To see the other types of publications on this topic, follow the link: Вихідні сигнали.

Journal articles on the topic 'Вихідні сигнали'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 30 journal articles for your research on the topic 'Вихідні сигнали.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

С.В. Ковалевський and О.С. Ковалевська. "ІДЕНТИФІКАЦІЯ ОБ’ЄКТІВ МАШИНОБУДУВАННЯ ЗА КІЛЬКОМА КІЛЬКІСНИМИ ОЗНАКАМИ ОДНОЧАСНО." Наукові нотатки, no. 68 (January 29, 2020): 23–29. http://dx.doi.org/10.36910/6775.24153966.2019.68.4.

Full text
Abstract:
Показано, що діагностика об'єктів машинобудування передбачає обґрунтування розширення застосовуваних фізичних ефектів, орієнтованих, в першу чергу, на неруйнівного контролю параметрів продукції машинобудування. На підставі досліджень, які показують перспективність експериментальних і теоретичних доказів, доведена доцільність пошуку підтвердження інформативності частотних спектрів резонансних акустичних сигналів досліджуваних об'єктів, порушених широкосмуговими резонаторами рівній амплітуди в акустичному діапазоні. Надані прикладі застосування широкосмугових випромінювачів наноамплітудних впливів на досліджувані об'єкти з метою акустичної спектроскопії для створення їх ідентифікаційних моделей. Для практичного використання експериментальних результатів для ідентифікації розмірних і фізико-механічних характеристик станів діагностованих об'єктів авторами застосовані нейромережні моделі. Такі моделі служать практичним цілям діагностики станів об'єктів на основі частотних спектрів власних резонансних коливань. Доведено, якщо діагностика об'єкта проводиться щодо опорного сигналу у вигляді широкосмугового впливу постійної амплітуди, то такий підхід дозволяє нормувати вихідні діагностичні сигнали щодо опорного сигналу. представлені ідентифікаційні моделі, побудовані на нейромережному базисі, показали реальну можливість їх використання для створення системи діагностики об'єктів за кількома кількісними ознаками. Причому, кількість таких ознак, які можна контролювати одночасно, практично, не обмежена. Авторами роботи проведені додаткові дослідження, які показали можливість одночасного контролю не тільки геометричних характеристик об'єктів, а й їх фізико-механічних характеристик, включаючи показники напруженого стану, твердості і т.ін..
APA, Harvard, Vancouver, ISO, and other styles
2

Mykytiuk, M. V., M. O. Zaitsev, T. B. Martyniuk, and L. V. Krupelnytskyi. "Systolic Architecture of Matrix Processor for Classifier Of Objects." Èlektronnoe modelirovanie 43, no. 3 (June 4, 2021): 36–46. http://dx.doi.org/10.15407/emodel.43.03.036.

Full text
Abstract:
Розглянуто один з відомих методів класифікації об’єктів, в якому реалізовано критерій класифікації за максимумом дискримінантних функцій. Цей метод ефективно засто¬со-вується як класична обчислювальна модель, зокрема, у медицині при діагностуванні за-хворювань. Процес класифікації за цим методом можна реалізувати як просторово-роз-поділену обробку по стовпцях і рядках матриці у вигляді регулярних ітеративних алго¬ритмів. Це дозволяє відобразити їх на двовимірний систолічний масив матричного обчислювача у складі класифікатора об'єктів з подальшим розміщенням у ПЛІС. Запропонований матричний обчислю-вач функціонує в двох режимах і має низку специфічних властивостей, а саме виконання операції декремента одночасно над усіма елементами в кожному стовпці матриці обчислювача, а також використання сигналів ознаки нуля (обнуління) елементів в кожному рядку і кожному стовпці матриці як результатів обробки елементів дискримінантних функцій і для синхронізації самого процесу обробки. В подальшому за результатами обробки у матричному обчислювачі формують-ся вихідні сигнали класифікатора з визначенням конкретного класу об’єктів.
APA, Harvard, Vancouver, ISO, and other styles
3

Дзюба, Ігор Олександрович. "Багатовимірна адаптивна квазіоптимальна система." Адаптивні системи автоматичного управління 1, no. 18 (December 11, 2011): 37–43. http://dx.doi.org/10.20535/1560-8956.18.2011.33472.

Full text
Abstract:
В даній роботі розглянуто застосування спостерігаючого пристрою у багатовимірній адаптивній квазіоптимальній системі кута крену, тангажу та напрямку літака, що дозволяє значно спростити структурну схему стабілізації керування літаком, зробити керування більш стійким до зовнішніх неконтрольованих впливів та змін параметрів системи. Також вирішено проблему автономності, коли системи керування по кожній керованій величині можуть розглядатися незалежно одна від одної. Крім того вдало вирішено проблему компенсації впливу зовнішніх збуджень, які діють на систему керування, тобто проблему побудови таких систем керування, вихідні сигнали яких не змінюються при дії на систему керування неконтрольованих впливів
APA, Harvard, Vancouver, ISO, and other styles
4

Мороз С.А. к.т.н., Пташенчук В.В., Приступа С.О. к.т.н, and Кайдик О.Л. к.т.н. "ДОСЛІДЖЕННЯ РУХОВОЇ АКТИВНОСТІ ЛЮДИНИ ДЛЯ ВИЯВЛЕННЯ БІОСИГНАЛІВ ДЛЯ КЕРУВАННЯ БІОЕЛЕКТРИЧНИМ ПРОТЕЗОМ." Перспективні технології та прилади, no. 14 (December 7, 2019): 98–102. http://dx.doi.org/10.36910/6775-2313-5352-2019-14-17.

Full text
Abstract:
В статті проведено аналіз рухової діяльності людини. Встановлено, що управління скорочувальною активністю м'язової клітини здійснюється за допомогою мотонейронів - нервових клітин, тіла яких лежать в спинному мозку, а довгі відгалуження - аксони в складі рухового нерва підходять до м'язів, Біоелектричний вплив, переданий від центральної нервової системи до м'язів, відбивається підвищенням амплітуди в так званих рухових точках - місцях найбільшого скупчення рухомих одиниць. Якщо знімати біопотенціал в місцях розташування рухових точок, то ми можемо отримати вихідні сигнали для управління протезом. Електроміографією є основним методом дослідження нервово-м'язової системи за допомогою реєстрації біоелектричних потенціалів. Електро-міографічні дослідження показують, що амплітуди біопотенціалів варіюються від 5-10 мкВ (м'яз в стані спокою) до 500-1000 мкВ (м'яз в збудженому стані). Основний діапазон частот біопотенціалів, що реєструються поверхневими електродами, становить 20-200 Гц, з максимумом близьким 50 - 100 Гц. Запропоновано структурну схему управління біоелектричним протезом кисті.
APA, Harvard, Vancouver, ISO, and other styles
5

Огір, О. О. "ПРИНЦИПИ ДІАГНОСТИЧНОЇ ВІЗУАЛІЗАЦІЇ ОБ’ЄКТА АБО СЕРЕДОВИЩА." Таврійський науковий вісник. Серія: Технічні науки, no. 1 (April 8, 2022): 54–62. http://dx.doi.org/10.32851/tnv-tech.2022.1.6.

Full text
Abstract:
Проведений аналіз дав змогу виявити відсутність чітких формулювань сутності понять «діагностична візуалізація» і «діагностичне зображення». Тож пропонується визначити, що діагностичне зображення – це графічна (двомірна або тримірна) модель аномалій досліджуваного об’єкта чи середовища, для якої може бути здійснена постановка і розв’язання задачі ідентифікації. Відповідно, діагностична візуалізація – це процес побудови такої моделі, і сам цей процес має вже усталену назву «реконструкція діагностичного зображення». Цей процес розглядається в контексті дослідження об’єктів та середовищ випромінюванням ультразвукових хвиль в досліджуваний об’єкт (або в середовище) з подальшим прийняттям і обробкою відбитих коливань з метою визначення наявності аномалій, що підпадає під визначення ідентифікацію в широкому розумінні (структурна ідентифікації), або їх форми, розміру, положення, глибини залягання тощо, що підпадає під визначення ідентифікації у вузькому розумінні (параметрична ідентифікація). В роботі увага сконцентрована на певному сегменті ідентифікації у вузькому розумінні – підвищенні якості моделі, де показником якості буде визначено розрізнювальну здатність діагностичного зображення. При цьому в контексті теорії ідентифікації відомими будуть вважатися вхідні і вихідні сигнали ультразвукового дослідження, а також загальний вид моделі аномалії, а невідомим залишається алгоритм ідентифікації. Вирішення завдання в УЗ візуалізації передбачається на основі аналізу фазових співвідношень, що відповідають побудованим за певними елементарними одновимірними голограмами. Мова йде про реконструкцію зображень на основі безлічі одновимірних елементарних голограм на площину, перпендикулярну площині запису елементарної голограми та визначається сукупністю акустичних осей зондуючого простору при русі суміщеного випромінювача – приймача уздовж лінії синтезованої апертури. Такий підхід повинен дати можливість розв’язувати сумарний по амплітуді ехосигнал, що отримується в точці зондування з різних точок глибини за рахунок різниці початкових фаз комплексних амплітуд окремих гідробіонтів, які мають свої координати в площині зондування і свої значення інтенсивності з урахуванням місця розташування. Щільність скупчення, що відображає інтенсивність окремих гідробіонтів на кольоровому моніторі може бути представлена відносними колірними моделями або іншим способом досить ефективної візуальної відмінності кожного гідробіонта окремо з властивим йому розміром і сукупність всіх гідробіонтів, які визначають щільність їх у зондуючих об’ємах. Слід зазначити, що розглянуті методи отримання зображень за сукупністю одновимірних елементарних голограм можуть бути використані і в інших положеннях по розробці техніки діагностування в медицині, будівництві і т. п.
APA, Harvard, Vancouver, ISO, and other styles
6

Банга В.І., к.т.н. "ЕКСПЕРИМЕНТАЛЬНІ ДОСЛІДЖЕННЯ СЕНСОРА КРУТНОГО МОМЕНТУ СИСТЕМИ ПРИВОДУ «ЕЛЕКТРОДВИГУН-ДИСКОВИЙ ДОЗАТОР»." Перспективні технології та прилади, no. 17 (December 13, 2020): 6–11. http://dx.doi.org/10.36910/6775-2313-5352-2020-17-1.

Full text
Abstract:
У статті подано огляд і аналіз пристроїв для вимірювання крутного моменту приводу обертових елементів, конструктивну схему та загальний вигляд сенсора крутного моменту, передбачено наявність засобів для вимірювання, реєстрації та передачі інформації електричними сигналами біжучих значень вихідної напруги тензодатчиків в динамічному режимі, відображення і зберігання інформації та контрольно-вимірювальні прилади. Наведено блок схему, загальний вигляд експериментальної установки для дослідження по­туж­ності приводу «електродвигун-дисковий дозатор» сенсором крутного моменту, результати експериментальних досліджень з використанням теорії багатофакторного планованого експерименту, подано рівні варіювання факторів, матрицю плану експерименту. Запропонована конструкція сенсора крутного моменту системи приводу «електродвигун-дисковий дозатор дозволить спростити зняття інформації з сенсора при його обертанні, підвищити точність вимірювання та передачі вимірювального сигналу до комп’ютера, спростити його виготовлення. У результаті проведення планованого багатофакторного експерименту одержано рівняння регресії для визначення вихідної напруги сенсора крутного моменту від зміни зусилля крутного моменту елементів, що обертаються при різних конструктивних розмірах тензовимірювальної площини.
APA, Harvard, Vancouver, ISO, and other styles
7

Шевчук, В. В., О. М. Сукач, Ю. І. Габрієль, and Г. А. Худавердян. "ПІДВИЩЕННЯ ЕФЕКТИВНОСТІ ДІАГНОСТИКИ ЕЛЕТРОННОЇ СИСТЕМИ КЕРУВАННЯ СІВАЛКОЮ HORSCH PRONTO DC." СІЛЬСЬКОГОСПОДАРСЬКІ МАШИНИ, no. 46 (May 30, 2021): 111–23. http://dx.doi.org/10.36910/acm.vi46.499.

Full text
Abstract:
У статті запропоновано методику діагностики електронних систем керування, якими оснащені сучасні посівні комплекси. Використання електронних систем дозволяє в автоматичному режимі контролювати якість посіву, адаптувати роботу сівалки до зміни параметрів руху, відображати основні параметри системи під час роботи, сигналізувати про несправності чи недотримання агротехнічних вимог. Для вивчення будови, принципу роботи, налаштувань й технічного обслуговування сівалки зручно використовувати навчальні стенди, перевагою яких є компактність та зручність розташування основних елементів електронної системи керування, а його використання не потребує значних затрат часу й ресурсів, застосування додаткового обладнання й техніки. Визначено характеристики та параметри вихідних сигналів сенсорів за різних режимів роботи. З’ясовано принципи роботи бортової мережі та технології передачі даних основних елементів електронної системи керування сівалкою. За характером та закономірностями зміни отриманих осцилограм інформаційних сигналів встановлено нормативні діагностичні параметри сенсорів сівалки, що в подальшому забезпечить швидку та ефективну діагностику. Встановлено, що оптичні сенсори використовують UART протокол передачі даних. Один із контактів роз’єму сенсора контролю висіву є приймачем (RX), а другий – є передавачем (TX) цифрового сигналу, відповідно, це дозволяє розташувати велику кількість сенсорів на одній лінії передачі даних. Результати досліджень забезпечать швидку діагностику техніки.
APA, Harvard, Vancouver, ISO, and other styles
8

Сидоренко, Р. Г., Г. В. Акулінін, С. А. Безверхий, and Г. М. Сафарова. "Методика оцінки ефективності заходів маскування у видимому діапазоні довжин хвиль." Системи озброєння і військова техніка, no. 3(63), (September 30, 2020): 31–37. http://dx.doi.org/10.30748/soivt.2020.63.05.

Full text
Abstract:
Проведено оцінку можливостей апаратури оптико-візуальної розвідки, яка встановлена на космічних, літальних апаратах та наземних засобах щодо виявлення об’єктів. Наведені необхідні для розрахунків вихідні дані по об’єктах та умовах ведення розвідки. Отримано аналітичні вирази для розрахунку відношення сигналу до шуму зображень вихідного й замаскованого об’єктів та їх тіней, ймовірностей виявлення вихідного й замаскованого об’єкту. Розроблено математичний апарат для оцінки ефективності заходів маскування у видимому діапазоні довжин хвиль. Отримані результати можуть використовуватись при розробці нових засобів маскування та оцінці існуючих та перспективних засобів розвідки у видимому діапазоні довжин хвиль.
APA, Harvard, Vancouver, ISO, and other styles
9

Сидоренко, Р. Г., and О. М. Порохончук. "Оцінка ефективності засобів зниження помітності об’єктів у інфрачервоному діапазоні довжин хвиль." Наука і техніка Повітряних Сил Збройних Сил України, no. 3(44) (July 22, 2021): 159–63. http://dx.doi.org/10.30748/nitps.2021.44.19.

Full text
Abstract:
Проведено оцінку можливостей апаратури інфрачервоної (тепловізійної) розвідки, яка встановлена на літальних апаратах та наземних засобах щодо виявлення об’єктів. Наведені необхідні для розрахунків вихідні дані по апаратурі, об’єктам та умовам ведення розвідки. Отримано аналітичні вирази для розрахунку відношення сигналу до шуму зображень вихідного й замаскованого об’єктів та ймовірностей їх виявлення. Розроблено математичний апарат для оцінки ефективності заходів зниження помітності у інфрачервоному діапазоні довжин хвиль. Отримані результати можуть використовуватись при розробці нових засобів зниження помітності в інфрачервоному діапазоні довжин хвиль та оцінці ефективності існуючих й перспективних засобів зниження помітності від апаратури тепловізійної розвідки.
APA, Harvard, Vancouver, ISO, and other styles
10

Руденко, О. Г., О. О. Безсонов, Н. М. Сердюк, К. О. Олійник, and О. С. Романюк. "Робастна ідентифікація об'єктів на основі мінімізації комбінованого функціоналу." Системи обробки інформації, no. 1(160), (March 30, 2020): 80–88. http://dx.doi.org/10.30748/soi.2020.160.10.

Full text
Abstract:
Розглянуто задачу ідентифікації параметрів лінійного об'єкта за наявністю негаусівських завад на основі мінімізації комбінованого функціоналу, який поєднує властивості МНК та МНМ та забезпечує робастність одержуваних оцінок. Досліджено статистичні властивості градієнтного алгоритму ідентифікації, в результаті чого визначено умови його збіжності в середньому і середньоквадратичному. Для дослідження властивостей в алгоритму використано функції Ляпунова. Отримано аналітичні оцінки неасимпотичних та асимптотичних значень помилки оцінювання параметрів і точності ідентифікації. Показано, що ці значення помилки оцінювання і точності ідентифікації залежать від вибору параметра змішування. Отримані оцінки є досить загальними і залежать від статистичних характеристик корисних сигналів і завад. Тому для їх практичного застосування слід скористатися оцінками цих параметрів. Результати експериментального дослідження властивостей алгоритму при ідентифікації об’єкту, вихід якого вимірюється з незалежним шумом з розподілом Релея, некорельованим з сигналами, свідчать про ефективність підходу, що розвивається. Отримані в роботі оцінки дозволяють досліднику при вирішенні практичних завдань попередньо оцінити можливості досліджуваного алгоритму і ефективність його застосування.
APA, Harvard, Vancouver, ISO, and other styles
11

Bordakov, M. "ОСОБЛИВОСТІ КОНСТРУКЦІЇ ЧАСТИНИ СИЛОВОЇ ЕЛЕКТРОНІКИ В СОНЯЧНИХ МЕРЕЖЕВИХ ІНВЕРТОРАХ." Vidnovluvana energetika, no. 1(60) (March 30, 2020): 23–28. http://dx.doi.org/10.36296/1819-8058.2020.1(60).23-28.

Full text
Abstract:
При дослідженні роботи інвертора було визначено параметри, які впливають на ефективність його роботи. Одним з таких парметрів є внутрішні компоненти інвертора від яких залежить ефективність його роботи. Основним силовим компонентом є Power Stack (силовий модуль). Основним компонентом силового модуля є IGBT (біполярний транзистор з ізольованим затвором). Даний тип транзисторів поєднує в собі характеристики двох напівпровідникових пристроїв: Біполярного транзистора (утворює силовий канал). Польового транзистора (утворює канал управління). При розрахунку ефективності роботи інвертора потрібно розуміти як працює його силова частина і як силова частина перетворює постійний струм у змінний. Робота силових транзисторів керується драйвером, який пристрій керує частотою відкриття і закриття транзисторів та вихідними характеристиками напруги інвертора. Для регулювання роботи інвертора драйвер отримує сигнал та відправляє команду на сам силовий модуль. Таким чином відбувається регулювання вихідних параметрів інвертора. Для регулювання вихідної потужності інвертором також застосовується алгоритм зменшення вхідної потужності. Це досягається шляхом переходу робочої точки поля ФЕМ з точки МРРТ до робочої точки, ближчої до режиму холостого ходу сонячної панелі. Регулювання рівня реактивної потужності також відбувається за рахунок роботи силового модуля. Для роботи інвертора, його силовий модуль повинен мати якісне охолодження. Охолодження має забезпечити відвід тепла від силового модуля, що в свою чергу попередить руйнування транзистора. В сучасних інверторах використовується активна і пасивна система охолодження. Зазвичай інвертори з пасивним охолодженням мають потужність до 100 кВт. Також у деяких виробніків є тестові моделі інверторів з водяним охолодженням. Потужність даних інверторів очікується більшою ніж 2500 кВт. Бібл. 10, рис. 5.
APA, Harvard, Vancouver, ISO, and other styles
12

Golovach, V. M., and O. S. Baranova. "АНАЛІЗ ВПЛИВУ ХАРАКТЕРИСТИК ДЕФЕКТУ ФАНЕРИ НА КІЛЬКІСТЬ ПУЛЬСАЦІЙ ВИХІДНОГО СИГНАЛУ УДАРНОГО ДАВАЧА." Scientific Bulletin of UNFU 25, no. 10 (December 29, 2015): 280–85. http://dx.doi.org/10.15421/40251043.

Full text
Abstract:
Розглянуто проблему виявлення внутрішніх дефектів фанери на стадії виробництва. Виникає потреба у створенні обладнання неруйнівного контролю для визначення розшарованих областей фанери на ранніх стадіях виробництва. Переваги використання методу вільних коливань перед іншими методами – можливість контролю виробу в умовах виробництва, контроль матеріалів з високими коефіцієнтами затухання пружних коливань, а також знаходження дефектів на значній глибині. Досліджено, що під час контролю дефекту розшарування фанерного матеріалу на вихідний сигнал ударного давача впливають такі характеристики дефекту: площа S, глибина h та місце розташування дефекту.
APA, Harvard, Vancouver, ISO, and other styles
13

Yermilova, N., S. Kyslytsia, Y. Burkun, and A. Goncharov. "РОЗРОБЛЕННЯ СУЧАСНОЇ СИСТЕМИ АВТОМАТИЧНОГО КЕРУВАННЯ ЕЛЕКТРОПРИВОДОМ БЕТОНОРОЗДАВАЧА." Системи управління, навігації та зв’язку. Збірник наукових праць 1, no. 59 (February 26, 2020): 21–26. http://dx.doi.org/10.26906/sunz.2020.1.021.

Full text
Abstract:
Проаналізувавши особливості конструкції, принцип роботи та електропривод бетонороздавача типу СМЖ-69А, автори прийшли до висновку, що найбільш гостро потребує модернізації механізм переміщення цього пристрою та система його керування. Для підвищення ефективності роботи запропоновано застосувати частотнорегульований електропривод механізму переміщення на базі АД з короткозамкненим ротором. Рекомендовано замінити застарілий привод пересування у вигляді двигуна, редуктора і ланцюгової передачі на мотор-редуктор, що дозволить звільнити місце для встановлення контролерів та іншого обладнання системи автоматичного керування. Для механізму пересування бетонороздавача обрано сучасний мотор-редуктор, розроблена схема керування електроприводом на базі ПЛК. Пропонується застосувати тензометричний метод зважування бетонної суміші, для чого бункер з бетонною масою встановлюється на тензодатчиках. При заповненні бункера бетонороздавача до певної маси сигнал з тензодатчиків надходить на контролер, після чого програма починає працювати. Вхідним сигналом є маса бетонної суміші, що подається в бункер, а вихідним – напруга, яка подається на контролер, а потім, через перетворювач частоти, на об'єкт управління – привід пересування бетонороздавача. Керуючим впливом об’єкта керування (ОК) являється напруга, що подається на мотор-редуктор, а збурювальним впливом – сила статичного навантаження від ваги бетонороздавача, ваги бетонної суміші в бункері та сили опору розрівнюючого пристрою. Розроблена математична модель ОК, за допомогою якої проведені дослідження перехідних процесів об’єкту керування шляхом зміни керуючого та збурювального впливів. Аналіз перехідних процесів довів працездатність та якість системи керування. Розроблений алгоритм функціонування системи автоматичного керування бетонороздавачем, на базі якого побудована програма для ПЛК. Проведена технічна реалізація САК, обрані необхідні елементи та пристрої. Розрахована авторами економічна ефективність від проведеної модернізації довела її доцільність
APA, Harvard, Vancouver, ISO, and other styles
14

Kopchak, B., and A. Kushnir. "РОЗРОБКА ТА РЕАЛІЗАЦІЯ БЛОКУ НЕЧІТКОЇ ЛОГІКИ МАКСИМАЛЬНОГО ТЕПЛОВОГО ПОЖЕЖНОГО СПОВІЩУВАЧА З ВИКОРИСТАННЯМ ПЛАТИ ARDUINO." Fire Safety 39 (December 29, 2021): 32–42. http://dx.doi.org/10.32447/20786662.39.2021.04.

Full text
Abstract:
Вступ. Для виявлення полуменевих пожеж одними з найкращих є теплові пожежні сповіщувачі. Вони найпростіші, не дорогі, прості та дешеві в обслуговуванні, дуже надійні, мають хорошу стійкість до різноманітних завад порівняно з іншими типами сповіщувачів, однак, мають найбільшу інерційність спрацювання. Існує ряд об’єктів, де виникають полуменеві пожежі або де є значне забруднення і тоді теплові пожежні сповіщувачі є незамінними у використанні. Загалом, теплові пожежні сповіщувачі більш стійкі до несприятливих умов середовища порівняно з іншими типами сповіщувачів. Зменшити час виявлення загорання тепловими пожежними сповіщувачами можна завдяки використанню новітніх технологій при розробці алгоритмів роботи на основі нечіткої логіки, нейронних мереж та сучасних мікроконтролерів. Ці математичні апарати дають змогу покращити технічні характеристики теплових сповіщувачів, зменшити їхню інерційність спрацювання. Вони також можуть зменшити хибність спрацювання пожежного сповіщувача та точно розпізнати загорання.Мета роботи. Розробити блок нечіткої логіки максимального теплового пожежного сповіщувача з можливістю його реалізації в мікроконтролері на базі апаратно-обчислювальної платформи (плати) Аrduino.Основні результати дослідження. У цій статті розглядається так званий метод нечіткого висновку Сугено. Найпростіший спосіб візуалізувати системи Сугено першого порядку – це вважати, що кожне правило є визначенням місця розташування рухомої точки. Тобто одиночні вихідні піки можуть переміщатися лінійно у вихідному просторі, залежно від того, що є вхідним сигналом. Це також має тенденцію зробити такі системи дуже компактними та ефективними.Для подальшого застосування плат Arduino для розробки та дослідження нечіткого блоку максимального пожежного сповіщувача, побудованого на основі нечіткої логіки, необхідне здійснення одного дуже важливого кроку – розібрати на елементарні складові і дослідити пакет Fuzzy Logic Toolbox, який надалі буде використовуватися як еталонний для розробки програми для Arduino. У випадку програмної реалізації нечіткого блоку в програмному середовищі Arduino найкращі результати отримуються при застосуванні функцій належності трикутної і трапецієподібної форми. В пакеті Fuzzy Logic Toolbox MATLAB/Simulink був розроблений нечіткий блок Сугено. Надалі він виступив еталонним на етапі створення нової моделі нечіткого блоку і її реалізації в пакеті MATLAB/Simulink для подальших досліджень точності та адекватності отриманої моделі. Розроблена нова модель нечіткого блоку Сугено нульового порядку в пакеті MATLAB/Simulink. Проведено дослідження точності і адекватності отриманої моделі, шляхом подачі лінійного наростаючого сигналу на вході зі швидкістю 1 од/сек. Результати збіглися, похибка відсутня. Отже отримана нова модель буде служити прототипом для створення нечіткого блоку максимального теплового пожежного сповіщувача в мікроконтролері плати Arduino.В програмному комплексі Arduino з використанням мови програмування С була здійснена апаратна реалізація нечіткого блоку Сугено нульового порядку для одного входу на платі Arduino Mega 2560. Реалізація здійснена для масштабованого сигналу на вході і виході [0, 1]. Такий масштаб легко привести до робочої напруги плати Arduino 5 В. Після програмування плати Arduino було здійснено експериментальні дослідження шляхом зміни потенціометром напруги на вході плати від 0 до 5 В, що відповідає вихідному сигналу з давача температури DHT21/AM2301A. Крок зміни напруги на вході – 0,25 В.Висновки. Розглянуто математичні основи нечіткого блоку Сугено. На їх основі для максимального теплового пожежного сповіщувача розроблено модель нечіткого блоку Сугено з одним входом у програмному середовищі MATLAB/Simulink. В ході проведених досліджень вона показала 100% точність і адекватність по відношенню до існуючої моделі у пакеті Fuzzy Logic Toolbox MATLAB/Simulink. На відміну від існуючої моделі запропоновану модель нечіткого блоку можна реалізувати в мікроконтролері. В програмному комплексі Arduino, була здійснена апаратна реалізація нечіткого блоку максимального теплового пожежного сповіщувача з використанням мови програмування С і плати Arduino Mega 2560. Після програмування Arduino було здійснено експериментальні дослідження. Похибка результату, обчисленого Arduino не перевищила 2,5%. Час виконання одного повного циклу нечіткого блоку – 0,004сек.
APA, Harvard, Vancouver, ISO, and other styles
15

Горєлишев, Станіслав, Павло Волков, Дмитро Баулін, Євген Башкатов, and Олена Новикова. "ЗАЛЕЖНОСТІ ЕФЕКТИВНОЇ ПОВЕРХНІ РОЗСІЮВАННЯ ЗАСОБІВ ДОСТАВКИ ПОРУШНИКІВ ПРИ ЗОВНІШНЬОМУ ПІДСВІЧУВАННІ." Збірник наукових праць Національної академії Державної прикордонної служби України. Серія: військові та технічні науки 85, no. 2-3 (April 11, 2022): 253–73. http://dx.doi.org/10.32453/3.v85i2-3.842.

Full text
Abstract:
Ефективне рішення організації охорони важливого державного об’єкта (ВДО) або частки кордону є оптимальне поєднання механічних перешкод, які ускладнюють дії порушника, із засобами сигналізації, що забезпечують найбільш раннє виявлення спроби проникнення. Як такі можливо використовувати технічні засоби, побудовані за принципами напівактивної бістатичної радіолокації, – РЛС, які використовують джерела зовнішнього підсвічування (передавачі Т2 або стільниковий зв’язок). Використання цих засобів спрямовано на підвищення надійності виявлення порушників і засобів їх доставки на великих відстанях та забезпечення прихованості спостереження за зоною охорони ВДО. Для побудови таких систем необхідні дані щодо вторинних характеристик бістатичного радіолокаційного розсіювання об’єктів, які перебувають у зоні охорони. Для отримання цих даних використовувалося математичне моделювання, яке засноване на розв’язанні інтегральних рівнянь (ІР). Розроблено методику оцінювання можливості радіолокаційного спостереження ідеально провідних об’єктів у полі підсвічування телевізійної і стільникової мереж. Проведено постановку задачі та описано вхідні та вихідні дані. У статті розглянуто приховане спостереження ділянок кордону або зони охорони ВДО у місті Золочів Харківської області. Як джерело випромінювання використовувався ретранслятор телевізійної мережі Т2 у с. Нехотїївка (Бєлгородської області) або ретранслятор стільникового зв’язку. Об’єкт спостереження – засіб доставки порушників у вигляді загальної моделі бронетранспортера (БТР). Отримано бістатичні діаграми розсіювання засобу доставки та середні значення ефективної поверхні розсіювання (ЕПР) у секторах бістатичних кутів у разі різних азимутів і частот зондування. Із аналізу залежності ЕПР від конфігурації системи прихованого спостереження при зовнішньому підсвічуванні оцінено усереднені значення рівня розсіяного сигналу. Проведено верифікацію результатів методики на прикладі об’єктів простої форми.
APA, Harvard, Vancouver, ISO, and other styles
16

Barkalov, A. A., L. A. Titarenko, I. J. Zeleneva, and S. S. Hrushko. "CODING OF OUTPUT SIGNAL SETS IN THE COMBINED FSM CIRCUIT ON CPLD." Naukovi praci Donec'kogo nacional'nogo tehnicnogo universitetu. Seria, Informatika, kibernetika i obcisluval'na tehnika 2, no. 25 (2017): 5–11. http://dx.doi.org/10.31474/1996-1588-2017-2-25-5-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Petrovskiy, О., T. Kuznetsova, S. Leyko, and L. Azarova. "ФІЗИКО-МАТЕМАТИЧНА МОДЕЛЬ ЕЛЕКТРИЧНИХ ВЛАСТИВОСТЕЙ БІОЛОГІЧНИХ ТКАНИН НАСІННЯ ПШЕНИЦІ ТА ЇХ ЗМІНА ПІД ВПЛИВОМ ЕЛЕКТРОМАГНІТНОГО ВИПРОМІНЕННЯ ВИСОКОЧАСТОТНОГО ДІАПАЗОНУ." Системи управління, навігації та зв’язку. Збірник наукових праць 2, no. 54 (April 11, 2019): 139–43. http://dx.doi.org/10.26906/sunz.2019.2.139.

Full text
Abstract:
Висвітлено результати експериментальних досліджень роботи біотехнічної системи опромінення насіння високочастотним електромагнітним полем, безперервним синусоїдальним сигналом із різною вихідною потужністю для насіння пшениці. Визначений тепловий та осциляторний вплив електромагнітного поля на біологічну тканину. Запропонована фізико-математична модель структури біологічної тканини на рівні клітинних мембран, внутрішньо і міжклітинного середовищ з точки зору електричних властивостей. На основі будови клітин визначені електричні властивості біологічної тканини, з якої складається насіння рослин. Показана зміна складових комплексного опору в залежності від частоти електромагнітного випромінювання за допомогою якого проводилась стимуляція. Побудовано рівняння реґресії і проведено оцінку їх адекватності за критерієм Фішера. Аналіз рівнянь реґресії дозволив визначити оптимальне співвідношення незалежних факторів для досягнення максимального відсотка схожості насіння. Отримані результати дозволили конкретизувати критерії оцінювання опромінення насіння. Експериментально доведено, що еквівалентну електричну схему неможливо звести до простих випадків з’єднання опорів і ємностей, а саме насіння не можна вважати нейтральним діелектриком. Розроблена методика оцінки інтенсивності обмінних процесів залежно від електричного опору насіння.
APA, Harvard, Vancouver, ISO, and other styles
18

Sulyma, M. I., V. V. Ogurtsov, Yu M. Zhuk, S. O. Vasyuk, and S. V. Khomyak. "ВИВЧЕННЯ БУДОВИ ПРОДУКТУ ВЗАЄМОДІЇ ДИЛТІАЗЕМУ З БРОМКРЕЗОЛОВИМ ЗЕЛЕНИМ." Фармацевтичний часопис, no. 3 (September 6, 2018): 58–63. http://dx.doi.org/10.11603/2312-0967.2018.3.9316.

Full text
Abstract:
Мета роботи. Виділення та ідентифікація продукту взаємодії дилтіазему гідрохлориду з бромкрезоловим зеленим.Матеріали і методи. У дослідженні використано робочий стандартний зразок дилтіазему гідрохлориду, бромкрезоловий зелений (БКЗ), зразки готових лікарських форм вітчизняного та закордонного виробництва.Реагенти і розчинники: стандартний зразок дилтіазему гідрохлориду, бромкрезоловий зелений, ацетон.Аналітичне обладнання: спектрофотометр Bruker Alpha (Bruker Optik GmbH, Ettlingen, Germany) з використанням приставки (повного внутрішнього відбиття) ATR (пряме уведення речовини), спектрофотометр Specord 200 (Німеччина) (190–1100 нм).Результати й обговорення. Експериментально встановлено, що дилтіазем гідрохлорид взаємодіє з бромкрезоловим зеленим у середовищі ацетону з утворенням йонного асоціату. ІЧ-спектр йонного асоціату відповідає сумі поглинань вихідних сполук із деякими відмінностями, що підтверджують його утворення. У йонному асоціаті в області 3600–3400 см-1 смуги фенольних –ОН проявляються з меншою інтенсивністю, що можна пояснити перетворенням БКЗ у хінонну структуру. У продукті також відсутні поглинання в області 2370 см-1 (R3N+ Cl- в дилтіаземі гідрохлориді), що пояснюється утворенням йонного асоціату з БКЗ, а саме поглинання проявляється у вигляді уширеного сигналу в області 3200–2000 см-1.Висновки. У результаті проведених досліджень встановлено, що дилтіазем гідрохлорид взаємодіє з бромкрезоловим зеленим у співвідношенні 1:1, виділено та встановлено будову продукту взаємодії дилтіазему гідрохлорид із бромкрезоловим зеленим. За допомогою ІЧ-спектроскопії підтверджено, що продуктом реакції є йонний асоціат.
APA, Harvard, Vancouver, ISO, and other styles
19

Sulyma, M. I., V. V. Ogurtsov, Y. M. Zhuk, S. O. Vasyuk, and S. V. Khomyak. "ІДЕНТИФІКАЦІЯ БУДОВИ ПРОДУКТУ ВЗАЄМОДІЇ ВЕРАПАМІЛУ ГІДРОХЛОРИДУ З БРОМКРЕЗОЛОВИМ ЗЕЛЕНИМ." Фармацевтичний часопис, no. 1 (March 4, 2020): 51–58. http://dx.doi.org/10.11603/2312-0967.2020.1.10914.

Full text
Abstract:
Мета роботи. Виділення та ідентифікація продукту взаємодії верапамілу гідрохлориду з бромкрезоловим зеленим методами ІЧ-спектрофотометрії та 1H ЯMР спектроскопії. Матеріали і методи. У дослідженні використано робочий стандартний зразок верапамілу гідрохлориду, бромкрезоловий зелений (БКЗ), взірці готових лікарських форм вітчизняного та зарубіжного виробництва. Реагенти і розчинники: стандартний зразок верапамілу гідрохлориду, бромкрезоловий зелений, ацетон. Аналітичне обладнання: Спектрофотометр Bruker Alpha (Bruker Optik GmbH, Ettlingen, Germany) з використанням приставки (повного внутрішнього відбиття) ATR (пряме уведення речовини), спектрофотометр Specord 200 (Німеччина) (190–1100 нм). Результати й обговорення. Експериментально встановлено, що верапамілу гідрохлорид взаємодіє з бромкрезоловим зеленим у середовищі ацетону з утворенням йонного асоціату. ІЧ-спектр йонного асоціату відповідає сумі поглинань вихідних сполук із деякими відмінностями, що підтверджують його утворення. У йонному асоціаті в області 3600‒3400 см‒1 смуги фенольних –ОН проявляються з меншою інтенсивністю, що можна пояснити перетворенням БКЗ у хінонну структуру. У продукті також відсутні поглинання в області 2370см‒1 (R3N+Cl- у верапамілі гідрохлориді), що пояснюється утворенням йонного асоціату з БКЗ, а саме поглинання проявляється у вигляді уширеного сигналу в області 3200‒2000см‒1. Висновки. У результаті проведених досліджень встановлено, що верапамілу гідрохлорид взаємодіє з бромкрезоловим зеленим у співвідношенні 1:1, виділено та встановлено будову забарвленого продукту взаємодії верапамілу гідрохлориду з бромкрезоловим зеленим. За допомогою методів ІЧ- спектроскопії та спектрометрії ядерного магнітного резонансу підтверджено, що продуктом взаємодії є йонний асоціат.
APA, Harvard, Vancouver, ISO, and other styles
20

Бєлоха, Г. С. "Перетворювач частоти в системі генерування енергії вітроенергетичних установок." ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, no. 7 (263) (December 10, 2020): 35–39. http://dx.doi.org/10.33216/1998-7927-2020-263-7-35-39.

Full text
Abstract:
В останній час системи перетворення енергії вітру збільшують своє проникнення в електричні мережі в майже усі країни світу. Інтеграція енергії вітру в енергетичні системи спричиняє проблему з точки зору якості електроенергії. У статті розглянуто електричну систему у складі вітрогенераторних установок зі змінною швидкістю обертання ротора, щоб отримати максимальну потужність із вітру. Показано основні задачі керування вітрогенераторних установок то зони роботи вітряків. Приведено огляд перетворювачів частоти. Запропоновано перетворювач частоти (AC-DC-AC) з ланкою постійного струму. До його складу входять вхідний AC/DC перетворювач, система управління якого та регулятор швидкості генератора забезпечують оптимальну передачу енергії від вітрогенератора, і вихідний DC/AC перетворювача, виконаного на базі активного випрямляча. Між вхідним інвертором і активним випрямлячем знаходиться ланка постійної напруги (конденсатор). Система керування такого перетворювача релейна. Таке керування забезпечує з релейним керування, дозволяє забезпечити практично миттєву реакцію на відхилення від завдання. Точність відтворення (відстеження) сигналу завдання буде визначатися шириною петлі гістерезису релейних регуляторів. Таким чином забезпечується електромагнітна сумісність з мережею живлення. Представлено математичний опис електромагнітних процесів в активному випрямлячі та інверторі, які входять до складу перетворювача. За допомогою цифрового моделювання в програмі Matlab проведено дослідження режимів роботи (змінення напруги генератора, частоти струму генератора) та виконан аналіз струмів на вміст гармонік. Гармонійний аналіз показав, що запропонований перетворювач забезпечує хорошу якість споживаної енергії THD істотно менше 5% що задовольняє міжнародним стандартам на якість електроенергії.
APA, Harvard, Vancouver, ISO, and other styles
21

Базіло, Костянтин Вікторович, Віталій Володимирович Хлівний, and Юлія Юріївна Бондаренко. "МОДИФІКАЦІЯ ТА ПРАКТИЧНЕ ЗАСТОСУВАННЯ П’ЄЗОЕЛЕКТРИЧНИХ ПЕРЕТВОРЮВАЧІВ З РОЗДІЛЕНИМИ ЕЛЕКТРОДАМИ." Вісник Черкаського державного технологічного університету, no. 4 (March 15, 2021): 5–13. http://dx.doi.org/10.24025/2306-4412.4.2020.216483.

Full text
Abstract:
В роботі наводяться результати удосконалення технології формування струмопровідних електродів п’єзоелектричних елементів та розробка пристроїв з п’єзоелектричної кераміки з розділеними електродами методом, що базується на технології комбінованої електронно-променевої модифікації. Показано перспективу використання методу термовакуумного напилення при отриманні покриттів електродів на виробах з п’єзоелектричної кераміки сорту ЦТС. Особливістю такого комбінованого методу є здійснення його в одному технологічному циклі «термовакуумне осадження – електронно-променева модифікація покриття» за незмінних умов робочого середовища, що виключає утворення хімічних сполук в осаджуваному покритті на проміжному етапі формування наноструктурних утворень. Встановлено, що утворені за запропонованою технологією срібні покриття на п’єзоелектричних елементах є більш рівномірними та однорідними порівняно з покриттями, отриманими у традиційний (промисловий) спосіб. Як практичний результат реалізації запропонованої в статті технології розроблено конструкції пристроїв п’єзоелектроніки на основі елементів із п’єзоелектричної кераміки зі сформованими на їх поверхні розділеними електродами, зокрема багатосекційного п’єзоелектричного перетворювача. Найбільш цікавим у цьому випадку є те, що п’єзоелемент (пружне монолітне тверде тіло) може одночасно мати різні властивості внаслідок технологічних можливостей методу термовакуумного напилення. Зміна розмірів електродів, їх взаємне розташування дають змогу впливати на параметри вихідних сигналів і відкривають широкі можливості для створення п’єзоелектричних перетворювачів для комп’ютерних систем критичного застосування. Основна перевага використання перетворювачів з п’єзокерамічних матеріалів у комп’ютерних системах пов’язана з їх особливою конструкцією, що дає можливість реалізувати принципово різні схеми в одному такому елементі.
APA, Harvard, Vancouver, ISO, and other styles
22

Новіков, П. В., and О. Й. Штіфзон. "Аналіз стійкості системи керування на базі двоканального нечіткого регулятора." Automation of technological and business processes 12, no. 1 (March 30, 2020): 25–32. http://dx.doi.org/10.15673/atbp.v12i1.1700.

Full text
Abstract:
В статті розглянуто підхід аналізу стійкості нелінійної систем керування, що базується на нечіткій логіці. Метою статті є аналіз існуючих методів дослідження нелінійних інтелектуальних систем керування, що базуються на апараті теорії нечітких множин; розробка методики аналізу стійкості системи керування, що базується на двоканальному нечіткому регуляторі; дослідження стійкості системи автоматичного регулювання температурного режиму котлоагрегату ТЕС, побудованої на основі двоканального нечіткого регулятора. Проведено аналіз існуючих проблем і методів дослідження нечітких систем керування. Для нечітких регуляторів загальноприйнятих, універсальних методів перевірки стійкості не виявлено. Існуючі методи аналізу нечітких систем керування не надають обґрунтування стійкості, а лише забезпечують можливість перевірки працездатності за існуючих збурень, вихідних сигналів тощо. Для аналізу стійкості системи з двоканальним нечітким регулятором розроблено методику, що ґрунтується на приведенні нелінійної системи до еквівалентної адаптивної системи з підлаштуванням параметрів лінійного регулятора. Обґрунтовано можливість представлення схеми двоканального нечіткого регулятора як еквівалентної до адаптивного І- або ПІ-регулятора. Отримано аналітичні залежності між вихідними параметрами двоканального нечіткого регулятора і налаштуваннями ПІ-регулятора. Для всього діапазону зміни вхідних параметрів двоканального нечіткого регулятора згідно отриманих залежностей визначені комбінації налаштувань еквівалентного ПІ-регулятора. Розраховані запаси стійкості системи керування для всіх ділянок перехідного процесу системи регулювання температурного режиму прямоточного котлоагрегату в усьому діапазоні зміни навантаження енергоблоку. Визначені ділянки перехідного процесу, на яких система керування працює за межею стійкості, забезпечуючи при цьому збільшення швидкості реакції на збурення порівняно зі стандартним ПІД-регулятором з фіксованими налаштуваннями.
APA, Harvard, Vancouver, ISO, and other styles
23

Zinich, P. P., V. M. Pushkarev, M. Yu Bolgov, B. B. Guda, and V. V. Pushkarev. "Молекулярні механізми утворення метастазів. Маркери метастазування при карциномах щитоподібної залози (огляд літератури)." Endokrynologia 25, no. 3 (October 6, 2020): 227–42. http://dx.doi.org/10.31793/1680-1466.2020.25-3.227.

Full text
Abstract:
Метастази є причиною 90% смертей від солідних пухлин. Процес метастазування передбачає вихід ракових клітин із первинної пухлини, їх перехід у кровоносну, або іншу транспортну систему і, нарешті, колонізація та проліферація у віддаленому органі. В огляді описано процес розвитку метастатичної клітини, зумовлений генетичними, епігенетичними, позиційними змінами, сигналами оточуючих клітин. Під час епітеліально-мезенхімального переходу пухлинні клітини частково і тимчасово дедиференціюються, змінюють свою форму в бік неполяризованої, рухливої, веретеноподібної клітини. Цей перехід дає можливість налагодити експресію генів та придбати фенотип стовбурових клітин. Розглядаються також механізми мобільності та інвазивності пухлинних клітин, процеси інтравазації, транспортування, хомінгу. Значна увага приділена утворенню пре-метастатичної ніші, яка характеризується імуносупресією, запальними процесами, інтенсивним ангіогенезом, пермеабілізацією судин, активним лімфангіогенезом, специфічним органотропізмом та високою ефективністю перепрограмування. Детально проаналізований процес колонізації метастатичної ніші пухлинними клітинами, участь у ньому клітин імунної системи, інших клітин крові, прогеніторів кісткового мозку, екзосом, які утворюються в оточенні первинної пухлини, метаболічних ферментів та прозапальних цитокінів. Акцент зроблено на процес метастазування пухлин щитоподібної залози (ЩЗ). Наведені та проаналізовані основні маркери метастазування для карцином ЩЗ для всіх етапів метастатичного каскаду. Описані супресори метастазування, оцінений вплив мікрооточення пухлини, значення запальних процесів та інших патологій у виникненні і про-гресії карцином ЩЗ.
APA, Harvard, Vancouver, ISO, and other styles
24

Єршов, В., O. Ізвалов, С. Неділько, and В. Неділько. "Концепція систематизованого управління польотом безпілотних літальних апаратів." COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, no. 40 (September 19, 2020): 23–30. http://dx.doi.org/10.36910/6775-2524-0560-2020-40-04.

Full text
Abstract:
Розкрито концепцію систематизованого управління польотом безпілотних літальних апаратів. Визначено спектр оснащення безпілотних літальних апаратів різною технічною апаратурою. Зазначено, що управління польотом безпілотного літального апарату ґрунтується на формуванні єдиної системи взаємозв’зку всіх параметрів та датчиків. Кожен БПЛА в основі має певні контури управління, на кожен контур надходять параметри, що задаються і параметри з датчиків, встановлених на борту БПЛА, про поточний стан апарата. Схематично наведено контур управління кутовою стабілізацією безпілотного літального апарату. Описано структуру контуру управління орієнтацією безпілотного літального апарату. Контур складається з чотирьох блоків контролюючих крен, тангаж, рискання і висоту. Запропоновано структуру блоку «змішування» управління рухом безпілотного літального апарату, цей блок приймає команди корекції для крену, тангажу, рискання, висоти і «змішує» їх, відправляючи кожну поправку на правильний двигун. Окреслено блок динаміки двигуна безпілотного літального апарату, який обмежує вхідні команди від 0 до 100% дросельної заслінки, імітує поведінку обриву двигуна при дуже низькому дроселі і найбільш важливо застосовує лінійну залежність до сигналу відсотка дроселя, підкреслено, що вихід блоку – це число оборотів в хвилину для кожного двигуна в будь-який момент часу. Розроблено структурну схему безпілотного літального апарату. Для вирішення завдань систематизованого управління польотом безпілотних літальних апаратів обрана структура та описано обладнання, що входить у кожний рівень. Обґрунтовано аеродинамічний баланс безпілотного літального апарату, принцип його стабілізації полягає у збереженні постійного зчитування показань сенсорів і внесення відповідних змін до швидкості обертання кожного ротора. Управління безпілотним літальним апаратом здійснюється по 4-м осям: рисканню за курсом, крену щодо поздовжньої осі, тангажу, висоті польоту.
APA, Harvard, Vancouver, ISO, and other styles
25

Морозова, О. Г. "ОСНОВНІ НАПРЯМКИ АДАПТАЦІЇ ПІДПРИЄМСТВА ДО ЕКОНОМІЧНОГО ПРОСТОРУ В УМОВАХ ЕКОНОМІКИ ІНВЕРСІЙНОГО ТИПУ." Таврійський науковий вісник. Серія: Публічне управління та адміністрування, no. 3 (February 18, 2022): 71–76. http://dx.doi.org/10.32851/tnv-pub.2021.3.10.

Full text
Abstract:
Досліджено особливості ринкової модифікації підприємств і низку практичних рекомендацій щодо зростання ефективності їх функціонування на всіх рівнях господарювання. Головною метою дослідження є виявлення напрямків модифікації управління підприємством; визначення принципів, які є основою підприємства; системне узагальнення типових напрямків пристосування підприємства до економічного простору та його взаємодія з іншими суб’єктами в умовах економіки інверсійного типу. Визначено роль інформації як джерел зростання ефективності управління підприємством на всіх рівнях функціонування у бізнесі. Запропоновано теоретичні підходи до особливостей ринкової модифікації управління підприємством. Доведено, що зростання ефективності управління підприємством, вихід із системної кризи економіки залежить від раціональних відносин організацій, держави та світового співтовариства. В умовах економіки перехідного типу, де домінуючою є рекомбінована форма власності, цей принцип не реалізується. На сучасному етапі держава не може встановити контроль над фірмою, а фірма не має реальної економічної автономії. Перехід до інноваційної моделі взаємовідносин між підприємством і державою включає: створення алгоритму виведення підприємств із традиційного, застарілого економічного процесу; створення обмежених умов, які будуть спонукати до створення підприємств нового типу, а також усунення регламентацій, що заважають цьому процесу; скасування державних пільг для певних галузей; підвищення прозорості інформаційного змісту ринкових сигналів (цін) шляхом сприяння розвитку конкуренції на окремих ринках державної діяльності та викриття зловживання ринком; поліпшення організації управління державними корпоративними правами та громадського контролю за здійсненням цих дій. Запропоновані теоретичні підходи до особливостей модифікації управління підприємств в економіці перехідного типу може бути покладено в основу рекомендованого алгоритму щодо налагодження їх ефективного функціонування на всіх рівнях функціонування.
APA, Harvard, Vancouver, ISO, and other styles
26

Банга В.І., к.т.н., Крупич О.М., к.т.н. "10.36.910. МЕТОДИКА ЕКСПЕРИМЕНТАЛЬНИХ ДОСЛІДЖЕНЬ ВИМІРЮВАЧА МАСИ КОМБІКОРМУ В БУНКЕРІ ДОЗАТОРА." Перспективні технології та прилади, no. 14 (December 4, 2019): 31–37. http://dx.doi.org/10.36910/6775-2313-5352-2019-14-4.

Full text
Abstract:
У статті наведено огляд і аналіз вимірювачів мас кормів, схему системи вимірювання та загальний вигляд вимірювача маси комбікорму в бункері дозатора, передбачено наявність засобів для вимірювання, реєстрації та передачі інформації електричними сигналами біжучих значень маси комбікорму в бункері дозатора в динамічному режимі, відображення і зберігання інформації та контрольно-вимірювальні прилади. Подано експериментальну установку та методику експериментальних досліджень вимірювача маси комбікорму з використанням теорії багатофакторного планованого експерименту, наведено рівні варіювання факторів, матрицю плану експерименту, рівняння регресії для визначення вихідної напруги вимірювача маси комбікорму в бункері дозатора від зміни зусилля згинального моменту тензовимірювальної площини. Запропонована методика експериментальних досліджень вимірювача маси комбікорму в бункері дозатора з використанням теорії планованого експерименту дає змогу встановити оптимальні значення досліджуваних факторів (площу поперечного перерізу і довжину тензовимірювальної площини та величину згинального моменту тензовимірювальної площини), підвищити достовірність результатів експерименту. The article provides an overview and analysis of feed mass meters, a scheme of measurement systems and a general view of the mass of mixed feed in the hopper hopper, provides for the availability of means for measuring, recording and transmitting information by electric signals of running values ​​of the mass of mixed feed in the hopper of the dispenser in a dynamic mode, displaying and storing information and control devices. The experimental setting and the method of experimental studies of the mass of the mixed fodder meter using the theory of the multifactor planned experiment are given, the variance levels of the factors, the experiment plan matrix, the regression equation for determining the output voltage of the mass of the mixed fodder in the hopper of the dispenser from the change in the bending force of the tensile measuring plane are given. The proposed technique of experimental studies of the mass of a mixed fodder in a hopper of a dispenser using the theory of the planned experiment allows us to determine the optimal values ​​of the investigated factors (the area of ​​the cross section and the length of the tensiometric plane and the magnitude of the bending moment of the tensiometric plane), to increase the reliability of the experimental results.
APA, Harvard, Vancouver, ISO, and other styles
27

Гуржій, Андрій Миколайович, Валерій Яковлевич Жуйков, Анатолій Тимофійович Орлов, Віктор Михайлович Співак, Олександр Володимирович Богдан, Микола Іванович Шут, Людмила Юріївна Благодаренко, et al. "Викладання фізики з використанням вітчизняної електронної цифрової лабораторії, створеної на основі ІКТ." Theory and methods of e-learning 4 (February 17, 2014): 69–78. http://dx.doi.org/10.55056/e-learn.v4i1.372.

Full text
Abstract:
У зв’язку із загальною інформатизацією освіти і швидким розвитком цифрових засобів обробки інформації назріла необхідність впровадження в лабораторні практикуми вищих та середніх навчальних закладів цифрових засобів збору, обробки та оформлення експериментальних результатів, в тому числі під час виконання лабораторних робот з основ електротехнічних пристроїв та систем. При цьому надмірне захоплення віртуальними лабораторними роботами на основі комп’ютерного моделювання в порівнянні з реальним (натурним) експериментом може призводити до втрати особової орієнтації в технології освіти і відсутності надалі у випускників навчальних закладів ряду практичних навичок.У той же час світові компанії, що спеціалізуються в учбово-технічних засобах, переходять на випуск учбового устаткування, що узгоджується з комп’ютерною технікою: аналого-цифрових перетворювачів і датчиків фізико-хімічних величин, учбових приладів керованих цифро-аналоговими пристроями, автоматизованих учбово-експеримен­тальних комплексів, учбових експериментальних установок дистанційного доступу.У зв’язку із цим в області реального експерименту відбувається поступовий розвиток інформаційних джерел складної структури, до яких, у тому числі, відносяться комп’ютерні лабораторії, що останнім часом оформлюються у новий засіб реалізації учбового натурного експерименту – цифрові електронні лабораторії (ЦЕЛ).Відомі цифрові лабораторії для шкільних курсів фізики, хімії та біології (найбільш розповсюджені компаній Vernier Software & Technology, USA та Fourier Systems Inc., Israel) можуть бути використані у ВНЗ України, але вони мають обмежений набір датчиків, необхідність періодичного ручного калібрування, використовують застарілий та чутливий до електромагнітних завад аналоговий інтерфейс та спрощене програмне забезпечення, що не дозволяє проводити статистичну обробку результатів експерименту та з урахуванням низької розрядності аналого-цифрових перетворювачів не може використовуватись для проведення науково-дослідних робіт у вищих навчальних закладах, що є однією із складових підготовки висококваліфікованих спеціалістів, особливо в університетах, які мають статус дослідницьких.Із вітчизняних аналогів відомі окремі компоненти цифрових лабораторій, що випускаються ТОВ «фірма «ІТМ» м. Харків. Вони поступаються продукції компаній Vernier Software & Technology, USA та Fourier Systems Inc. та мають близькі цінові характеристики на окремі компоненти. Тому необхідність розробки вітчизняної цифрової навчальної лабораторії є нагальною, проблематика досліджень та предмет розробки актуальні.Метою проекту є створення сучасної вітчизняної цифрової електронної лабораторії та відпрацювання рекомендацій по використанню у викладанні на її основі базового переліку науково-природничих та біомедичних дисциплін у ВНЗ I-IV рівнів акредитації при значному зменшенні витрат на закупку приладів, комп’ютерної техніки та навчального-методичного забезпечення. В роботі використані попередні дослідження НДІ Прикладної електроніки НТУУ «КПІ» в галузі МЕМС-технологій (micro-electro-mechanical) при створенні датчиків фізичних величин, виконано огляд технічних та методичних рішень, на яких базуються існуючі навчальні цифрові лабораторії та датчики, розроблені схемотехнічні рішення датчиків фізичних величин, проведено конструювання МЕМС – первинних перетворювачів, та пристроїв реєстрації інформації. Розроблені прикладні програми інтерфейсу пристроїв збору інформації та вбудованих мікроконтролерів датчиків. Сформульовані вихідні дані для розробки бездротового інтерфейсу датчиків та програмного забезпечення цифрової лабораторії.Таким чином, у даній роботі пропонується нова вітчизняна цифрова електронна лабораторія, що складається з конструкторської документації та дослідних зразків обладнання, програмного забезпечення та розробленого єдиного підходу до складання навчальних методик для цифрових лабораторій, проведення лабораторних практикумів з метою економії коштів під час створення нових лабораторних робіт із реєстрацією даних, обробки результатів вимірювань та оформленням результатів експерименту за допомогою комп’ютерної техніки.Цифрова електронна лабораторія складається із таких складових частин: набірного поля (НП); комплектів модулів (М) із стандартизованим вихідним інтерфейсом, з яких складається лабораторний макет для досліджування об’єкту (це – набір електронних елементів: резисторів, ємностей, котушок індуктивності, цифро-аналогових та аналого-цифрових перетворювачів (ЦАП та АЦП відповідно)) та різноманітних датчиків фізичних величин; комп’ютерів студента (планшетного комп’ютера або спеціалізованого комп’ютера) з інтерфейсами для датчиків; багатовходових пристроїв збору даних та їх перетворення у вигляд, узгоджений з інтерфейсом комп’ютера (реєстратор інформації або Data Logger); комп’ютер викладача (або серверний комп’ютер із спеціалізованим програмним забезпеченням); пристрої зворотного зв’язку (актюатори), що керуються комп’ютером; трансивери для бездротового прийому та передачі інформації з НП.Таким чином, з’являється новий клас бездротових мереж малої дальності. Ці мережі мають ряд особливостей. Пристрої, що входять в ці мережі, мають невеликі розміри і живляться в основному від батарей. Ці мережі є Ad-Hoc мережами – високоспеціалізованими мережами з динамічною зміною кількісного складу мережі. У зв’язку з цим виникають завдання створення та функціонування даних мереж – організація додавання і видалення пристроїв, аутентифікація пристроїв, ефективна маршрутизація, безпека даних, що передаються, «живучість» мережі, продовження часу автономної роботи кінцевих пристроїв.Протокол ZigBee визначає характер роботи мережі датчиків. Пристрої утворюють ієрархічну мережу, яка може містити координатор, маршрутизатори і кінцеві пристрої. Коренем мережі являється координатор ZigBee. Маршрутизатори можуть враховувати ієрархію, можлива також оптимізація інформаційних потоків. Координатор ZigBee визначає мережу і встановлює для неї оптимальні параметри. Маршрутизатори ZigBee підключаються до мережі або через координатор ZigBee, або через інші маршрутизатори, які вже входять у мережу. Кінцеві пристрої можуть з’єднуватися з довільним маршрутизатором ZigBee або координатором ZigBee. По замовчуванню трафік повідомлень розповсюджується по вітках ієрархії. Якщо маршрутизатори мають відповідні можливості, вони можуть визначати оптимізовані маршрути до визначеної точки і зберігати їх для подальшого використання в таблицях маршрутизації.В основі будь-якого елементу для мережі ZigBee лежить трансивер. Активно розробляються різного роду трансивери та мікроконтролери, в які потім завантажується ряд керуючих програм (стек протоколів ZigBee). Так як розробки ведуться багатьма компаніями, то розглянемо та порівняємо новинки трансиверів тільки кількох виробників: СС2530 (Texas Instruments), AT86RF212 (Atmel), MRF24J40 (Microchip).Texas Instruments випускає широкий асортимент трансиверів. Основні з них: CC2480, СС2420, CC2430, CC2431, CC2520, CC2591. Всі вони відрізняються за характеристиками та якісними показниками. Новинка від TI – мікросхема СС2530, що підтримує стандарт IEEE 802.15.4, призначена для організації мереж стандарту ZigBee Pro, а також засобів дистанційного керування на базі ZigBee RF4CE і обладнання стандарту Smart Energy. ІС СС2530 об’єднує в одному кристалі РЧ-трансивер і мікроконтролер, ядро якого сумісне зі стандартним ядром 8051 і відрізняється від нього поліпшеною швидкодією. ІС випускається в чотирьох виконаннях CC2530F32/64/128/256, що розрізняються обсягом флеш-пам’яті – 32/64/128/256 Кбайт, відповідно. В усьому іншому всі ІС ідентичні: вони поставляються в мініатюрному RoHS-сумісному корпусі QFN40 розмірами 6×6 мм і мають однакові робочі характеристики. СС2530 являє собою істотно покращений варіант мікросхеми СС2430. З точки зору технічних параметрів і функціональних можливостей мікросхема СС2530 перевершує або не поступається CC2430. Однак через підвищену вихідну потужність (4,5 дБм) незначно виріс струм споживання (з 27 до 34 мА) при передачі. Крім того, ці мікросхеми мають різні корпуси і кількість виводів (рис. 1). Рис. 1. Трансивери СС2530, СС2430 та СС2520 фірми Texas Instruments AT86RF212 – малопотужний і низьковольтний РЧ-трансивер діапазону 800/900 МГц, який спеціально розроблений для недорогих IEEE 802.15.4 ZigBee-сумісних пристроїв, а також для ISM-пристроїв з підвищеними швидкостями передачі даних. Працюючи в діапазонах частот менше 1 ГГц, він підтримує передачу даних на малих швидкостях (20 і 40 Кбіт/с) за стандартом IEEE 802.15.4-2003, а також має опціональну можливість передачі на підвищених швидкостях (100 і 250 Кбіт/с) при використанні модуляції O-QPSK у відповідності зі стандартом IEEE 802.15.4-2006. Більше того, при використанні спеціальних високошвидкісних режимів, можлива передача на швидкості до 1000 Кбіт/с. AT86RF212 можна вважати функціональним блоком, який з’єднує антену з інтерфейсом SPI. Всі критичні для РЧ тракту компоненти, за винятком антени, кварцового резонатора і блокувальних конденсаторів, інтегровані в ІС. Для поліпшення загальносистемної енергоефективності та розвантаження керуючого мікроконтролера в ІС інтегровані прискорювачі мережевих протоколів (MAC) і AES- шифрування.Компанія Microchip Technology виробляє 8-, 16- і 32- розрядні мікроконтролери та цифрові сигнальні контролери, а також аналогові мікросхеми і мікросхеми Flash-пам’яті. На даний момент фірма випускає передавачі, приймачі та трансивери для реалізації рішень для IEEE 802.15.4/ZigBee, IEEE 802.11/Wi-Fi, а також субгігагерцового ISM-діапазону. Наявність у «портфелі» компанії PIC-мікроконтролерів, аналогових мікросхем і мікросхем пам’яті дозволяє їй запропонувати клієнтам комплексні рішення для бездротових рішень. MRF24J40 – однокристальний приймач, що відповідає стандарту IEEE 802.15.4 для бездротових рішень ISM-діапазону 2,405–2,48 ГГц. Цей трансивер містить фізичний (PHY) і MAC-функціонал. Разом з мікроспоживаючими PIC-мікроконтролерами і готовими стеками MiWi і ZigBee трансивер дозволяє реалізувати як прості (на базі стека MiWi), так і складніші (сертифіковані для роботи в мережах ZigBee) персональні бездротові мережі (Wireless Personal Area Network, WPAN) для портативних пристроїв з батарейним живленням. Наявність MAC-рівня допомагає зменшити навантаження на керуючий мікроконтролер і дозволяє використовувати недорогі 8-розрядні мікроконтролери для побудови радіомереж.Ряд компаній випускає завершені модулі ZigBee (рис. 2). Це невеликі плати (2÷5 кв.см.), на яких встановлено чіп трансивера, керуючий мікроконтролер і необхідні дискретні елементи. У керуючий мікроконтролер, у залежності від бажання і можливості виробника закладається або повний стек протоколів ZigBee, або інша програма, що реалізує можливість простого зв’язку між однотипними модулями. В останньому випадку модулі іменуються ZigBee-готовими (ZigBee-ready) або ZigBee-сумісними (ZigBee compliant).Всі модулі дуже прості в застосуванні – вони містять широко поширені інтерфейси (UART, SPI) і управляються за допомогою невеликого набору нескладних команд. Застосовуючи такі модулі, розробник позбавлений від роботи з високочастотними компонентами, так як на платі присутній ВЧ трансивер, вся необхідна «обв’язка» і антена. Модулі містять цифрові й аналогові входи, інтерфейс RS-232 і, в деяких випадках, вільну пам’ять для прикладного програмного забезпечення. Рис. 2. Модуль ZigBee із трансивером MRF24J40 компанії Microchip Для прикладу, компанія Jennic випускає лінійку ZigBee-сумісних радіомодулів, побудованих на низькоспоживаючому бездротовому мікроконтролері JN5121. Застосування радіомодуля значно полегшує процес розробки ZigBee-мережі, звільняючи розробника від необхідності конструювання високочастотної частини виробу. Використовуючи готовий радіомодуль, розробник отримує доступ до всіх аналогових і цифрових портів вводу-виводу чіпу JN5121, таймерам, послідовного порту і інших послідовних інтерфейсів. У серію входять модулі з керамічної антеною або SMA-коннектором з дальністю зв’язку до 200 метрів. Розмір модуля 18×30 мм. Версія модуля з підсилювачем потужності і підсилювачем вхідного сигналу має розмір 18×40 мм і забезпечує дальність зв’язку більше 1 км. Кожен модуль поставляється з вбудованим стеком протоколу рівня 802.15.4 MAC або ZigBee-стеком.За висновками експертів з аналізу ринку сьогодні одним з найперспективніших є ринок мікросистемних технологій, що сягнув 40 млрд. доларів станом на 2006 рік зі значними показниками росту. Самі мікросистемні технології (МСТ) почали розвиватися ще з середини ХХ ст. і, отримуючи щоразу нові поштовхи з боку нових винаходів, чергових удосконалень технологій, нових галузей науки та техніки, динамічно розвиваються і дедалі ширше застосовуються у широкому спектрі промислової продукції у всьому світі.Прилад МЕМС є об’єднанням електричних та механічних елементів в одну систему дуже мініатюрних розмірів (значення розмірів механічних елементів найчастіше лежать у мікронному діапазоні), і достатньо часто такий прилад містить мікрокомп’ютерну схему керування для здійснення запрограмованих дій у системі та обміну інформацією з іншими приладами та системами.Навіть з побіжного аналізу структури МЕМС зрозуміло, що сумарний технологічний процес є дуже складним і тривалим. Так, залежно від складності пристрою технологічний процес його виготовлення, навіть із застосуванням сучасних технологій, може тривати від кількох днів до кількох десятків днів. Попри саме виготовлення, доволі тривалими є перевірка та відбраковування. Часто виготовляється відразу партія однотипних пристроїв, причому вихід якісної продукції часто не перевищує 2 %.Для виготовлення сучасних МЕМС використовується широка гама матеріалів: різноманітні метали у чистому вигляді та у сплавах, неметали, мінеральні сполуки та органічні матеріали. Звичайно, намагаються використовувати якомога меншу кількість різнорідних матеріалів, щоби покращити технологічність МЕМС та знизити собівартість продукції. Тому розширення спектра матеріалів прийнятне лише за наявності специфічних вимог до елементів пристрою.Спектр наявних типів сенсорів в арсеналі конструктора значно ширший та різноманітніший, що зумовлено багатоплановим застосуванням МЕМС. Переважно використовуються ємнісні, п’єзоелектричні, тензорезистивні, терморезистивні, фотоелектричні сенсори, сенсори на ефекті Холла тощо. Розроблені авторами в НДІ Прикладної електроніки МЕМС-датчики, їх характеристики, маса та розміри наведені у табл. 1.Таблиця 1 №з/пМЕМС-датчикиТипи датчиківДіапазони вимірюваньГабарити, маса1.Відносного тиску, тензорезистивніДВТ-060ДВТ-1160,01–300 МПа∅3,5–36 мм,5–130 г2.Абсолютного тиску,тензорезистивніДАТ-0220,01–60 МПа∅16 мм,20–50 г3.Абсолютного тиску, ємнісніДАТЄ-0090,05–1 МПа5×5 мм4.Лінійного прискорення,тензорезистивніДЛП-077±(500–100 000) м/с224×24×8 мм,100 г5.Лінійного прискорення,ємнісніАЛЄ-049АЛЄ-050±(5,6–1200) м/с235×35×22 мм, 75 г6.Кутової швидкості,ємнісніДКШ-011100–1000 °/с
APA, Harvard, Vancouver, ISO, and other styles
28

Воронкін, Олексій Сергійович. "Конективізм і масові відкриті дистанційні курси." Theory and methods of e-learning 4 (February 13, 2014): 30–39. http://dx.doi.org/10.55056/e-learn.v4i1.366.

Full text
Abstract:
Вступ. Останнім часом теорія складних мереж стала ефективним інструментом дослідження складних структур: технологічних (наприклад, Інтернет-мережа, www, транспортні мережі), соціальних (мережі співробітництва, мережі мобільного телефонного зв’язку), біологічних (екологічні мережі, функціональні мережі мозку, мережі білкових взаємодій) [1]. Вузли в таких мережах – це елементи складних систем, а зв’язки між вузлами – взаємодії між елементами.Web 2.0 дозволив створити навчальні системи, засновані на принципах, так званої, кібернетики другого порядку. Учень тепер став активним елементом системи, яка не тільки контролює й направляє його діяльність, але й дозволяє своєю думкою впливати на функціонування й наповнення самої системи. Такий підхід є основою для виникнення системних ефектів [2].Дж. Сіменс і С. Даунс у власній теорії конективізму багато в чому продовжують ідеї, висловлені німецьким філософом В. Флуссером. У рамках конективізму, навчання – це процес створення мережі. Вузлами можуть бути люди, організації, бібліотеки, web-сайти, книги, журнали, бази даних або будь-яке інше джерело інформації. Сукупність зв’язаних вузлів стає мережею. Мережі можуть поєднуватися між собою. Кожний вузол у мережі може бути мережею більш низького рівня. Вузли, що втратили актуальність і цінність поступово зникають. Комплекси вузлів збуджують або гальмують один одного й у результаті їхнього взаємозв’язку утворюється блок. Збуджуючий або гальмуючий вплив один на одного можуть чинити й блоки – групи вузлів, кожен з яких видає власний загальний вихідний сигнал, що відповідає результуючій вазі всіх вхідних сигналів, отриманих від інших вузлів. Блоки організовані ієрархічно. Оскільки величезна кількість вузлів функціонує одночасно й на різних рівнях організації, обробка носить паралельний характер. Утворюючи персональну навчальну мережу, в мозкових структурах слухача згідно конекціонізму формується нейронна мережа.Конективізм і масові відкриті дистанційні курси. Застосування ідей конективізму знайшло відображення у практиці масових відкритих дистанційних курсів (МВДК), які останнім часом досить широко використовуються у закордонній педагогічній діяльності.З метою вивчення тенденцій розвитку МВДК в листопаді 2012 року автором було проведено дослідження «Конективізм і масові відкриті дистанційні курси» [3]. У результаті Інтернет-анкетування було опитано 62 респондента з України, Росії, Білорусії, Азербайджану, Грузії, Лівану та Німеччини (рис. 1). Переважну кількість учасників опитування (77 %) склали викладачі й наукові співробітники, 8 % – керівники відділів освітніх установ, 5 % – аспіранти (рис. 2). Враховуючи те, що були задіяні респонденти зайняті в сфері дистанційної освіти, можна говорити про високу вірогідність відомостей, отриманих у ході дослідження (випадково опинилися на сайті з опитуванням лише 2% учасників). а бРис. 1. Розподіл учасників: а – за країнами, б – за віком При перебуванні в Інтернет-мережі переважна більшість опитаних витрачає значну долю свого часу на пошук інформації (92 %), а вже потім на навчання й спілкування (рис. 3). Рис. 2. Склад вибіркової сукупностіРис. 3. Розподіл витрат часу учасників при перебуванні в Інтернет Особливістю отриманих результатів є те, що 71 % респондентів не вважають конективізм повноцінною (самостійною) теорією навчання, з них 45 % відносять конективізм до різновиду неформального навчання, що реалізується в контексті концепції освіти впродовж всього життя, 18% вважають конективізм педагогічною ідеєю (рис. 4). Рис. 4. Чи можна вважати конективізм повноцінною теорією навчання 60 % респондентів приймали участь у МВДК, з них 40 % задоволені результатами свого навчання, 18 % не можуть оцінити результат, а 2 % залишилися розчарованими (рис. 5).76 % вважають, що ідеї конективізму сприяють підвищенню ефективності навчальної діяльності (рис. 6). Рис. 5. Задоволеність від власної участі в МВДКРис. 6. Чи сприяють конективістські ідеї підвищенню рівня ефективності навчальної діяльності 40 % вважають, що найголовніше у МВДК – це уміння працювати в співробітництві, 32 % вважають, що найголовнішим є вміння самостійно організовувати та проводити такі курси, 24 % вважають, що МВДК – це засіб для апробацій положень конективізму (рис. 7).На питання, чи можливо отримати реальні знання при навчанні у МВДК думки учасників розділилися майже порівну: 52 % вважають, що це цілком можливо, а 42 % вважають, що отримані знання можуть бути тільки фрагментарними (рис. 8). Рис. 7. Найважливіше при навчанні в МВДК Рис. 8. Чи можливо отримати реальні знання при навчанні в МВДК Понад 50 % вважають, що велику кількість учасників МВДК можна пояснити нульовою ціною та відсутністю зобов’язань сторін (рис. 9).До основних переваг процесу навчання у масових відкритих дистанційних курсах учасники віднесли:відсутність вікових, територіальних, освітніх і професійних обмежень,відкритість і безкоштовність, гнучкість навчання,отримання нової інформації безпосередньо від фахівців предметної області,самомотивація та самоорганізація слухачів,обмін досвідом і колективна робота у співробітництві,формування умов взаємного навчання в спілкуванні,охоплення широкої (масової) аудиторії,пряме використання всіх переваг комп’ютерної підтримки навчального процесу (від електронних підручників до віртуальних середовищ),процес участі й навчання в МВДК допускає обмін не тільки інформацією, але й, що особливо цінно, напрямами її пошуку,розширення персональної навчальної мережі,можливість неформального підвищення знань,можливість оцінювання робіт інших слухачів курсу,використання в курсах різноманітного навчального контенту (текстова, аудіо-, відео- і графічна інформація), а також форумів і блогів,основний інформаційний матеріал знаходиться поза сайтом курсу. Рис. 9. Чи можна пояснити ріст числа учасників МВДК тільки нульовою ціною та відсутністю зобов’язань сторін До основних недоліків процесу навчання в масових відкритих дистанційних курсах учасники віднесли:відсутність особистого контакту конкретного слухача й педагога, як наслідок, довіри (міжособистісне телекомунікаційне спілкування в силу свого опосередкованого характеру не здатне (з ряду причин технічного, економічного й психологічного плану) повною мірою заповнити відсутність безпосереднього спілкування),використовування різних платформ,високі вимоги до професіоналізму викладачів (тьюторів),надлишок та хаотичність навчальної інформації,відсутність у слухачів навичок самоосвіти, фільтрації й взаємодії,неможливість проконтролювати автора виконаних робіт (ідентифікації),обмежений адміністративний вплив з боку викладача,не вміння спілкуватися інформативно й результативно (закритість вітчизняних викладачів),трудомісткий і тривалий процес розробки навчального курсу (контенту), його супроводу і консультація великої кількості слухачів,технічні проблеми забезпечення практичних (лабораторних) занять,труднощі моніторингу процесу підготовки слухача,необхідність достатньої сформованості мотивації навчання (актуально для молодших за віком і менш критично для дорослих слухачів),імовірність появи технічних проблем доступу до курсів,обмежений зворотний зв’язок з педагогом (тьютором),більшість МВДК на сьогодні розраховані на можливості техніки, а не на людину як індивіда,недостатня кількість часу на обробку всіх наявних навчальних матеріалів,кожний учасник самостійно регулює свою діяльність в курсі.Проблеми конективізму як теорії навчання. Із результатів дослідження зрозуміло, що комплекс ідей конективізму навряд чи можна вважати повноцінною (самостійною) теорією навчання, скоріше це один із різновидів неформального навчання в рамках концепції освіти впродовж всього життя. Розглянемо деякі положення [4].I. Слухач сам установлює мету навчання, читає тільки той матеріал, що йому доступний і подобаєтьсяПринципи автодидактики розроблені В. О. Курінським в рамках т. з. «постпсихології» [5]. Як визначає сам автор, «автодидактикою здавна називають самонавчання. Нікому з нас не вдається її уникнути – всім доводиться доходити до чогось самостійно, розраховуючи на свої власні сили. У кінцевому рахунку, в яких би вчителів ми ні вчилися, ми перш за все учні самих себе».Із 8 правил, сформульованих В. О. Курінським, наведемо деякі загальні положення:а) необхідно робити тільки те, що викликає інтерес (спочатку треба створити актуалізацію інтересу). Інтерес створюється не з якогось зовнішнього матеріалу, а в нас самих, коли ми перемикаємо свою увагу з однієї частини предмета або тексту – на іншу;б) не слід намагатися все запам’ятовувати одразу (але треба намагатися, щоб сприйняття було як можна повнішим). Треба управляти своєю увагою;в) не слід прагнути повного засвоєння матеріалу;г) треба прагнути до самоспостереження. Людина обов’язково повинна стежити за тим, як ставляться до її вчинків інші люди (результати спостереження свого внутрішнього стану і того, що думають інші доповнюють один одного);д) незасвоєння попереднього матеріалу не є причиною того, щоб не ознайомитися з матеріалом наступним.II. Знання перебувають у співтовариствах і комп’ютерних мережахНа нашу думку, тут відбувається деяка підміна понять, адже в комп’ютерних мережах розміщені дані. А чи стануть вони знаннями? Можуть стати, але в результаті перетворення й аналізу цих даних при вирішенні конкретних завдань. Ми можемо прослухати передачу (лекцію) на незнайомій для нас мові, при цьому одержимо дані, але не інформацію (і відповідно не знання). Ми можемо записати ці дані на компакт-диск – зміниться форма подання даних, відбудеться нова реєстрація, а відповідно сформуються й нові дані.Д. Вайнбергер зазначає: «Коли знання стає мережевим, самий розумний у кімнаті вже не лектор, що виступає перед слухачами, і навіть не колективний розум всіх присутніх. Сама розумна людина в кімнаті – це сама кімната, тобто мережа, утворена із зв’язків між людьми та їхніми ідеями, які, у свою чергу, пов’язані з тим, що перебуває за межами кімнати. Це зовсім не означає, що мережа стає наділеною інтелектом. Однак знання стають буквально немислимими без мережі, яка їх забезпечує…» [6].Отже, потенційні знання є технічним і технологічним заручником (програмно-апаратна й ментальна складові). Згідно принципу канадського філософа М. Маклюена, «засіб передачі повідомлення і є зміст повідомлення»: для того, щоб зрозуміти зміст повідомлення, необхідно розуміти, як саме влаштований інформаційний канал, по якому надходить повідомлення та як специфіка цього каналу впливає на саму інформацію.III. Акт навчання полягає у створенні зовнішньої мережі вузлів, які слухачі підключають у формі джерел інформації й знаньЧи може підключення до джерела інформації структурувати та сформувати знання учня? Очевидно, що це тільки елемент процесу навчання – можна підключитися до будь-яких потенційних джерел інформації, але не аналізувати і не обробляти їх у подальшому. На нашу думку, інтерес представляє застосування поняття цінності створюваної слухачем мережі.Ще на початку XX століття на можливість кількісної оцінки цінності соціальної мережі звернув увагу Д. А. Сарнов, який показав, що цінність радіо- або телевіщальної мережі зростає пропорційно кількості глядачів (слухачів) n. Дійсно цінність мережі тим вище, чим вище число її елементів (вузлів). Пізніше Р. Меткалф звернув увагу на те, що цінність всієї системи зростає навіть швидше, ніж число її елементів n. Адже кожен елемент мережі може бути з’єднаний з n−1 іншими елементами, і, таким чином, цінність для нього пропорційна n−1. Оскільки в мережі всього n елементів, то цінність всієї мережі пропорційна n(n−1).На основі цього закону Д. Рід сформулював закон для мереж, які утворюють групи. Цінність такої мережі пропорційна 2n−n−1, що визначається числом підмножин (груп) множини з n агентів за винятком одиночних елементів і порожньої множини. Закон Ріда виражає зв’язок між обчислювальними та соціальними мережами. Коли мережа віщає щось людям, цінність її послуг зростає лінійно. Коли ж мережа дає можливість окремим вузлам вступати в контакт один з одним, цінність зростає у квадратичній залежності. А коли та ж сама мережа має у своєму розпорядженні засоби для створення її учасникам груп, цінність зростає експоненціально.У роботі [7] пропонується оцінювати ріст цінності логарифмічно – nln(n) (закон Ципфа). Головний аргумент на користь цього закону полягає в тому, що на відміну від перших трьох законів, тут ранжуються цінності зв’язків. Якщо для довільного агента соціальної мережі, створеної з n елементів, зв’язки з іншими n−1 агентами мають цінності від 1 до 1/(n–1), то внесок цього агента в загальну цінність мережі становить (для великого n): Підсумувавши за всіма агентами, одержимо повну цінність мережі порядку nln(n).Однак, цінність соціальної мережі як величина, що залежить від потенційних зв’язків всіх агентів, очевидно має зростати зі збільшенням кількості можливих конфігурацій (потенційних можливостей) цих зв’язків у мережі. У роботі [8] показано, що для великої кількості агентів n цінність соціальної мережі (у якості ентропії) може бути визначена якВисновкиУ конективізмі зв’язки повинні формуватися природно (через процес асоціацій). Очевидно, що це можливо тільки в контексті розвитку безперервної освіти і навчання протягом всього життя. Це не просто «передача знань» («побудова знань»), притаманна сьогоднішньому програмованому навчанню, тут навчання більш схоже на розвиток особистості. Як писав В. Ф. Турчин: «Коли навчається людина, вона сам йде назустріч навчанню. Не тому, що вона знає, що “вчитися корисно». Дитина цього не знає, але навчається найбільш легко й активно. Асоціації утворюються в неї «просто так», без усякого підкріплення. Це працює механізм управління асоціюванням, що вимагає собі їжі. Якщо її не має, людині стає нудно, а це негативна емоція. Учителеві немає потреби нав’язувати що-небудь дитині або людині взагалі, його завдання лише в тому, щоб дати їжу її уяві. Одержуючи цю їжу, людина зазнає насолоди. Таким чином, вона завжди вчиться сама, зсередини. Це активний, творчий процес» [9].Головна роль у конективізмі приділяється самому учню – саме він повинен прагнути здобувати нові знання постійно, створювати й використовувати персональну навчальну мережу, розрізняти головну інформацію від другорядної та псевдонаучної, оцінювати отримані знання й т. д. Виникла нова проблема – маючи можливість використати нові засоби для навчання, людина може виявитися просто не здатною ними скористатися (проблема інформаційної компетентності, проблема інформаційного вибуху). У свою чергу педагог (тьютор) повинен мати певні навички по створенню й підготовці навчальних матеріалів та їхньому використанню в дистанційних курсах.На сучасному етапі конективізм як повноцінна теорія навчання вивчений недостатньо. Крім того нормативно-правова база орієнтована тільки на традиційні форми навчання. Проте, позитивно, що знання у цьому підході порівнюються не тільки із структурою, а і з процесом. Прояв гнучкості в навчанні й оцінюванні, а також розвиток міжпредметних зв’язків із «інформаційного хаосу» безсумнівно дозволяє активізувати різні форми інтелекту учнів.
APA, Harvard, Vancouver, ISO, and other styles
29

Галущак, Мар’ян Олексійович. "Вища освіта в Україні та шляхи її вдосконалення: фундаментальна підготовка в технічному університеті." Theory and methods of learning fundamental disciplines in high school 1 (March 28, 2014): 86–91. http://dx.doi.org/10.55056/fund.v1i1.408.

Full text
Abstract:
Реформа системи вищої освіти завдяки цілеспрямованій праці Міністерства освіти і науки та вузів дала позитивні результати, але ще не вирішила головного завдання – підвищення якості підготовки спеціалістів, які потрібні державі і суспільству для творчої професійної діяльності в період науково-технічного прогресу людства і ринкових відносин.Головною причиною цього, на мій погляд, є те, що розвиток системи освіти тісно пов’язаний з економічними проблемами держави та національними особливостями суспільства, а ми намагаємось розв’язати освітянські проблеми за іноземним зразком, забуваючи що, наприклад, в Америці, звідки взято найбільше запозичень, цивілізована ринкова економіка, в якій визначальними є закони та справа. В них життєвий успіх спеціаліста визначається рівнем його підготовки у вузі, а недоукам не дають роботи на власних фірмах навіть батьки. У нас життєвий успіх спеціаліста у великій мірі залежить від зв’язків, причому ця “хвороба” так укоренилася, що сприймається за нормальні речі. Дане явище потрібно якнайшвидше ліквідувати, бо воно сильно гальмує прогресивний розвиток.В порівнянні з економікою передових капіталістичних держав, економіка України має інші проблеми. Там її основою є новітні технології з використанням сучасної техніки і головним для них є знайти ринки збуту для конкурентноспроможної продукції. В нас же головною проблемою є необхідність технічного переозброєння більшості галузей промисловості і сільського господарства, тому що на одиницю продукції (в більшості низької якості) відносно світових показників набагато вищі витрати енергоносіїв та сировини.Зрозуміло, що ці проблеми можуть успішно вирішувати спеціалісти високої кваліфікації, які підготовлені до творчої професійної діяльності по створенню ефективних технологій та машин для їх реалізації. Рівень кваліфікації спеціаліста будь-якого профілю, а особливо це стосується підготовки сучасних інженерів, залежить від рівня його базової фундаментальної підготовки, яка є наріжним каменем технічної освіти. За всіх часів дана теза була постулатом і ніким не спростовувалась. Тим більш вражаючим є той факт, що роль фундаментальних дисциплін в навчальному процесі постійно знижується. Щоб переконатися в цьому, достатньо порівняти обсяги годин, що відводяться на їх викладання в недалекому минулому з нинішніми. Але ж ми хочемо, щоб наші випускники мали рівень кваліфікації не нижчий за рівень спеціалістів, що випускають кращі закордонні вузи!Проведений порівняльний аналіз навчального навантаження з математики, фізики і хімії для різних напрямків підготовки у нас і в деяких закордонних вузах також засвідчує, що питома вага майже з усіх фундаментальних дисциплін в них приблизно в два рази більша, ніж у нас. Деякі відхилення маємо в Краківській гірничій академії, але в Польщі зовсім інша система середньої освіти. В них дванадцятирічна середня освіта, причому в технічних ліцеях чи гімназіях, наприклад, учні вже вивчили матаналіз, який в нас студенти вивчають протягом першого курсу. Крім цього, в них має місце тісний зв’язок фундаментальних дисциплін з майбутньою професією. В австрійських і німецьких вузах, наприклад, назва дисциплін звучить так: математика для машинобудівників, чи електриків, чи економістів. Точно так само і фізика та хімія читаються відповідно до обраної спеціальності. Тут, на мою думку, йдеться про питання державної ваги і його треба вирішувати на відповідному рівні. Не принижуючи значення інших наук, необхідно все ж наголосити, що саме фундаментальні дисципліни формують основи наукового світогляду кожної людини, саме фізика, хімія і математика складають основу науково-технічного прогресу людства.Також треба визнати, що у справу погіршення фундаментальної освіти значний “внесок” робить і середня школа, в якій рівень знань учнів, наприклад, з фізики і хімії, вже опускається до критичної межі. Одним із каталізаторів такого становища стала відміна вступного іспиту з фізики на переважну більшість факультетів багатьох технічних університетів. Цей сигнал чітко зрозуміли вчителі, учні і їхні батьки. В результаті вузівські викладачі, а пізніше і викладачі інших технічних дисциплін, в розпачі від низького рівня знань фундаментальних дисциплін своїх студентів. Вони за перші семестри намагаються ліквідувати прогалини шкільної освіти, але це, як правило, не вдається. Пізніше такі студенти отримують дипломи інженерів, деякі вступають до аспірантури та стають викладачами, тобто колесо виродження все більше розкручується. Те, що в даний час відбувається із шкільними і вузівськими програмами фундаментальних дисциплін, є копіюванням нашою освітою чужих методик і ідей. Але саме наші спеціалісти, які навчались математики, фізики і хімії за традиційними програмами, є бажаними в різних зарубіжних наукових центрах, які працюють в галузі фізики плазми, твердого тіла, квантової електроніки, тощо. Тому не варто відкидати те позитивне, що напрацьовано десятиріччями і яке давало нам Нобелівських лауреатів та здобутки світового рівня у різних областях знань, технологій і техніки.Треба відзначити, що одне із найгостріших питань, які обговорювались на загальних зборах Відділення фізики і астрономії НАН України – низький рівень освіти з фізики у школах і вузах країни. До Президента України і уряду відповідне звернення підписали сорок дійсних членів та членів-кореспондентів НАН України. Як же покращити фундаментальну підготовку фахівців? Відомо, що тепер вузи мають значні автономні права і варто ними скористатися, не чекаючи рішень “згори”. В нашому національному університеті нафти і газу завдяки правильному розумінню ситуації з боку ректора, відомого у світі вченого в області механіки машин, академіка Української нафтогазової академії, професора Крижанівського Є.І., зроблені відповідні кроки щодо виправлення ситуації та покращення викладання фундаментальних дисциплін, без яких не може бути повноцінного інженера, який би успішно конкурував на міжнародному ринку праці. Два роки тому Вченою Радою університету було створено інститут фундаментальної підготовки, який згідно Положення є навчально-методичним, навчально-організаційним і науково-дослідним підрозділом університету на правах факультету для практичного втілення концепції вищої багатоступеневої інженерно-технічної освіти на базі глибоких фундаментальних знань з вищої математики, фізики і хімії. До складу інституту входять три кафедри фундаментальних наук, на черзі створення іще двох кафедр. Сьогодні можна констатувати, що створення такого інституту було необхідним і корисним, так як кафедри фізики, вищої математики і хімії вирішують спільні питання та об’єднані однією метою – покращити базову фундаментальну підготовку фахівців. Викладачі мають можливість обмінюватись досвідом своєї роботи, бо знаходяться на одному рівні, тоді як раніше були в певній мірі на другорядних ролях, оскільки кафедри відносились до різних факультетів, які більше розв’язують задачі спеціальної підготовки.Дуже важливим моментом у діяльності інституту була участь в організації і проведенні VIII науково-методичної конференції, на якій обговорювались питання фундаментальної підготовки фахівців і на яку були запрошені викладачі з інших вузів та вчителі шкіл і коледжів. При підготовці до конференції виконано значний об’єм роботи по вивченню і порівнянню навчальних планів різних спеціальностей у нашому університеті та багатьох європейських технічних вузах. Цей аналіз було покладено в основу рекомендацій, які затвердила наша Вчена Рада і які стали програмою діяльності інституту. Так, враховуючи неможливість перегляду навчальних планів спеціальностей в сторону збільшення аудиторних годин на вивчення фізики, математики, хімії, інформатики і програмування ми змістили акцент при їх викладанні в сторону профілізації навчального процесу в залежності від потреб профілюючої кафедри, тобто змінили зміст робочих програм дисциплін. Також на кафедрах інституту запроваджено керовану і контрольовану самостійну роботу, тобто йде мова про індивідуалізацію навчального процесу, оскільки світ на початку ХХ1 століття надзвичайно швидко змінюється, – вперше в історії розвитку людства покоління теоретичних ідей і машин змінюються в часі швидше, ніж покоління людей, а тому потрібно навчити студентів, майбутніх фахівців, самостійно знаходити необхідні знання в морі інформації що нас оточує для досягнення певного освітнього рівня. Для реалізації даного напрямку роботи потрібно змінити роль викладача: замість передавача певної суми знань студенту, він повинен стати координатором навчального процесу, консультантом, керівником навчання. Зауважу, що зміна функцій викладача – це довготривалий процес по підвищенню фахового рівня професорсько-викладацького складу.Проведений аналіз показав, що в нас є недостатнє забезпечення студентів навчально-методичною літературою. Тому в інституті сформовано єдиний план підготовки і випуску підручників, навчальних посібників, конспектів лекцій, електронних посібників тощо, а також створені творчі колективи, які повинні якнайшвидше забезпечити всіх студентів необхідними дидактичними матеріалами українською мовою.Дуже важливим напрямком діяльності інституту є налагодження співпраці і зв’язків наших кафедр із спорідненими кафедрами технічних вузів України. До речі, це один із шляхів більш швидкого забезпечення методичною літературою студентів внаслідок обміну, а також підвищення кваліфікації викладачів.Розв’язанню проблеми покращення фундаментальної підготовки майбутніх фахівців сприяє використання нових інформаційних та телекомунікаційних технологій проведення навчального процесу з використанням відповідних технічних засобів (аудіо- і відеоапаратури, комп’ютерів, телебачення, мережі Інтернет та ін.). Для цього потрібно використовувати як мізерні бюджетні кошти, так і залучати кошти різних фондів під проекти навчально-методичного характеру. Адже саме отримання грантів у великій мірі допомагає зміцнювати матеріально-технічну базу кафедр.Також хочу зачепити іще одне болюче питання вищої школи. З метою виживання зараз у вузах ми маємо поряд із студентами, які навчаються за рахунок бюджетних коштів, так званих контрактників. Це добре, але борючись за гроші ми намагаємось зберегти більшість студентів, що веде до зниження якості навчання. У даній ситуації кафедри фундаментальної підготовки в найгіршому становищі, тому що перед ними постає завдання виправлення браку середньої школи і відбору студентів для їх подальшого навчання. В нашому університеті знайдено вихід з даної ситуації: в навчальний процес впроваджено модульну технологію в поєднанні з визначенням рейтингу студентів. Було проведено п’ять науково-методичних конференцій, результати роботи яких дозволили розробити і вдосконалити “Положення про систему поточного, підсумкового контролю і оцінювання знань та визначення рейтингу студентів”. Треба відзначити, що через консерватизм характеру людини, все нове важко приживається. Але завдяки саме волі ректора Крижанівського Є.І. дана система організації і проведення навчального процесу працює, стимулюючи систематичну і самостійну роботу студентів протягом всього семестру. Вона підвищує об’єктивність оцінки знань, активізує навчальну діяльність та розвиває творчі здібності студентів, а результати екзаменаційних сесій та висновки більшості викладачів стверджують, що впровадження даної технології навчання є виправдане і сприяє підвищенню фахового рівня спеціалістів.Аналізуючи етапи і тенденції розвитку фундаментальної підготовки в технічному вузі приходимо до висновку, що зараз, коли створені нові форми і методи управління навчальним процесом, потрібен перехід до нових принципів формування змісту. Тому, створюючи нові інтенсивні технології навчання, треба зберегти глибокі традиції нашої фундаментальної підготовки та поєднати їх із здоровим прагматизмом заходу, тобто додати їй прикладну спрямованість. Це потребує координації зусиль викладачів різних предметів, великих затрат часу, тому що ці технології повинні базуватись на ідеї синтезу усіх дисциплін та принципу фундаментальності освіти, які об’єднують закономірності процесу пізнання і повинні враховувати ментальність нашого народу.
APA, Harvard, Vancouver, ISO, and other styles
30

Bezvesilna, Olena, Oleksii Petrenko, and Mykola Ilchenko. "ESTIMATION OF INFLUENCE OF CONSTRUCTION OF BRACKET FOR SETTING OF DEVICES OF GT46, GT46-01 ON THEIR INITIAL SIGNALS." Young Scientist 7, no. 71 (July 2019). http://dx.doi.org/10.32839/2304-5809/2019-7-71-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography