри (міжособистісне телекомунікаційне спілкування в силу свого опосередкованого характеру не здатне (з ряду причин технічного, економічного й психологічного плану) повною мірою заповнити відсутність безпосереднього спілкування),використовування різних платформ,високі вимоги до професіоналізму викладачів (тьюторів),надлишок та хаотичність навчальної інформації,відсутність у слухачів навичок самоосвіти, фільтрації й взаємодії,неможливість проконтролювати автора виконаних робіт (ідентифікації),обмежений адміністративний вплив з боку викладача,не вміння спілкуватися інформативно й результативно (закритість вітчизняних викладачів),трудомісткий і тривалий процес розробки навчального курсу (контенту), його супроводу і консультація великої кількості слухачів,технічні проблеми забезпечення практичних (лабораторних) занять,труднощі моніторингу процесу підготовки слухача,необхідність достатньої сформованості мотивації навчання (актуально для молодших за віком і менш критично для дорослих слухачів),імовірність появи технічних проблем доступу до курсів,обмежений зворотний зв’язок з педагогом (тьютором),більшість МВДК на сьогодні розраховані на можливості техніки, а не на людину як індивіда,недостатня кількість часу на обробку всіх наявних навчальних матеріалів,кожний учасник самостійно регулює свою діяльність в курсі.Проблеми конективізму як теорії навчання. Із результатів дослідження зрозуміло, що комплекс ідей конективізму навряд чи можна вважати повноцінною (самостійною) теорією навчання, скоріше це один із різновидів неформального навчання в рамках концепції освіти впродовж всього життя. Розглянемо деякі положення [4].I. Слухач сам установлює мету навчання, читає тільки той матеріал, що йому доступний і подобаєтьсяПринципи автодидактики розроблені В. О. Курінським в рамках т. з. «постпсихології» [5]. Як визначає сам автор, «автодидактикою здавна називають самонавчання. Нікому з нас не вдається її уникнути – всім доводиться доходити до чогось самостійно, розраховуючи на свої власні сили. У кінцевому рахунку, в яких би вчителів ми ні вчилися, ми перш за все учні самих себе».Із 8 правил, сформульованих В. О. Курінським, наведемо деякі загальні положення:а) необхідно робити тільки те, що викликає інтерес (спочатку треба створити актуалізацію інтересу). Інтерес створюється не з якогось зовнішнього матеріалу, а в нас самих, коли ми перемикаємо свою увагу з однієї частини предмета або тексту – на іншу;б) не слід намагатися все запам’ятовувати одразу (але треба намагатися, щоб сприйняття було як можна повнішим). Треба управляти своєю увагою;в) не слід прагнути повного засвоєння матеріалу;г) треба прагнути до самоспостереження. Людина обов’язково повинна стежити за тим, як ставляться до її вчинків інші люди (результати спостереження свого внутрішнього стану і того, що думають інші доповнюють один одного);д) незасвоєння попереднього матеріалу не є причиною того, щоб не ознайомитися з матеріалом наступним.II. Знання перебувають у співтовариствах і комп’ютерних мережахНа нашу думку, тут відбувається деяка підміна понять, адже в комп’ютерних мережах розміщені дані. А чи стануть вони знаннями? Можуть стати, але в результаті перетворення й аналізу цих даних при вирішенні конкретних завдань. Ми можемо прослухати передачу (лекцію) на незнайомій для нас мові, при цьому одержимо дані, але не інформацію (і відповідно не знання). Ми можемо записати ці дані на компакт-диск – зміниться форма подання даних, відбудеться нова реєстрація, а відповідно сформуються й нові дані.Д. Вайнбергер зазначає: «Коли знання стає мережевим, самий розумний у кімнаті вже не лектор, що виступає перед слухачами, і навіть не колективний розум всіх присутніх. Сама розумна людина в кімнаті – це сама кімната, тобто мережа, утворена із зв’язків між людьми та їхніми ідеями, які, у свою чергу, пов’язані з тим, що перебуває за межами кімнати. Це зовсім не означає, що мережа стає наділеною інтелектом. Однак знання стають буквально немислимими без мережі, яка їх забезпечує…» [6].Отже, потенційні знання є технічним і технологічним заручником (програмно-апаратна й ментальна складові). Згідно принципу канадського філософа М. Маклюена, «засіб передачі повідомлення і є зміст повідомлення»: для того, щоб зрозуміти зміст повідомлення, необхідно розуміти, як саме влаштований інформаційний канал, по якому надходить повідомлення та як специфіка цього каналу впливає на саму інформацію.III. Акт навчання полягає у створенні зовнішньої мережі вузлів, які слухачі підключають у формі джерел інформації й знаньЧи може підключення до джерела інформації структурувати та сформувати знання учня? Очевидно, що це тільки елемент процесу навчання – можна підключитися до будь-яких потенційних джерел інформації, але не аналізувати і не обробляти їх у подальшому. На нашу думку, інтерес представляє застосування поняття цінності створюваної слухачем мережі.Ще на початку XX століття на можливість кількісної оцінки цінності соціальної мережі звернув увагу Д. А. Сарнов, який показав, що цінність радіо- або телевіщальної мережі зростає пропорційно кількості глядачів (слухачів) n. Дійсно цінність мережі тим вище, чим вище число її елементів (вузлів). Пізніше Р. Меткалф звернув увагу на те, що цінність всієї системи зростає навіть швидше, ніж число її елементів n. Адже кожен елемент мережі може бути з’єднаний з n−1 іншими елементами, і, таким чином, цінність для нього пропорційна n−1. Оскільки в мережі всього n елементів, то цінність всієї мережі пропорційна n(n−1).На основі цього закону Д. Рід сформулював закон для мереж, які утворюють групи. Цінність такої мережі пропорційна 2n−n−1, що визначається числом підмножин (груп) множини з n агентів за винятком одиночних елементів і порожньої множини. Закон Ріда виражає зв’язок між обчислювальними та соціальними мережами. Коли мережа віщає щось людям, цінність її послуг зростає лінійно. Коли ж мережа дає можливість окремим вузлам вступати в контакт один з одним, цінність зростає у квадратичній залежності. А коли та ж сама мережа має у своєму розпорядженні засоби для створення її учасникам груп, цінність зростає експоненціально.У роботі [7] пропонується оцінювати ріст цінності логарифмічно – nln(n) (закон Ципфа). Головний аргумент на користь цього закону полягає в тому, що на відміну від перших трьох законів, тут ранжуються цінності зв’язків. Якщо для довільного агента соціальної мережі, створеної з n елементів, зв’язки з іншими n−1 агентами мають цінності від 1 до 1/(n–1), то внесок цього агента в загальну цінність мережі становить (для великого n): Підсумувавши за всіма агентами, одержимо повну цінність мережі порядку nln(n).Однак, цінність соціальної мережі як величина, що залежить від потенційних зв’язків всіх агентів, очевидно має зростати зі збільшенням кількості можливих конфігурацій (потенційних можливостей) цих зв’язків у мережі. У роботі [8] показано, що для великої кількості агентів n цінність соціальної мережі (у якості ентропії) може бути визначена якВисновкиУ конективізмі зв’язки повинні формуватися природно (через процес асоціацій). Очевидно, що це можливо тільки в контексті розвитку безперервної освіти і навчання протягом всього життя. Це не просто «передача знань» («побудова знань»), притаманна сьогоднішньому програмованому навчанню, тут навчання більш схоже на розвиток особистості. Як писав В. Ф. Турчин: «Коли навчається людина, вона сам йде назустріч навчанню. Не тому, що вона знає, що “вчитися корисно». Дитина цього не знає, але навчається найбільш легко й активно. Асоціації утворюються в неї «просто так», без усякого підкріплення. Це працює механізм управління асоціюванням, що вимагає собі їжі. Якщо її не має, людині стає нудно, а це негативна емоція. Учителеві немає потреби нав’язувати що-небудь дитині або людині взагалі, його завдання лише в тому, щоб дати їжу її уяві. Одержуючи цю їжу, людина зазнає насолоди. Таким чином, вона завжди вчиться сама, зсередини. Це активний, творчий процес» [9].Головна роль у конективізмі приділяється самому учню – саме він повинен прагнути здобувати нові знання постійно, створювати й використовувати персональну навчальну мережу, розрізняти головну інформацію від другорядної та псевдонаучної, оцінювати отримані знання й т. д. Виникла нова проблема – маючи можливість використати нові засоби для навчання, людина може виявитися просто не здатною ними скористатися (проблема інформаційної компетентності, проблема інформаційного вибуху). У свою чергу педагог (тьютор) повинен мати певні навички по створенню й підготовці навчальних матеріалів та їхньому використанню в дистанційних курсах.На сучасному етапі конективізм як повноцінна теорія навчання вивчений недостатньо. Крім того нормативно-правова база орієнтована тільки на традиційні форми навчання. Проте, позитивно, що знання у цьому підході порівнюються не тільки із структурою, а і з процесом. Прояв гнучкості в навчанні й оцінюванні, а також розвиток міжпредметних зв’язків із «інформаційного хаосу» безсумнівно дозволяє активізувати різні форми інтелекту учнів.
APA, Harvard, Vancouver, ISO, and other styles
45

Осадчий, Вячеслав Володимирович, and Катерина Петрівна Осадча. "Теорія і практика створення комп’ютерних програм навчального призначення." Theory and methods of e-learning 3 (February 11, 2014): 250–55. http://dx.doi.org/10.55056/e-learn.v3i1.346.

Full text
Abstract:
Згідно з Національною доктриною, одними із пріоритетних напрямів державної політики щодо розвитку освіти є: запровадження освітніх інновацій, інформаційних технологій і створення індустрії сучасних засобів навчання і виховання, повне забезпечення ними навчальних закладів. Держава зацікавлена у якісній професійній підготовці спеціалістів, і тому має забезпечувати підготовку кваліфікованих кадрів, здатних до творчої праці, професійного розвитку, освоєння та впровадження наукоємних та інформаційних технологій, конкурентоспроможних на ринку праці [1, 2]. Використання комп’ютерних програм навчального призначення дозволяє вдосконалювати методичну систему підготовки спеціалістів як у вищих навчальних закладах. так і у системі професійно-технічної та середньої освіти. Впровадження комп’ютерних програм у навчальний процес доповнює засоби навчання, які традиційно використовуються у процесі викладання дисциплін.У Наказі Міністерства освіти і науки України «Про Правила використання комп’ютерних програм у навчальних закладах» (2005) комп’ютерна програма навчального призначення визначається як «засіб навчання, що зберігається на цифрових або аналогових носіях даних і відтворюється на електронному обладнанні» [2].Теоретичні і практичні засади розробки програмного забезпечення навчального призначення розглядалися такими науковцями, як Д. Д. Аветісян, Л. І. Білоусова, М. І. Жалдак, А.С. Муравка, Н. В. Олефіренко та ін.М. І. Жалдак зазначає, що в основу інформатизації навчального процесу слід покласти створення і широке впровадження в повсякденну педагогічну практику нових комп’ютерно-орієнтованих методичних систем навчання на принципах поступового і неантагоністичного, без руйнівних перебудов і реформ, вбудовування інформаційно-комунікаційних технологій у діючі дидактичні системи, гармонійного поєднання традиційних та комп’ютерно-орієнтованих технологій навчання, не заперечування і відкидання здобутків педагогічної науки минулого, а, навпаки, їх удосконалення і посилення, в тому числі і за рахунок використання досягнень у розвитку комп’ютерної техніки і засобів зв’язку [3, 8].Педагоги-науковці і спеціалісти з інформаційних технологій виділяють певний клас прикладних програм навчального призначення, включаючи їх до різновидів з різними назвами (навчальне електронне видання, педагогічне програмне забезпечення, електронні програми навчального призначення, комп’ютерні програми навчального призначення, комп’ютерно-орієнтовані методичні системи навчання тощо), проте смисл залишається однаковим: це програми, які використовують у сфері освіти у навчальному процесі.Навчальне електронне видання – електронне видання, яке містить систематизований матеріал з відповідної науково-практичної галузі знань. Має відрізнятися високим рівнем виконання і художнього оформлення, повнотою відомостей, якістю методичного інструментарію і технічного виконання, наочністю, логічністю і послідовністю подання матеріалу [5, 34].Педагогічний програмний засіб (ППЗ), тобто засіб, створений для безпосереднього використання у навчальному процесі, в епоху розвитку ринкової економіки Ю. О. Жук, О. М. Соколюк розглядають як товарний продукт, який повинен користуватися попитом серед споживачів (викладачів вищих навчальних закладів, учителів середніх шкіл) [7].Л. І. Білоусова та Н. В. Олефіренко визначають програмне забезпечення навчального призначення як програмні засоби, призначенням яких є підтримка самостійної навчальної, тренувальної, творчо-дослідницької діяльності користувача у певній предметній галузі, а також діяльності самоконтролю. Науковці виділяють такі види програмного забезпечення навчального призначення: електронні підручники, електронні енциклопедії та довідники, середовища підтримки предметної діяльності, комп’ютерні тренажери, системи комп’ютерного тестування [4, 26].М. І. Жалдак, В. В. Лапінський, М. І. Шут пропонують класифікацію педагогічних програмних засобів залежно від переважного виду навчальної діяльності учня при роботі з певним засобом навчання і виокремлюють: 1) демонстраційно-моделюючі програмні засоби; 2) ППЗ діяльнісного предметно-орієнтованого-середовища; 3) ППЗ, призначені для визначення рівня навчальних досягнень, які в свою чергу класифікують за способом організації роботи в мережі; ступенем «гнучкості», можливістю редагування предметного наповнення і критеріїв оцінювання; структурою і повнотою охоплення навчального курсу; способом введення команд і даних та можливою варіативністю формулювання відповіді; можливими способами формулювання та подання учневі навчальних задач; способом формулювання та подання учневі навчальних задач; способом введення даних – командних впливів користувача; 4) ППЗ довідниково-інформаційного призначення [6, 33].В. П. Вембер зазначає, що не існує єдиного підходу як до класифікації електронних засобів навчального призначення, так і до термінології у цій сфері. Взявши за основу класифікаційні цілі та завдання, які можуть бути вирішені за допомогою ЕЗНП, можна виділити наступні типи: ілюструючі, консультуючі, операційне середовище, тренажери, навчальний контроль [6, 33].Потреби сучасного суспільства у розробці програм різноманітного призначення зростають із часу появи перших електронно-обчислювальних машин. Особливими є запити вищого навчального закладу у створенні та впровадженні у навчальний процес навчальних електронних видань, найбільш сучасними й ефективними серед яких відтворюються на комп’ютері.На базі Інформаційно-комп’ютерного центру Мелітопольського державного педагогічного університету імені Богдана Хмельницького за останні кілька років розроблено і продовжують створюватися різні типи комп’ютерних програм навчального призначення: 1) електронні підручники та посібники; 2) програмні тренажери; 3) мультимедійні навчальні програми.Опишемо більш докладно кілька комп’ютерних навчальних програмних засобів. Електронний підручник «Основи Інтернет» призначений для студентів ІІ курсу факультету інформатики і математики денної форми навчання та студентів заочної форми навчання, які навчаються за освітньо-професійною програмою бакалавра галузі знань 0403 «Системні науки та кібернетика». Створення цього електронного підручника, як і інших, проходило у декілька етапів, а саме [8, 94-95]:Добір навчального матеріалу.Формування групи фахівців, відповідальних за створення електронного підручника.Планування структури та дизайну: в основу відображення інформації в електронному підручнику було покладено фреймову структуру web-документу.Вибір апаратних та програмних засобів розробки та реалізації електронного підручника: мова розмітки HTML та мова програмування JavaScript.Реалізація гіпертекстових посилань у тексті.Добір матеріалу для мультимедійного втілення: відбір графічного наповнення навчальних тем, створення відповідного відеоматеріалу.Розробка контрольних запитань.Тестування та доопрацювання електронного підручника: апробація у навчальному процесі, видалення або додавання необхідних текстових, графічних або відеоматеріалів тощо.Впровадження електронного підручника у систему інформаційного забезпечення навчального процесу освітнього закладу.Отримання свідоцтва про реєстрацію авторського права у Державному департаменті інтелектуальної власності.Електронний підручник з урахуванням специфіки навчальної дисциплін має розвинену структуру. Навчальний матеріал охоплює всі питання, необхідні для успішної роботи із різноманітними службами мережі Інтернет. Матеріал електронного підручника охоплює всі змістовні модулі, визначені анотацією для мінімальної кількості годин, передбачених стандартом. Електронний підручник містить лекції, практичні завдання, інформацію до самостійної роботи, відеоматеріали та приклади завдань до модульно-тестового контролю. Розгалужена структура електронного підручника дозволяє вивчати матеріал у зручній для студента послідовності. Відеоматеріали наглядно демонструють можливості роботи в мережі Інтернет і призначені для успішного оволодіння даним курсом.До змісту електронного підручника входить глосарій, який містить перелік термінів та понять, що використовуються у процесі засвоєння навчальної дисципліни. Останній розділ електронного підручника містить перелік джерел, якими студенти можуть додатково користуватися під час засвоєння курсу «Основи Інтернет».Програмні тренажери широко використовуються у практиці предметного навчання й у професійній підготовці. За допомогою них майбутні фахівці відпрацьовують свої уміння і навички діяти в різних ситуаціях. У навчанні програмні тренажери забезпечують: послідовне виведення на екран завдань заданої складності з вибраної теми; контроль за діями користувача з розв’язання запропонованого завдання; миттєву реакцію на неправильні дії; виправлення помилок користувача; демонстрацію правильного розв’язання завдання; виведення підсумкового повідомлення про результати роботи користувача (можливо, з рекомендаціями чи порадами) [4, 30].Для розробки тренажерів використовувався певний набір програмного забезпечення. Основним інструментарієм розробки тренажерів «Пакет 3DSMax», «Microsoft Office Word 2010», «Microsoft Office Excel 2010», «Microsoft Office PowerPoint 2010», «Microsoft Office OneNote 2010» стала технологія Flash з елементами ActionScript і програма Camtasia Studio. Створення кожного уроку тренажеру відбувалося за таким алгоритмом:1. Захоплення скрінкастів під час роботи з відповідним програмним забезпеченням за відповідною темою уроку.2. Редагування відеоряду.3. Запис звуку з мікрофону.4. Вставка субтитрів і виносок, у тому числі з інтерактивними елементами.5. Додавання тесту.6. Експорт відеофайлу у формат flv/swf.Кожен тренажер розділений на теоретичну частину, в якій подається інформація щодо операцій по роботі з відповідним програмним засобом, та власне тренувальну, в якій дається завдання, що має бути виконане студентом, без чого він не зможе продовжити тренування.Мультимедійні комп’ютерні навчальні програми поступово витісняють друкарські матеріали, відео- і аудіокасети, адже вони дозволяють організувати ефективну самостійну пізнавальну діяльність студентів [9, 157].Мультимедійна навчальна програма з установки і налаштування Windows 7 призначена для методичного забезпечення дисципліни «Програмне забезпечення ПЕОМ». створена на основі веб-технологій, а саме: HTML, XML, CSS, Java Script, ActiveX, Silverlight. У форматі HTML створена кожна сторінка курсу. CSS використовується для оформлення стилів сторінок. У html-документ включено код мовою Java Script та елементи ActiveX. На html-сторінках з інтерактивними елементами використовується технологія Silverlight. Як засіб розробки програми використовувалася «Система для створення навчальних матеріалів» (Learning Content Development System(LCDS)) – безкоштовним інструментом, за допомогою якого учасники спільноти Microsoft Learning можуть створювати високоякісні, інтерактивні електронні курси; публікувати електронні курси, лише заповнивши прості форми LCDS, які дозволяють створювати високоспеціалізовані тексти, інтерактивні завдання, конкурси і питання, ігри, тести, анімаційні ефекти, демо-ролики та інші мультимедійні матеріали.Зміст програми поділяється на модулі, уроки і теми. Модуль може містити від одного до кількох уроків, які у свою чергу можуть містити від однієї до кількох тем. У програмі наявні елементи самоперевірки і практичні роботи у вигляді інтерактивних ігор, а також список використаних і додаткових джерел і глосарій.Розроблені нами комп’ютерні програми навчального призначення впроваджені у навчальний процес університету, крім того вони можуть бути використані у процесі професійної перепідготовки кадрів і дистанційному навчанні.Планується подальша робота над удосконаленням і оновленням уже розроблених комп’ютерних програм навчального призначення та створенням нових програм для методичного забезпечення дисциплін вищого навчального закладу.
APA, Harvard, Vancouver, ISO, and other styles
46

Волкова, Тетяна Василівна. "Використання засобів і методів інформаційних технологій у підготовці кваліфікованих робітників поліграфічного профілю." Theory and methods of e-learning 2 (February 3, 2014): 221–26. http://dx.doi.org/10.55056/e-learn.v2i1.277.

Full text
Abstract:
Одним із основних напрямів підвищення ефективності підготовки кваліфікованих робітників для поліграфічної галузі на теперішній час розглядається навчання, в основі якого лежить концепція дидактично усвідомленої інтеграції технології „класичного навчання” і технології навчання, що ґрунтується на нових інформаційних технологіях.Відомий теоретик виробничої педагогіки академік С. Батишев, аналізуючи вимоги до підготовки робітників, зауважував то тому, що процес їх формування має дві сторони: кількісну, яка характеризується різноманіттям робіт, та якісну, що визначає складність виконаних робіт. Виконання робітником виробничих функцій залежить від рівня розвитку техніки, від того, чи працює робітник за допомогою машинної чи автоматизованої техніки [1, с. 46].Основоположник вітчизняної кібернетики та інформатики академік В. Глушков вважав, що автоматизація інформаційних технологій у редакційно-видавничій діяльності викликана необхідністю виключення помилок виготовлення верстки та її коригування на всіх етапах технологічного процесу виготовлення поліграфічної продукції, починаючи від операцій безпосереднього введення даних до комп’ютера, комп’ютерного редагування, монтажу сторінок або газетної смуги до перенесення підготовлених на комп’ютері копій до автоматичних набірних машин. Крім того, в сучасних автоматизованих редакціях, на думку вченого, мають бути створені редакційні автоматизовані архіви – інформаційно-пошукові документальні дворівневі системи дескрипторного типу, завдяки чому забезпечується можливість вести статистику опублікованих матеріалів і відповідним чином планувати новий матеріал [3, с. 386].Широке впровадження комп’ютерних технологій у поліграфічному виробництві, інтеграція додрукарських, друкарських і післядрукарських видавничо-поліграфічних процесів, об’єднання всіх стадій технологічного процесу виготовлення друкованої продукції єдиним інформаційним потоком, необхідним для спільної роботи обладнання поліграфічного підприємства спричинили потребу у фахівцях інтегрованих професій. Виробничі завдання організації технологічного процесу, зокрема накопичення, збереження, передача і оброблення інформації, зняття її за допомогою реєструючих пристроїв, підключення до джерел інформації, вивчення інформаційних потоків, підтримування баз даних, відбір і реалізація алгоритмів оброблення інформації, виведення графічної й текстової інформації, перевірка якості готової друкарської продукції складають основу функціональної діяльності оператора з уведення і обробки інформації в комп’ютерній видавничій системі, верстальника, препрес-оператора і оператора друкарського цеху. Водночас, варто зазначити, що роботодавці з кожним роком оновлюють поліграфічне обладнання, впроваджують автоматизовані інформаційні системи управління поліграфічним підприємством, що, в свою чергу, потребує від працівників систематичного самостійного підвищення власного професійного рівня відповідно до виробничих інновацій. Отже, зрослі вимоги до готовності майбутніх поліграфістів до оволодіння ними виробничими технологіями з високим рівнем комп’ютеризації виробничих процесів потребують обґрунтування нового змісту, засобів і методів професійної поліграфічної освіти.Досліджуючи техніко-технологічні аспекти розвитку професійно-технічної освіти, академік НАПН України Н. Ничкало приходить до висновку, що зміст освіти повинен мати випереджувальний характер і постійно оновлюватися з урахуванням динамічних змін у різних галузях економіки, техніки, технологіях, узгодження та взаємозв’язок з метою забезпечення наступності навчання і виховання на всіх рівнях неперервної професійної освіти. Винятково важливим, на думку вченого, є регламентування змісту освіти державними стандартами та їх формування з урахуванням галузевої та регіональної специфіки на кожному ступені навчання [6, с. 91].Реалізація інноваційних компонентів освітньої парадигми, як зазначає Е. Зеєр, вимагає оновлення змісту професійної освіти і державних стандартів, що мають бути зорієнтовані не на вихідні програмні матеріали, а на результат процесу освіти, включаючи компетентність і компетенції [5, с. 27]. У цьому зв’язку здається правомірною точка зору, висловлена С. Батишевим про те, що для майбутніх робітників важливо навчитися ще в стінах училища використовувати знання у виробничій діяльності [1, с. 165]. Тому слід підвищувати ефективність методів вивчення теоретичного матеріалу, інтегрувати його з практикою, забезпечувати наступність теорії з практикою. У кожному профтехучилищі, як зазначав учений, мають бути кабінети і лабораторії з кожної професії – майстерня з новітнім обладнанням, механізмами, устаткуваннями, передбачено обладнання автоваматиувазованих класів, кабінетів інформатики і обчислювальної техніки [1, с. 174]. Очевидно, що практична реалізація моделей навчання як інструмента модернізації сучасної професійно-технічної освіти полягає в проектуванні нових педагогічних методик навчання, основаних на інтеграції традиційних підходів до організації навчально-виробничого процесу, в ході якого здійснюється безпосереднє передавання знань, та інформаційно-освітніх технологій навчання.Академік НАПН України В. Биков розглядає методику навчання як модель навчального процесу, яка інтегрує зміст навчання і навчальну технологію. Методика спрямована на цілі навчання; ґрунтується на змісті навчання, який сформований для досягнення цілей; відбиває психолого-педагогічні методи навчання, які обрані для викладання; визначає діяльність учасників навчального процесу, організацію їх взаємодії, характер і структуру використання ними ресурсів навчального середовища, які застосовуються для забезпечення навчання [2, с. 75].До методів навчання майбутніх кваліфікованих робітників поліграфічного профілю ми будемо відносити методи, що активно використовують потенціал педагогічних, інформаційних і комунікаційних технологій для формування і розвитку в учнів знань, умінь, навичок, способів виконання різних видів інформаційної діяльності, зокрема інтеграцію активних проблемних методів навчання, навчання у співробітництві; створення ситуацій актуальності, успіху в навчанні; формування розуміння власної значущості виконання різних видів професійної діяльності.Засоби інформаційно-комунікаційних технологій є домінуючими складовими засобів інформаційно-освітніх технологій. Ці засоби визначаються І. Роберт як програмно-апаратні і технічні засоби і пристрої, що функціонують на базі мікропроцесорної, обчислювальної техніки, а також сучасних засобів і систем трансляції інформації, інформаційного обміну [7, с. 96].Розширення сфери впливу інформаційно-комунікаційних технологій до будь-якого предметного середовища ілюструє достатньо універсальну схему додатків інформатики і стає за теперішніх умов домінуючою ідеєю в будь-якій предметній освіті. Під впливом цього процесу знаходяться всі предметні сфери діяльності завдяки тому, що широке впровадження і звичне застосування інформаційно-комунікаційних технологій стає методологічною основою домінування прикладного компонента освіти в галузі конкретної предметної діяльності. Як зазначає професор Ю. Дорошенко, функціональна спрямованість навчання практичного розв’язання завдань засобами інформаційно-комунікаційних технологій має ґрунтуватися на раціональному поєднанні якомога ширшого кола споріднених видів професійної діяльності людини, забезпечувати формування узагальнених уявлень про сферу прикладання та особливості майбутньої професійної діяльності [4, c. 73]. На нашу думку, конструктивна інтеграції засобів і методів навчання у процесі підготовки майбутніх кваліфікованих робітників поліграфічного профілю дозволить вибудовувати навчання відповідно до вимог роботодавців і забезпечить розвиток професійно значущих компетентностей.Розглядаючи весь технологічний ланцюжок перетворення інформації від етапу введення до комп’ютерної видавничої системи до отримання готового відтиску можна виділити єдиний набір завдань, що містить комплекси функціональних завдань автоматизованих робочих місць операторів поліграфічного виробництва (табл. 1).Таблиця 1Функціональні завдання операторів поліграфічного виробництва № з/пСпеціалізація кваліфікованого робітникаФункціональні завдання1Оператор з уведення данихНалагодження параметрів уведення з урахуванням технологічного процесу;автоматизація введення і оброблення інформації;створення профілів пристроїв;налагодження системи.2Оператор-верстальникПідготовка оригінал-макету видання;проведення екранної кольоропроби;урахування параметрів технологічного процесу;підготовка до виведення.3Препрес-операторПеревірка оригінал-макету видання;проведення цифрової кольоропроби;монтаж спуску смуг;контроль спуску смуг;виведення друкованих форм.4ТехнологСтворення технологічної карти замовлення;редагування технологічної карти замовлення.5Оператор друкарського цехуКонтроль виконання операції друку;формування звітних даних про завантаження обладнання;контроль якості на відтиску. Реалізація оновленої методичної системи має здійснюватися на заняттях зі спецтехнології, в процесі виробничого навчання в майстерні, виробничої практики на поліграфічному підприємстві. Підвищення ефективності проведення теоретичних занять має досягатися завдяки застосуванню засобів мультимедійного обладнання, демонстраційних презентацій, електронних підручників і навчальних ресурсів, розроблених викладачами спецдисциплін; використання інтерактивної дошки. У процесі підготовки і проведення теоретичних занять доцільним є використання активних, проблемних методів навчання, навчання у співробітництві.Застосування засобів і методів інформаційного навчання в процесі проведення лабораторно-практичних робіт сприятиме проведенню цікавих і насичених занять. Використання на заняттях виробничого навчання методів „мозкового штурму”, групової дискусії надасть навчально-виробничій діяльності майбутніх кваліфікованих робітників поліграфічного профілю продуктивного, творчого характеру. З-за обмеженої кількості офсетних машин вивчення технології друкарської справи переважно здійснюється за бригадною формою навчання. Майстер виробничого навчання має вибудувати послідовність оволодіння трудовими операціями і прийомами таким чином, щоб частина учнів відпрацьовувала їх безпосередньо на обладнанні, а частина – самостійно, використовуючи електронні освітні ресурси.Розвиток систем автоматизації в поліграфії, представлений на теперішній час на українському ринку множиною автоматизованих інформаційних систем управління поліграфічним підприємством як вітчизняного, так і зарубіжного виробництва – PrintEffect, Prinect, Annex, АСУ „Типографія”, зумовлює необхідність обов’язкового стажування майстрів виробничого навчання на сучасних поліграфічних підприємствах. Сучасні технологічні процеси друку ґрунтуються на комп’ютерних технологіях computer-to- …: CtF – computer-to-film (з комп’ютера на фотоплівку), CtP – computer-to-plane (з комп’ютера на друкарську форму), – computer-to-press (з комп’ютера в друкарську машину), – computer-to-print (з комп’ютера в друк). Навчання майбутніх кваліфікованих робітників поліграфічного профілю на заняттях виробничого навчання має здійснюватися за допомогою методичних рекомендацій, педагогічних програмних засобів щодо впровадження інноваційних виробничих технологій, розроблених викладачами спецдисциплін та майстрами виробничого навчання ПТНЗ.Висновок. Отже, використання засобів і методів інформаційних технологій у підготовці майбутніх кваліфікованих робітників поліграфічного профілю, завдяки значним дидактичним можливостям, здійсненню впливу на форми організації теоретичного і професійно спрямованого навчання, на активізацію, інтенсифікацію і ефективність навчально-виробничого процесу, дозволить підвищити рівень мотивації до оволодіння інтегрованими знаннями і вміннями, забезпечить реалізацію методичної системи розвитку професійних компетентностей.
APA, Harvard, Vancouver, ISO, and other styles
47

Корсак, Костянтин Віталійович. "Інтегроване "Природознавство" і прогрес вивчення фундаментальних наук в Україні." Theory and methods of learning fundamental disciplines in high school 1 (March 30, 2014): 111–17. http://dx.doi.org/10.55056/fund.v1i1.413.

Full text
Abstract:
Кінець ХХ ст. в діяльності ЮНЕСКО, Світового Банку, освітніх департаментів Європейського Союзу та інших міжнародних організацій відзначений кількома важливими змінами:– безприкладним підвищенням уваги до вищої освіти та наукових досліджень як головної передумови стійкого соціального і економічного розвитку націй у ХХІ столітті (введення нових стандартів класифікації освіти в 1997 р., конференція 1998 р. в Парижі з вищої освіти та ін.);– акцентуванням проблеми вимірювання і забезпечення якості навчання і професійної підготовки, створення та поширення засобів об’єктивного оцінювання діяльності навчально-виховних закладів (здійснення проектів на кшталт PISA – масового тестування сотень тисяч учнів у десятках країн);– прискоренням розвитку фундаментальних наук і розширенням використання їх у системах освіти як незамінного засобу підготовки працівників ХХІ ст. і формування передумов для стійкого суспільно-економічного розвитку.Строго кажучи, останні два аспекти тісно поєднуються, оскільки високоякісна і сучасна освіта не може не включати вивчення точних наук і формування навичок використання новітніх інформаційних та інших “високих” технологій. Прикладом цього є рекомендації Всесвітньої конференції з точних наук, організованої під егідою ЮНЕСКО в Будапешті (26 червня – 1 липня 1999 р.) [1]. Для нас особливо важливим є та частина документів цієї конференції, де йдеться про безперспективність скорочення вивчення фундаментальних наук в системі обов’язкової освіти під фальшивим приводом їх “складності”, де пропонується змінювати й осучаснювати зміст природничо-математичної складової середньої та вищої освіти як фундаменту стійкого розвитку людства, збереження і поліпшення довкілля, забезпечення миру і стабільності.Однак, у деклараціях конференцій та інших працях експертів ЮНЕСКО мало мовиться про необхідність негайного подолання наслідків сучасного “інформаційного вибуху”, насамперед – браку в активного населення новітніх знань для ефективної й результативної діяльності. Пропонуємо називати це явище “ефект хоттабізації” на знак того, що все частіше і частіше кваліфіковані фахівці внаслідок незнання новітніх наукових досягнень повторюють дії дідугана Хоттабича, який намагався допомогти одному лінуватому підлітку скласти екзамен з фізичної географії на основі знань про довкілля, які існували за дві тисячі років до нашої ери на теренах Індії і Близького Сходу. Негативні наслідки ефекту хоттабізації загострюються тим, що нашими сучасниками є приблизно 90% всіх науковців, які жили на планеті, а продуктивність їхньої праці постійно зростає завдяки комп’ютерній техніці і створенню світових мереж для циркуляції наукової інформації та наукової співпраці (електронна пошта, Інтернет та ін.).Неусвідомлення загрози з боку ефекту хоттабізації вже привело в Україні до того, що у нас продовжують використовувати поняття “фундаментальні курси” в анахронічному аспекті як синонім тих усталених академічних знань, що датуються періодом становлення класичних наук. Наслідком цього, очевидно, стає зниження ефективності діяльності всієї системи освіти, а також певна втрата впливу наукової спільноти на громадську думку. Як відомо, цим негайно скористалися представники псевдонаук і невігласи, адепти релігійних й езотеричних вчень тощо.В Україні для вчителів шкіл і викладачів вищих навчальних закладів зникла можливість для ліквідації ефекту хоттабізації і безперешкодного отримання нових даних про результати наукових досліджень в десятках старих і молодих наук. Наукові матеріали чи повідомлення про відкриття займають маргінальне становище, зустрічаються в кількох газетах і науково-популярних журналах з мікроскопічним накладом. Не буде перебільшенням твердження, що сучасна Україна поступається більшості країн третього світу в увазі до поширення наукових знань, у виданні книг, журналів, газет, використанні спеціалізованих каналів телебачення тощо.Очевидно, що подібна деградація не віщує нам нічого хорошого у найближчому майбутньому й загрожує подальшим зниженням інтегральної виробничої компетентності населення України. Яскравий і виключно неприємний приклад стратегічно помилкових дій в освітній сфері – здійснення у нас на Кіровоградщині фінансованого зі США проекту “розвитку критичного мислення”, опис якого і перші “результати” можна знайти в статті [2]. Заокеанські “меценати” розвитку нашої школи безапеляційно оголосили всі тексти підручників “банальними й усім відомими знаннями”, а справжньою цінністю – те, що в ці книги не входить. Цим вони гранично активізували цікавість молоді до антинаукової інформації – переповідання старих релігійних текстів і псевдо-знань алхіміків, байок про легкість отримання “необмеженої енергії з вакууму” та здійснення всіх мрій людства на базі “торсійних полів”. Наслідок? Він дуже сумний – учні на заключних заняттях і залікових дискусіях затаврували всі фундаментальні науки, “довели шкідливість і помилковість” праць Ч. Дарвіна та безлічі інших геніальних вчених...Ми були б необ’єктивними, стверджуючи, що лише в Україні природничо-математичні науки страждають від активізації фанатизму і невігластва. Зауважимо, що і в зарубіжних країнах ситуація з оновленням комплексу навчальних дисциплін і врахуванням у них новітніх наукових відкриттів другої половини ХХ ст. залишається доволі строкатою. З міркувань лаконічності, вкажемо лише два приклади.На відміну від української практики 90-х років, що відзначається значним зниженням уваги до точних наук під гаслом кампанії з гуманізації та гуманітаризації діяльності системи освіти, політичне і адміністративне керівництво Франції інтенсифікувало рух у протилежному напрямі. Як свідчать останні матеріали про тенденції розвитку вищої школи Франції [7], країна обрала твердий курс на розширення охоплення молоді вищою освітою шляхом професіоналізації навчальних програм, широкого впровадження коротких професіоналізованих профілів підготовки кадрів, доповнення класичних спеціалізацій (філолога, історика тощо) додатковими – юриста середньої кваліфікації, соціолога, психолога та ін. Якщо у нас ключовим терміном є “інтелект”, то у сучасній Франції – “компетентність”. Зауважимо, що такою ж є освітня політика кількох інших розвинених країн – Фінляндії, Австрії, Нідерландів, – а також частини країн третього світу – Південної Кореї, Сінгапуру, Індії тощо.Інший приклад. Сучасна Росія, очевидно, успадкувала від СРСР не лише розташовану на своїй території мережу навчальних закладів, але й теоретично-методичний доробок науково-педагогічних дослідних установ, більшість яких концентрувалася в радянські часи у Москві. Нас особливо цікавлять досягнення в інтегруванні природничих наук, зокрема, створенні навчального курсу з інтегрованого “Природознавства”. Вже на початку 80-х років там розпочалися дослідження з диверсифікації старшої середньої школи і використання в навчальному процесі нових предметів і дисциплін.В Україні ці тенденції оновлення виявили себе у планах міністерства народної освіти ввести в майбутньому профільне навчання в старших класах середньої школи. Серед підготовчих кроків (очевидно, за дозволом Москви) воно у другій половині 80-х рр. проводило конкурс на створення програми інтегрованого предмету “Природознавство”, призначеного для заміни фізики, хімії і біології в гуманітарних профілях або потоках навчання. Протягом декількох років комісії відкинули багато невдалих варіантів. Організатори в 1990 р. запропонували автору взяти участь у конкурсі, що призвело до створення бажаної програми і закриття проблеми. Вперше нова програма з інтегрованого “Природознавства” була опублікована в №23 Інформаційного збірника міносвіти в 1991 р., а пізніше регулярно перевидавалася (напр., [3]).Ми переконані – головні ідеї цього нового предмету стають все більш актуальними. Про це свідчать і події в Росії, де експериментують з новою вузівською дисципліною “Концепції сучасного природознавства” і пропонують іншу – “Наукова картина світу” ([4] та ін.). Та вже побіжне ознайомлення з російськими варіантами інтегрованих природознавчих дисциплін засвідчує, що вони мають численні недоліки – еклектичність, відсутність певної інтегруючої ідеї, акцентування другорядної інформації та ін. Схоже, росіяни не змогли скористатися негативним досвідом країн Заходу, де у 80-х роках нова дисципліна “Наука (Science)” була найчастіше простим об’єднанням надмірно класичних фрагментів двох-трьох традиційних наук.Українська старша середня і вища школи мають врахувати вказані приклади і тенденції, створивши і використавши власний варіант дисципліни (чи групи споріднених дисциплін), де були б акумульовані й логічно поєднані в єдине ціле більшість головних відкриттів природничих наук останнього тридцятиріччя. Цей період виділений нами тому, що нові досягнення групи молодих наук дають змогу створити більш повне і сучасне уявлення про Всесвіт і довкілля, Землю і людство.Один з варіантів нових підходів ми пропонуємо у згаданому інтегрованому “Природознавстві”, яке може бути однаково корисним як у старшій середній школі, так і на базовому рівні вищої освіти.Основна особливість авторського “Природознавства” – акумуляція в ньому останніх відкриттів і досягнень цілої групи наук про природу і людину: астрофізики, ядерної і теоретичної фізики, нерівноважної термодинаміки, нелінійної хімії, геофізики і геохімії, етології, нейро- і молекулярної біології, генетики, теорії інформації, почасти, екології й ін.Розроблений варіант курсу складається з двох частин із подібними цілями, що послідовно висвітлюють сучасні уявлення про походження неживої (1-я частина курсу) і живої субстанції, їхній розвиток й постійне ускладнення, а також розглядають сучасний стан і шляхи подальшої еволюції косної і живої матерії у Сонячній системі. У центрі уваги – загальні й партикулярні закони, що детермінують цю еволюцію, а також “досягнення” людства в порушенні природної ходи подій та пошуки реального шляху ліквідації загроз його існуванню. Відсутність фінансування не дає змоги виділити півтора-два року на завершення цього досить складного проекту і створення серії підручників для навчальних закладів різного рівня (включаючи посібники для підготовки викладачів нової дисципліни). Поки-що є лише попередній текст першої частини “Природознавства” (приблизно 20 друкованих аркушів).Настільки детальна розповідь про нереалізований проект виправдана переконанням автора в тому, що в найближчому майбутньому в рамках переходу до 12-річної середньої освіти в Україні можуть активізуватися пошуки нових предметів і дисциплін для заключних рівнів первинної освіти (термін означає всю сукупність засобів і методів підготовки нових генерацій до активного життя). Наприклад, проблема адекватного викладу складних наукових аспектів сучасної екології як інтегративної науки найкраще вирішується саме в рамках ще більш інтегративного курсу “Природознавства”. Багато років автор використовував у різних комбінаціях інформацію з екології, природознавства і наукового людинознавства під час читання курсів “Вступ в екологію”, “Основи екології” і “Безпека життєдіяльності” в університетах та спеціалізованих середніх навчальних закладах Києва. Досвід показав, що учні і студенти негативно ставляться до викладу цих курсів на основі акцентування видів забруднень і правил цивільної оборони, віддаючи перевагу отриманню знань про закони живої і неживої природи та про особливості комплексних динамічних явищ довкілля.Наше заключне зауваження стосується ужитого терміну “наукове людинознавство” і, напевне, має особливе значення. Цієї науки ще немає, але існують і розширюються досить тривкі острівці наукових знань про сутність людини в рамках групи окремих молодих точних наук.Тисячоліттями сутність людини була об’єктом вивчення, аналізу і трактування гуманітарних наук і мистецтв. Накопичений ними океан знань відрізняється декількома особливостями, зокрема: а) колосальним обсягом; б) словесною або графічною формою; в) відсутністю надійного інструментарію для відділення істини від помилок і хибних гіпотез; г) непристосованістю до швидкої передачі молодим поколінням.Для автора друга половина ХХ ст. відзначена насамперед тим, що у своєму розвитку генетика, етологія, теорія інформації, нейро- і молекулярна біологія й інші точні науки “проникли” в сферу вивчення сутності людини. Багато чого з золотого фонду здогадок науковців-гуманітаріїв вони підтвердили у формі законів природи, виявивши одночасно хибність частини поширених ідей і постулатів (особливо в сфері психології й уявлень про мотиви поведінки людини, див. напр. [5,6]). Автор, зрозуміло, володіє лише частиною інформації зі сфери наукового людинознавства, але й вона чітко виявила свою виняткову ефективність у процесі виховання і викладання. Відзначимо, що окремі аналітики-прогнозисти серед педагогів-науковців (як Т. Левовицький у Польщі чи Б. Гершунський у Росії) пропонують розширити можливості педагогіки у ХХІ ст. шляхом залучення досягнень психології, соціології і кібернетики. Та значно більшого можна чекати від названих вище молодих наук, особливо етології, генетики і нейромолекулярної біології.Й досі педагоги або не підозрюють про існування, приміром, законів етології й нейрохімії людських емоцій, або, не вивчивши їх глибоко, відхиляють як небезпечну для їхньої науки єресь (“сьянтизм”). Звичайно, ці варіанти дій по-своєму логічні, але не мають перспективи з урахуванням необхідності переходу від адаптаційної до трансформаційної (існують також назви “гуманістична” і “критично-креативна”) парадигми освіти, формування в молоді потрібної в ХХI сторіччі неоцивілізаційної компетентності – фундаментальної передумови виживання людства і його стійкого прогресу.Свою частину рішення зазначених освітньо-виховних проблем може взяти на себе великий курс “Основи сучасного природознавства” як комплекс знань про походження, розвитку і сутності природи і людини, міру розумності і можливостей останнього.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography