Journal articles on the topic 'Геометрія нарисна'

To see the other types of publications on this topic, follow the link: Геометрія нарисна.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 24 journal articles for your research on the topic 'Геометрія нарисна.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ткач, Дмитро Іванович. "Системність нарисної геометрії як концептуальна основа її фундаментальності." Освітній вимір 47 (July 23, 2019): 209–15. http://dx.doi.org/10.31812/educdim.v47i0.2457.

Full text
Abstract:
Ткач Д. І. Системність нарисної геометрії як концептуальна основа її фундаментальності. Стаття присвячується доведенню фундаментальності навчальної дисципліни «нарисна геометрія», яка викладається у всіх технічних і творчих ВНЗ як загальноосвітня. Це доведення ґрунтується на діалектичної єдності нарисної геометрії, яка уважається прикладною наукою і фундаменталь-ної евклідової геометрії, яку нарисна «зображує» або графічне моделює.
APA, Harvard, Vancouver, ISO, and other styles
2

Поліщук, Володимир Ісидорович, Іван Григорович Балюба, and Борис Федорович Горягін. "Про дистанційний курс з нарисної геометрії в ДНАБА." New computer technology 4 (October 31, 2013): 47. http://dx.doi.org/10.55056/nocote.v4i1.24.

Full text
Abstract:
Нарисна геометрія [1] є фундаментальною дисципліною, що закладає основу для подальшого вивчення інженерних дисциплін, які потрібні фахівцям будівельної галузі. В період прискореного науково-технічного прогресу виникає особлива необхідність використання інформаційних комп’ютерних технологій в процесі інженерної підготовки студентів. Згідно з вимогами, викладеними у листі МОНУ № 4.1-20/2366 від 04.07.2005 р. та враховуючи досвід підготовки матеріалів для створення курсів для дистанційної форми навчання, кафедра “Інженерна та комп’ютерна графіка” приступила до розробки дистанційного курсу з нарисної геометрії.На кафедрі виконувалась держбюджетна науково-дослідна робота К-4 -08-03 – Комп’ютерне навчання дисципліні “Нарисна геометрія”, номер державної реєстрації 0102U002844.Використовуючи одержаний досвід, згідно з рекомендаціями Центру дистанційного та факультативного навчання Донбаської національної академії будівництва і архітектури по розроблених централізовано методичних вказівках авторами був створений план і структура матеріалів курсу нарисної геометрії. Нами були виділені три основні етапи роботи: теоретичний матеріал, практичні роботи, графічні завдання. Кожний з етапів, для визначення степені засвоєння розділів, включав в себе самотестування.Теоретичний матеріал, розбитий на розділи по аналогії з лекціями курсу, подавався модулями у вигляді завдань з їх поясненнями та самотестуванням для виявлення рівня їх засвоєння. В кінці розділу забезпечувалось самотестування. Якщо студент був задоволений результатами самотестування розділу, використовувана нами система “Прометей” дозволяла перехід для освоєння іншого розділу.По аналогії побудовано опанування етапу практичних робіт.Для роботи над етапом графічних завдань студент повинен мати навички роботи з панеллю малювання в текстовому редакторі MicrosoftWord, для чого були створені відповідні методичні розробки.Апробація дистанційного курсу з нарисної геометрії по перших двох розділах була проведена в локальній мережі академії.
APA, Harvard, Vancouver, ISO, and other styles
3

Балюба, Іван Григорович, Володимир Ісидорович Поліщук, Борис Федорович Горягін, and Жанна Володимирівна Старченко. "Використання комп’ютера при викладанні графічних дисциплін." New computer technology 5 (November 1, 2013): 05–06. http://dx.doi.org/10.55056/nocote.v5i1.49.

Full text
Abstract:
На кафедрі «Інженерна та комп’ютерна графіка» Донбаської національної академії будівництва і архітектури студенти спеціальності «Будівництво» активно використовують можливості комп’ютера при вивченні і виконанні графічних робіт. Початкові етапи використання комп’ютера як креслярського інструмента базуються на використанні «Панели рисования» в системі Microsoft Word. Можливості панелі споріднені з ручним виконанням креслень, дають можливість першого знайомства з формуванням комп’ютерних зображень, дозволяють спостерігати побудову більш складних інструментів графічних комп’ютерних систем. Для цього на кафедрі виконано методичні розробки – чотири уроки опанування можливостей текстового редактора Microsoft Word для виконання рисунків, текстів, таблиць. Перший урок розраховано для студентів, що можуть включити і виключити комп’ютер. Освоєння матеріалів другого і третього уроків дозволяють вільно виконувати пояснювальні записки зі схемами і рисунками до курсових і дипломних робіт. Четвертий урок призначається для професіонального використання «Панели рисования» вдизайні листів пояснювальних записок.Особливе місце в академії і на кафедрі приділяється комп’ютеру як інформаційному каналу одержання студентами знань. Лекції з нарисної геометрії, які читаються в аудиторіях, можна одержати як в електронному так і в друкованому варіанті. Причому такі електронні варіанти лекцій включають історичні довідки, приклади, рисунки, які доповнюють аудиторні варіанти.Для більш глибокого дослідження та наукового обґрунтування до тематичного плану держбюджетних науково-дослідних робіт академії в межах другої половини робочого дня викладачів кафедри включено на 2006-2010 рр. науково-дослідну роботу К-2-09-06: «Створення курсу та розробка предметної моделі спеціаліста з дисципліни «Нарисна і обчислювальна геометрія, Інженерна та комп’ютерна графіка» на основі інженерії знань».Для забезпечення можливостей дистанційної підготовки спеціалістів будівельного профілю академія провела значну підготовчу дослідницько-практичну роботу, залучаючи для роботи, на платній основі, свої кафедри. Протягом двох років нами підготовлено російськомовний повний дистанційний курс нарисної геометрії, що включає:теоретичний курс з самотестуванням, для самостійного визначення студентом свого рівня освоєння;практичні заняття для одержання навиків розв’язання задач з самотестуванням, для самостійного визначення студентом свого рівня освоєння;робочий зошит для засвоєння навиків розв’язання задач з самотестуванням, для самостійного визначення студентом свого рівня освоєння;тести по курсу для проведення самоекзамену і екзамену і офіційного визначення рівня освоєння навчального курсу «Нарисна геометрія».Кафедра працює над створенням відповідного українськомовного варіанта комп’ютерного дистанційного курсу «Нарисна геометрія».Автори мають багаторічний досвід викладання дисципліни «Комп’ютерна графіка» зі студентами старших курсів з використанням графічних систем AutoCAD і КОМПАС. Була проведена значна методична робота по забезпеченню навчального процесу [1–4].Ведуться інтенсивні пошуки можливостей створення дистанційного курсу «Креслення» Проводяться дослідження, створення і апробація варіантів розділів курсу. Основна проблема – організація дистанційного одержання студентами навичок практичного виконання креслень.
APA, Harvard, Vancouver, ISO, and other styles
4

Гонзуль, Валентина Петрівна. "Особливості організації самостійної роботи студентів технічних ВНЗ при оволодінні курсу «Нарисна геометрія»." Theory and methods of learning mathematics, physics, informatics 13, no. 2 (September 4, 2015): 222–28. http://dx.doi.org/10.55056/tmn.v13i2.790.

Full text
Abstract:
В статті розглядаються проблеми та аспекти організації самостійної роботи студентів технічних вузів при вивченні графічних дисциплін. Мета дослідження – виявити особливості організації самостійної роботи студентів-першокурсників в технічному ВНЗ. Об’єктом дослідження є самостійна робота студентів у технічному ВНЗ. Предмет дослідження – процес організації самостійної роботи студентів. Розроблені методичні вказівки і рекомендації до виконання самостійної роботи студентами першого курсу з дисципліни «Нарисна геометрія». Структура розробки така, що самостійна робота виконується студентами без безпосередньої участі викладача, але за його завданням. Викладач виконує роль діагноста, консультанта, мотиватора і постачальника інформації. Завдання формулюються в діяльнісному аспекті і пред’являються студентам перед початком навчання. Оцінка результатів, досягнутих шляхом впровадження даної методичної розробки, дала можливість зробити висновки, що самостійна робота студентів, завдяки технологізації, тобто опосередкованого управління нею в процесі навчання, в порівнянні з традиційним навчанням є більш високопродуктивною.
APA, Harvard, Vancouver, ISO, and other styles
5

Гриценко, Л. "Організація модульно-рейтингової системи навчання (на прикладі курсу "нарисна геометрія та креслення")." Збірник наукових праць Полтавського державного педагогічного університету ім. В.Г. Короленка. Педагогічні науки, Вип. 4 (2006): 161–70.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Герганов, Леонід, and Анатолій Ярмакі. "ВПРОВАДЖЕННЯ ЦИФРОВИХ ТЕХНОЛОГІЙ В ОСВІТНІЙ ПРОЦЕС ЗАКЛАДУ ВИЩОЇ МОРСЬКОЇ ОСВІТИ." Молодий вчений, no. 11 (99) (November 30, 2021): 157–59. http://dx.doi.org/10.32839/2304-5809/2021-11-99-35.

Full text
Abstract:
В даній статі розкрито сутність та основну мету щодо впровадження в освітній процес підготовки майбутніх моряків новітніх комп’ютерних технологій. Авторами було виявлено, що використання платформи Google-Education, а саме Classroom в інформаційно-освітньому середовищі кафедри інженерних дисциплін Дунайського інституту НУ «Одеська морська академія» у підготовці майбутніх інженерів, впливає не лише на якість здобутих знань, а й на подальшу професійну діяльність. Було зазначено, на яких навчальних дисциплінах автори зробили свої наукові висновки, а саме: «Технологія матеріалів і ремонт суднового обладнання», «Опір матеріалів», «Морська інженерна практика», «Нарисна геометрія та комп’ютерна графіка». Схематично було зображено міждисциплінарний зв'язок фахових дисциплін на кафедральному рівні. У загальній структурі освітньо-професійне середовища розглянуто як поетапний процес формування цифрових компетенцій у професійній діяльності майбутнього суднового механіка.
APA, Harvard, Vancouver, ISO, and other styles
7

Ткач, Дмитро Іванович. "Основи теоретико-методичної системи навчання нарисної геометрії майбутніх архітекторів." Theory and methods of learning mathematics, physics, informatics 13, no. 2 (April 12, 2018): 263–75. http://dx.doi.org/10.55056/tmn.v13i2.768.

Full text
Abstract:
Робота присвячена розробці педагогічної технології подолання сучасного кризового стану геометрографічної освіченості студентів-першокурсників архітектурних факультетів шляхом впровадження в їх свідомість системного розуміння природи об’єкту та його зображення. Метою роботи є з’ясування необхідності і можливості побудови системи навчання майбутніх архітекторів на основі реалізації системної парадигми у вигляді системної нарисної геометрії. Об’єктом дослідження є процес навчання нарисної геометрії майбутніх архітекторів. Предметом дослідження є теоретико-методична система реалізації системного підходу до навчання нарисної геометрії як фундаментальної навчальної дисципліни. Завдання дослідження: 1) обґрунтування нагальної потреби розроблення концепції системності змісту нарисної геометрії; 2) розробка методичних підсистем геометричної і графічної підготовки майбутніх архітекторів, а також їх позиційних і метричних складових; 3) розробка методичної підсистеми навчання раціональній побудові наочних зображень архітектурних об’єктів; 4) доведення ефективності запропонованої педагогічної технології навчання. Методами педагогічного дослідження є: теоретичні, діагностичні і формувальні на діалектико-логічній основі. Результатами дослідження є коректне виконання його завдань. Висновки: 1. Впровадження системної парадигми розуміння природи об’єктів в теорію їх зображень перетворює традиційну нарисну геометрію як прикладну навчальну дисципліну в системну нарисну геометрію як фундаментальну математичну науку, яка повинна бути першою спеціальною, а не загальноосвітньою дисципліною для професійної геометрографічної підготовки майбутніх архітекторів. 2. Дидактичний зміст системної нарисної геометрії відзначає її як новий напрям подальшого розвитку теорії оборотних зображень, а педагогічна технологія її навчання студентів-архітекторів є інноваційною.
APA, Harvard, Vancouver, ISO, and other styles
8

Лопатюк, С. "МОДЕРНІЗАЦІЇ НАВЧАННЯ ІНЖЕНЕРНІЙ ГРАФІЦІ З ВИКОРИСТАННЯМ МОЖЛИВОСТЕЙ САПР AUTOCAD." Vodnij transport, no. 1(29) (February 27, 2020): 58–65. http://dx.doi.org/10.33298/2226-8553.2020.2.30.07.

Full text
Abstract:
Сучасні інноваційні тенденції в освіті передбачають активне залучення ресурсів Інтернету до процесу навчання технічним спеціальностям. При виконанні складних креслень, розрахунків, спільної роботи над проектами пропонується використовувати комплексний хмарний сервіс. Програмне забезпечення САПР Autodesk надає можливість по новому організувати навчання студентів інженерній графіці в межах однієї платформи. В статті обґрунтовано необхідність проведення змін в організації навчання з дисципліни «Нарисна геометрія та інженерна графіка» при підготовці спеціалістів водного транспорту з урахуванням вимог модернізації освітнього процесу. На основі можливостей AutoCAD-17 щодо трьохвимірного моделювання розглядаються алгоритми формування просторових моделей геометричних об’єктів з різних поверхонь видавлюванням і за допомогою логічних операцій: об’єднання, віднімання і перетину. Обговорюються можливості створення і організації роботи зі спільним кресленням, особливості параметричного проектування, використання хмарних технологій в процесі створення, зберігання і модифікації креслень. Ключові слова: модернізація освіти, інженерна графіка, ІТ - компетентність, САПР AutoCAD, хмарні технології, професійно-орієнтована підготовка.
APA, Harvard, Vancouver, ISO, and other styles
9

Лопатюк, С. "МОДЕРНІЗАЦІЇ НАВЧАННЯ ІНЖЕНЕРНІЙ ГРАФІЦІ З ВИКОРИСТАННЯМ МОЖЛИВОСТЕЙ САПР AUTOCAD." Vodnij transport, no. 1(29) (February 27, 2020): 58–65. http://dx.doi.org/10.33298/2226-8553.2020.1.29.07.

Full text
Abstract:
Сучасні інноваційні тенденції в освіті передбачають активне залучення ресурсів Інтернету до процесу навчання технічним спеціальностям. При виконанні складних креслень, розрахунків, спільної роботи над проектами пропонується використовувати комплексний хмарний сервіс. Програмне забезпечення САПР Autodesk надає можливість по новому організувати навчання студентів інженерній графіці в межах однієї платформи. В статті обґрунтовано необхідність проведення змін в організації навчання з дисципліни «Нарисна геометрія та інженерна графіка» при підготовці спеціалістів водного транспорту з урахуванням вимог модернізації освітнього процесу. На основі можливостей AutoCAD-17 щодо трьохвимірного моделювання розглядаються алгоритми формування просторових моделей геометричних об’єктів з різних поверхонь видавлюванням і за допомогою логічних операцій: об’єднання, віднімання і перетину. Обговорюються можливості створення і організації роботи зі спільним кресленням, особливості параметричного проектування, використання хмарних технологій в процесі створення, зберігання і модифікації креслень. Ключові слова: модернізація освіти, інженерна графіка, ІТ - компетентність, САПР AutoCAD, хмарні технології, професійно-орієнтована підготовка.
APA, Harvard, Vancouver, ISO, and other styles
10

Локарєва, Галина Василівна, and Евеліна Анатоліївна Бажміна. "ПЕРСОНАЛІЗАЦІЯ В ОСВІТІ: УПРАВЛІННЯ СТУДЕНТАМИ ВЛАСНОЮ ТРАЄКТОРІЄЮ НАВЧАННЯ ЗАСОБАМИ ЦИФРОВИХ ТЕХНОЛОГІЙ." Information Technologies and Learning Tools 86, no. 6 (December 30, 2021): 187–207. http://dx.doi.org/10.33407/itlt.v86i6.4103.

Full text
Abstract:
У статті представлено огляд підходів до навчання, а саме: персоналізації, індивідуалізації та диференціації в психологічному й педагогічному контекстах. Розглянуто зміст дефініцій, які є близькими до поняття персоналізації. Представлено перші спроби дослідження персоналізованого підходу в школах та університетах світу, його характерні ознаки й відмінності. Продемонстровано ключову роль студента в освітньому процесі при персоналізованому навчанні, який замотивований на вивчення професійно спрямованих дисциплін, формує та розвиває вміння самостійно працювати, керує власним процесом навчання, плануючи індивідуальний шлях, місце, час і темп діяльності в електронному навчальному курсі. Наставником і помічником студента, модератором цифрового освітнього середовища є педагог. У статті представлено вибудовування індивідуальної освітньої траєкторії студентами закладів вищої освіти та управління персоналізованим навчанням на прикладі навчальних курсів «Інженерна та комп’ютерна графіка» і «Нарисна геометрія, інженерна та комп’ютерна графіка». Нові методики й моделі навчання, адаптовані до самостійної роботи, являють собою певну структуру занять, у них наявні методичні розробки залежно від очікуваних результатів навчання, інноваційні види діяльності, підходи до навчання. На основі дослідження презентовано структуру персоналізованого підходу. Відзначено застосування BYOD (Bring Your Own Device – Принеси свій власний пристрій)-технологій у навчальній діяльності як ефективного інструмента для всіх учасників освітнього процесу. Технології сприяють персоналізованому навчанню студентів, спрощують процес оцінювання результатів їх самостійної роботи, автоматизують навчальний процес і дають зворотний зв’язок. Підкреслено, що актуальність значення питання персоналізації зростає в період пандемії через перенесення аудиторних занять в онлайн режим. Подано приклади індивідуальних освітніх траєкторій за освітнім модулем. Проілюстровано завдання для студентів за певним цільовим рівнем на платформі Moodle. Представлено результати використання персоналізованої моделі в освітньому процесі вищої школи.
APA, Harvard, Vancouver, ISO, and other styles
11

Ткач, Дмитро Іванович. "Принципи «Великої дидактики» Яна Амоса Коменського стосовно до системної теорії оборотних зображень." Theory and methods of learning fundamental disciplines in high school 8 (March 27, 2013): 32–38. http://dx.doi.org/10.55056/fund.v8i1.861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Аулін, Віктор Васильович, Тетяна Миколаївна Ауліна, Олександр Степанович Магопець, and Олександр Георгійович Новіков. "Системно-спрямований підхід при викладанні фундаментальних і загальнотехнічних дисциплін." Theory and methods of learning fundamental disciplines in high school 1 (November 16, 2013): 52–56. http://dx.doi.org/10.55056/fund.v1i1.147.

Full text
Abstract:
Останнім часом у теорію і практику викладання фундаментальних і загальнотехнічних дисциплін у технічному вузі міцно входять і показують свою ефективність нові інформаційні технології навчання [1–4]. Викладання фізики, хімії, вищої математики, креслення і нарисної геометрії вимагає розробки таких науково-педагогічних технологій навчання, що формують знання у вигляді деякої цілісної структури на основі інформаційних полів узагальнених фундаментальних понять і спеціальних термінополів дисципліни [5–7]. Інформаційна цілісність структури на різних етапах навчання передбачає певне завершення побудови і деякі перетворення інформаційно-предметних моделей, причому це відбувається на рівні свідомості, так і підсвідомості студента. З погляду психології ефективність навчання і формування міцних знань залежить передусім від співвідношення процесів, що розвиваються на свідомому і підсвідомому рівнях. Необхідно також враховувати, що гуманізация освіти повинна визначатися не тільки змістом знань, але їхньою структурою. Такий підхід у науково-педагогічних технологіях навчання називають системно-спрямованим [7, 8].Навчально-пізнавальну діяльність педагогічного процесу в цьому ракурсі можна уявити як взаємозв’язок системно-спрямованого навчання і самонавчання. У системно-спрямованому навчанні суб’єктом є викладач, а об’єктом – студент. Джерелом знань є суб’єкт. При самонавчанні (контрольно-керованої творчої самостійної діяльності) суб’єктом є студент і знання здобуваються за рахунок його власних зусиль. Процес накопичення знань є творчим процесом, що передбачає використання знань психології та розвиток психічних функцій і здібностей студентів.Системно-спрямоване навчання – це світоглядне навчання, орієнтоване не на повідомлення і засвоєння фактів і деталей, а на формування бачення проблем або задач певної навчальної дисципліни, тобто на формування предметного світогляду.Предметний світогляд – це відображення і наявність у свідомості і підсвідомості студента поля узагальнених фундаментальних понять, спеціальних термінополів, співвідношень між полями і поняттями, використання методів, способів і принципів побудови інформаційно-структурних моделей певної навчальної дисципліни і концептуальної картини бачення навколишнього світу, розв’язання проблем і задач з погляду цього предмета.Викладення матеріалу теоретичного або практичного характеру в пропонованому підході здійснюється в основному дедуктивним методом: від фундаментально-узагальненого понятійного поля до спеціального термінополя, від інформаційно-структурних моделей до конкретної їх реалізації.При побудові спеціальних термінополів і їхньому засвоєнню студентами повинні використовуватися способи наукового мислення: порівняння, аналогія, аналіз, синтез, абстрагування, ідеалізація, індукція, дедукція, гіпотеза, уявний експеримент. Цілісність картини певного явища, проблеми, задачі, пов’язані з ним, формуються методами побудови інформаційних моделей.Пропонований підхід інтенсифікує навчання, забезпечуючи прискорений і одночасно якісний навчально-пізнавальний процес. На авансцену виходять нові прийоми і процедури, пов’язані з проблемізацією і евристізацією навчання, комплексною технізацією навчально-пізнавальної діяльності. Основна увага приділяється самопізнавальному компоненту з використанням комп’ютерної й аудіовідеотехніки.Нові інформаційні технології навчання дають можливість усвідомлено керувати побудовою і перетворенням інформаційно-предметних моделей при формуванні знань як деякої цілісної структури шляхом створення предметного світогляду.Щоб полегшити роботу студента в освоєнні фундаментальних і загальнотехнічних дисциплін необхідно докорінно переглянути пріоритети, що впливають на структуру формування знань. В основі інформаційних технологій навчання, на відмінність від традиційних технологій, лежить послідовність: психологія – педагогіка – інформатика – методика викладання - навчальна дисципліна. Природно, що розробка технологій навчання на цій основі вимагає величезного обсягу роботи, що не під силу викладачу-предметнику. І все-таки дуже важливо знайти методи, підходи або такі педагогічні технології, що уже зараз допомагають зовсім по-іншому структурувати навчальний курс певної дисципліни, розробити способи перекодування інформації в підсвідомій діяльності студентів. Вважаємо, що будь-яке перекодування інформації є могутнім важелем керування деякими підсвідомими процесами.Цікаво відзначити, що ідея структурування навчального матеріалу виникла через необхідність допомогти слабко встигаючому студенту зрозуміти узагальнені і спеціальні термінополя і завершити свої внутрішні інформаційні моделі з певної дисципліни, тобто за деревами побачити ліс. Однак, як показали наші дослідження, структурування навчального матеріалу надає ефективну допомогу і добре встигаючим студентам.Системно-спрямований підхід дає узагальнені знання і принципи структурування навчального матеріалу.Наприклад, узагальнені знання в нарисній геометрії [5, 8] являють собою інформаційне поле взаємозалежних фундаментальних понять (точка; лінія; поверхня; просторова фігура, як сукупність поверхонь та ін.), цілісну систему понять стереометрії і спеціальну систему понять нарисної геометрії, що ґрунтується на методі проектування.У кожному конкретному питанні теоретичного або практичного характеру варто чітко виділяти елементи інформаційного поля, розмежовуючи систему понять і одночасно вказуючи, яким чином вони зв’язані між собою.Доцільно весь курс нарисної геометрії структурувати у вигляді взаємозалежних інформаційних моделей на основі узагальнених знань з метою формування в студентів інженерних спеціальностей раціонального бачення (з погляду нарисної геометрії) при конструюванні складних поверхонь технічних форм і складанні креслень на цій основі.Подання структурної моделі на початку вивчення теми несе в собі переваги суто дедуктивного підходу в методиці викладання.Системно-спрямований підхід передбачає розвиток дедуктивного методу, а також дає нові можливості при розробці автоматичних навчальних курсів, відеопосібників, відеопідручників і відеоконсультацій на ПЕОМ.Автори розробили теоретичні основи і мають досвід застосування системно-спрямованого підходу на лекційних і практичних заняттях з нарисної геометрії і інженерної графіки, вищої математики та фізики [5, 8].Таким чином, системно-спрямований підхід при викладанні фундаментальних і загальнотехнічних дисциплін, системно-спрямоване навчання за оптимально структурованим курсом дисципліни скорочує термін опрацювання, підвищує якість засвоєння знань, сприяє ефективному формуванню предметного світогляду у студентів.
APA, Harvard, Vancouver, ISO, and other styles
13

Sydorova, Nataliia, Veronika Dumanska, and Yuliia Dotsenko. "WAYS OF IMPROVING THE EFFICIENCY OF TEACHING DESCRIPTIVE GEOMETRY." Science and Education 26, no. 6 (June 2017): 161–66. http://dx.doi.org/10.24195/2414-4665-2017-6-24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Джеджула, Олена. "Features of Training of Future Engines for Solving Applicable Problems by Methods of Descriptive Geometry." Health and Safety Pedagogy 3, no. 2 (2018): 89–94. http://dx.doi.org/10.31649/2524-1079-2018-3-2-089-094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Dzhedzhula, Olena. "Features of Training of Future Engines for Solving Applicable Problems by Methods of Descriptive Geometry." Health and Safety Pedagogy 3, no. 2 (2019): 89–94. http://dx.doi.org/10.31649/2524-1079-2019-3-2-089-094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Brednyova, V. P., N. M. Yavorskaya, and P. V. Yavorskiy. "CLASSICAL PROBLEMS OF DRAFT GEOMETRY AND THEIR APPLYING IN ARCHITECTURAL AND ARTISTIC PRACTICE." Regional problems of architecture and urban planning, no. 15 (December 24, 2021): 152–60. http://dx.doi.org/10.31650/2707-403x-2021-15-152-160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Gnitetska, T., and G. Gnitetska. "INTERACTIVE GRAPHIC EDITOR FOR DISTANCE LEARNING COURSE DRAWING GEOMETRY AND ENGINEERING GRAPHICS." Modern problems of modeling 20 (February 16, 2021): 82–91. http://dx.doi.org/10.33842/2313-125x/2021/20/82/91.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Shevel, L., and N. Matyushchenko. "USE OF MULTIMEDIA IMAGES IN SOLVING PROBLEMS IN PRACTICAL LESSONS ON DESCRIPTIVE GEOMETRY." Modern problems of modeling 20 (February 16, 2021): 202–9. http://dx.doi.org/10.33842/2313-125x/2021/20/202/209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Antonets, Anatoliі, Stanislav Koval’chuk, and Alexander Brikun. "MODEL OF DESIGN COMPETENCE FORMATION OF FUTURE PROFESSIONALS OF THE AGRICULTURAL COMPLEX DURING THE STUDY OF DESCRIPTIVE GEOMETRY AND ENGINEERING GRAPHICS." B U L L E T I N OF OLEKSANDR DOVZHENKO HLUKHIV NATIONAL PEDAGOGICAL UNIVERSITY 46, no. 2 (2021): 37–46. http://dx.doi.org/10.31376/2410-0897-2021-2-46-37-46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Гумен, Олена Миколаївна, Соломія Євгенівна Лясковська, and Євген Володимирович Мартин. "Графічні інформаційні технології у підготовці фахівців технологічних спеціальностей." Theory and methods of e-learning 4 (February 17, 2014): 65–68. http://dx.doi.org/10.55056/e-learn.v4i1.371.

Full text
Abstract:
Розвиток і зміцнення промислового потенціалу України передбачає широке залучення інформаційних технологій у процесі створення сучасних засобів виробництва. Зокрема, важливими є питання впровадження новітніх технологій в галузь електронного машинобудування, де інформаційна складова досить висока. Зауважимо широке використання у підготовці технічних проектів дослідження та розроблення сучасних взірців електронної техніки методу скінченних елементів [1], новий етап розвитку якого обумовлений наявністю потужного комп’ютерного інструментарію. Значну і важливу його частину складають геометричні елементи [2], від вибору яких залежить точність визначення технологічних параметрів виробів електронного машинобудування. Природно, важливу увагу звертають на стан вивчення і засвоєння студентами технічних спеціальностей графічних дисциплін. Незважаючи на активну і плідну роботу Української асоціації з прикладної геометрії [3], вивчення її фундаментальної складової – інженерної та комп’ютерної графіки – обмежене мінімально можливою кількістю аудиторних навчальних годин, причому співвідношення кількості годин аудиторних занять до самостійної та індивідуальної роботи студентів становить для стаціонарної форми навчання 44%, а для заочної – 12%.Разом з тим широке залучення графічних засобів у процесі реалізації навчальних проектів засвоєння комп’ютерного інструментарію [4], в тому числі конструювання виробів електронного машинобудування, вимагає професійної підготовки саме з інженерної та комп’ютерної графіки. Отже, опанування базовими знаннями нарисної геометрії та креслення, складових інженерної графіки, виступає зовсім не самоціллю, чи тим більше альтернативою іншим навчальним технологіям, а ознакою цілісного підходу до процесу підготовки технічного фахівця в галузі електронного машинобудування, являє єдину розумну можливість з практичних міркувань, виходячи з великої кількості супутніх побудов при використанні сучасних комп’ютерних і комп’ютеризованих методів досліджень, до яких слід віднести метод скінченних елементів.На вивчення курсу інженерної та комп’ютерної графіки обсягом 36 годин лекційних та 36 годин лабораторних занять відведено перший і другий семестри. Матеріал курсу максимально адаптований до дисциплін старших курсів, зокрема, курсу «Метод скінченних елементів», який читається у сьомому семестрі. При вивченні методу використовується програмний продукт AutoCAD Mechanical. Враховуючи використання у методі плоских і просторових геометричних елементів, у курсі інженерної та комп’ютерної графіки передбачається їх вивчення як традиційними, так і комп’ютерними засобами. Так, на практичних заняттях з інженерної графіки студенти виконують графічну роботу «Геометричне креслення», викреслюючи деталь типу «планка». У процесі виконання цієї роботи відбувається ґрунтовне знайомство з викреслюванням основних графічних примітивів та з прийомами їх редагування: вилучення геометричних об’єктів, виконання фасок, спряжень, вибір типів ліній тощо. Елементи нарисної геометрії представлені лекційним матеріалом та відповідними графічними роботами з розділів ортогонального і аксонометричного проекціювання елементів тривимірного простору: точки, лінії, поверхні, їх загальне та особливе положення, взаємне розташування у просторі. Особлива увага акцентується на взаємне положення прямих і площин, побудову об’єктів їх перетину. Типові геометричні поверхні – призма, піраміда, циліндр, конус, сфера – вивчаються у курсі відповідно до вимог подання елементів методу комп’ютерними засобами як просторові об’єкти особливого положення, ортогональні до площин проекцій.Для підвищення ефективності подачі матеріалу постійно відбувається розвиток і поповнення методичної бази за рахунок нових посібників, що розробляються згідно навчального плану. Широке залучення методичних посібників дозволяє якісно використовувати час, відведений на самостійну роботу студентів, розв’язувати задачі з нарисної геометрії чи викреслювати графічні роботи з інженерної графіки з мінімальним втручанням викладача, а також самостійно здійснювати підготовку до контрольних заходів, згідно тематики занять. Таким чином, студенти швидше і з більшим розумінням справляються з поточними завданнями, осмислено підходячи до виконання робіт.Враховуючи значний відсоток відведених на самостійну роботу годин, наявність комп’ютерної техніки, на кожному практичному занятті проводиться короткотривале супутнє пояснення окремих засобів подання відповідних розділів інженерної графіки з використанням пакета системи автоматизованого проектування AutoCAD 2009 російськомовної версії [5].Щодо вивчення основ інженерної комп’ютерної графіки в середовищі системи AutoCAD для проведення лабораторних занять також розроблено відповідні методичні напрацювання. Кожний етап виконання графічної роботи розписується детально, доступно роз’яснюється та ілюструється.Відповідно до можливостей навчальної дисципліни і потреб курсу «Метод скінченних елементів» передбачено виконання двох лабораторних робіт з комп’ютерної графіки у 2D і 3D форматах у другому семестрі, а саме: створення комп’ютерного варіанту зображення планки в режимі 2D-моделювання і однойменної лабораторної роботи з теми «Перетин поверхонь площинами» у 3D форматі. Обидві лабораторні роботи виконуються відповідно до навчальних варіантів графічних робіт. Традиційно вивчення інженерної графіки завершується заліком наприкінці першого семестру та іспитом у другому семестрі. При цьому контроль комп’ютерної складової передбачений у другому семестрі.Протягом практичних занять, виконуючи в аудиторії поточні графічні роботи, студенти мають можливість одержувати консультації з відповідних розділів комп’ютерної графіки. Заключним розділом вивчення інженерної графіки у другому семестрі являє оформлення конструкторської документації [6] на прикладі виконання схем електричних принципових, які переважно використовуються у виробах електронного машинобудування. Щодо інженерної графіки, то схеми містять її традиційні геометричні примітиви для зображення електричних елементів: точки, кола, багатокутники, дуги тощо. Такі елементи просто подати геометричними примітивами комп’ютерної графіки, використовуючи спеціальні команди: Задание атрибутов, Создание блока, Вставка блока меню Блоки.Нарешті, наприкінці курсу передбачено два лекційних та два лабораторних заняття з комп’ютерної графіки. На лекціях подається в інтегрованому вигляді матеріал, з яким студенти знайомились на практичних заняттях та вивчали за рахунок кількості годин самостійної та індивідуальної роботи упродовж двох семестрів, стосовно до виконання двох лабораторних робіт. Виконання лабораторної роботи «Схеми електричні принципові» передбачено факультативно.Лабораторні роботи виконуються у 2D і 3D форматах з використанням варіантів, виконаних студентами і підписаних викладачем графічних робіт з однойменної тематики. Бали за лабораторні роботи включені до загальної кількості балів за виконані роботи в другому семестрі як складова оцінки другого модуля.Слід зазначити, що виконання лабораторних робіт з комп’ютерної графіки дозволяє студентам краще засвоїти знання, одержані при виконанні відповідної графічної роботи в курсі інженерної графіки. Навички і уміння, здобуті при вивченні навчального матеріалу як під час виконання графічних робіт, так і при освоєнні комп’ютерних графічних засобів відображення базових елементів, сприятимуть у подальшому засвоєнню інших інженерних дисциплін на старших курсах.Висновки. Винесення частини матеріалу з комп’ютерної графіки на самостійне вивчення із урахуванням значного відсотку самостійної та індивідуальної роботи в навчальному плані з наступним його вивченням і закріпленням на лекційних і лабораторних заняттях наприкінці другого семестру уможливлює знизити негативний вплив скорочення годин на вивчення графічних дисциплін. Разом з тим актуальною є проблема розділення в часі процесу вивчення інженерної та комп’ютерної графіки. Доцільним видається вивчення інженерної графіки традиційними засобами у першому і другому семестрі, а комп’ютерної графіки – у третьому семестрі.
APA, Harvard, Vancouver, ISO, and other styles
21

Svidrak, I. H., L. I. Shevchuk, O. I. Strogan, L. R. Strutynska, and I. V. Strogan. "Кінематичне проеціювання як засіб управління технікою в автоматизованих землеобробних комплексах." Scientific Bulletin of UNFU 31, no. 5 (November 25, 2021): 102–7. http://dx.doi.org/10.36930/40310516.

Full text
Abstract:
Досліджено методику застосування кінематичного проеціювання для відображення траєкторії руху та пошуку координат рухомих об'єктів. З'ясовано, що специфікою кінематичного проеціювання є те, що всі її ключові складові, а саме – об'єкт, центр проеціювання, картинна площина та проектувальні промені, перебувають у неперервному русі із певними швидкостями та пришвидшеннями. Така специфічна особливість кінематичного проеціювання не тільки істотно розширює технологічні можливості нарисної геометрії як науки про графічне відображення просторових об'єктів, а й істотно поглиблює галузі практичного її застосування. Встановлено, що підтвердженням цьому є розглянуті у цій роботі приклади практичного застосування специфіки кінематичного проеціювання для вдосконалення дистанційного керування землеобробною технікою в автоматизованих комплексах управління. З'ясовано, що це дає змогу усувати негативний вплив "людських чинників" операторів, що відстежують траєкторії переміщень техніки оброблюваною земельною ділянкою. Досліджено, що основні складові технічного забезпечення практичного застосування кінематичного проеціювання для відстежування переміщень землеобробної техніки й різних транспортних засобів полягає в оснащені відеокамерами та приладами електромагнітного випромінювання стаціонарні радіовежі або безпілотні літальні апарати (БПЛА), наприклад, дрони, що виконуватимуть функції центрів кінематичного проеціювання. Рекомендовано, що сприймання генерованих центром проеціювання проектувальних променів тут може бути покладено на оснащений радіолокаційною системою (РЛС) та сучасним комп'ютерним спорядженням із відповідним програмним забезпеченням стаціонарний командний пункт (центр). Це устаткування, у цьому випадку, виконуватиме функцію "картинної площини", на якій відображатиметься траєкторія руху землеобробної техніки. З'ясовано, що виконавчі механізми та органи управління рухом землеобробної техніки у цьому випадку доречно оснастити пристроями, що приймають керівні радіохвилі. Показано, що окрім відстежування траєкторії рухів об'єктів на земній поверхні, кінематичне проеціювання може застосовуватися й у військовій справі для виявлення ворожих безпілотних об'єктів у повітряному просторі. У цьому разі використовують різновид кінематичного проеціювання із двома його центрами генерування проектувальних променів.
APA, Harvard, Vancouver, ISO, and other styles
22

Карпюк, Л. В., and Н. О. Давіденко. "Інформаційні технології в інженерній графіці." ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, no. 1(265) (March 16, 2021): 29–32. http://dx.doi.org/10.33216/1998-7927-2021-265-1-29-32.

Full text
Abstract:
Стаття присвячена питанню підвищення ефективності процесу навчання за допомогою використання сучасних інформаційних технологій на прикладі дисципліни «Інженерна та комп'ютерна графіка». Описано способи застосування комп'ютерної графіки в ході вивчення курсів нарисної геометрії та інженерної графіки. Розглянуто особливості викладання розділу комп'ютерної графіки в дисципліні інженерної графіки, орієнтованого на використання графічного редактора AutoCAD, для цілеспрямованого формування професійних якостей майбутніх фахівців і їх готовності до самостійної розробки конструкторських документів. Використання автоматизованої системи створення зображень дозволяє урізноманітнити навчальний процес, що сприяє більш швидкому і якісному засвоєнню студентами складного матеріалу. Однак охопити такий великий обсяг інформації можливо тільки при використанні різних інноваційних технологій. В якості одного з підходів до вирішення даного завдання є розглянута в статті методика проведення лабораторних робіт з комп'ютерної графіки. Для посилення зворотного зв'язку зі студентами на початку кожного заняття для закріплення матеріалу, що вивчається, стимулювання студентів при навчанні та забезпечення швидкої готовності їх до сприйняття нових питань доцільно проводити автоматизований тестовий контроль. Також при викладенні нового навчального матеріалу рекомендується застосовувати міні-лекції та комп'ютерний практикум. Традиційно при читанні лекцій тривимірні моделі демонструвалися на плакатах або викреслювались на дошці. Пізніше з'явилася можливість демонструвати слайди або 3D-зображення, підготовлені викладачем за допомогою комп'ютерної графіки. Студенти при опрацюванні нового матеріалу використовували вже готові ілюстрації. Однак, як відомо, процес навчання проходить набагато ефективніше, якщо студенти приймають в ньому не пасивну, а активну участь. Сучасний інноваційний підхід дозволяє кожному самостійно створити ілюстрацію досліджуваного алгоритму. При виконанні завдань в ході комп'ютерного практикуму у студентів поряд з розвитком просторового і конструкторського мислення формується усвідомлене уявлення про форми геометричних об'єктів, їх взаємне положення і компонування. Для підвищення «насиченості» розділу комп'ютерної графіки пропонується ретельно продумувати методику викладення теоретичного матеріалу, техніку оформлення супровідних презентацій, структуру, розмітку та наповнення комп'ютерних слайдів.Ефективність впливу навчального матеріалу на студентську аудиторію багато в чому залежить від ступеня і рівня ілюстративності усного матеріалу. Продумана система завдань, які виконуються в ході комп'ютерного практикуму, сприяє вивченню всіх особливостей комп'ютерної графіки по розробці робочих креслень.
APA, Harvard, Vancouver, ISO, and other styles
23

Крівцов, Валерій, Наталія Ковальчук, and Валентин Крівцов. "ПРИКЛАДИ ТЕСТОВИХ ЗАВДАНЬ ЗАКРИТОЇ ФОРМИ З НАВЧАЛЬНОЇ ДИСЦИПЛІНИ «НАРИСНА ГЕОМЕТРІЯ»." Перспективи та інновації науки, no. 1 (6) (January 20, 2022). http://dx.doi.org/10.52058/2786-4952-2022-1(6)-236-249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kosyak, Valentyna. "THE ROLE OF THE DESCRIPTIVE GEOMETRY IN GRAPHICAL PREPARATION OF THE FOREIGN STUDENTS AT THE PREPARATORY DEPARTMENT." Young Scientist 3, no. 67 (March 2019). http://dx.doi.org/10.32839/2304-5809/2019-3-67-61.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography