To see the other types of publications on this topic, follow the link: Батарея конденсаторна.

Journal articles on the topic 'Батарея конденсаторна'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 16 journal articles for your research on the topic 'Батарея конденсаторна.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

В. Ф. Говорун, В. П. Марковский, Б. К. Шапкенов, П. В. Бурцев, and А. С. Аябаев. "КОРРЕКЦИЯ КОЭФФИЦИЕНТА МОЩНОСТИ В СИСТЕМАХ ЭЛЕКТРОСНАБЖЕНИЯ С МЕЛКИМИ НЕЛИНЕЙНЫМИ ПОТРЕБИТЕЛЯМИ." Bulletin of Toraighyrov University. Energetics series, no. 1.2022 (March 18, 2022): 9–27. http://dx.doi.org/10.48081/rlui6028.

Full text
Abstract:
В работе, на основании имитационного моделирования, предлагается алгоритм исследования резонанса тока, возникающего в системе электроснабжения при хаотичном изменении мощности нагрузки и вариации степени компенсации реактивной мощности, при наличии потребителей, имеющих нелинейную вольтамперную характеристику. Показано, что перегрузка конденсаторных батарей может возникать в широком диапазоне частот, близких к резонансной частоте. Предлагаемый алгоритм определяет все возможные частоты, на которых может произойти увеличение токов в конденсаторных батареях выше допустимых величин при параллельном резонансе. В процессе работы предприятия нагрузка по технологическим причинам (включение/отключение) или аварийным отключениям может изменяться в очень широком диапазоне при условии неизменности количества подключенных конденсаторов из-за инерционности регулятора БСК. Поэтому при исследовании резонанса тока необходимо проводить расчеты всех возможных режимов работы сети. Определение диапазона частот, на которых будет происходить перегрузка конденсаторов, необходим для выбора способов и средств подавления высших гармоник, подбора и настройки устройств, предназначенных для снижения амплитуд токов высших гармоник в сети. Цель предлагаемой работы: показать, в каких режимах работы системы электроснабжения предприятия может возникать перегрузка конденсаторов токами высших гармоник при изменении мощности нагрузки и вариации степени компенсации реактивной мощности.
APA, Harvard, Vancouver, ISO, and other styles
2

А. Н. Новожилов, А. К. Садыкова, and Т. А. Новожилов. "ПРАКТИЧЕСКАЯ РЕАЛИЗАЦИЯ МЕТОДА КОСВЕННОГО ИЗМЕРЕНИЯ ТОКА ОДНОФАЗНОГО ЗАМЫКАНИЯ НА ЗЕМЛЮ В СЕТИ С ИЗОЛИРОВАННОЙ НЕЙТРАЛЬЮ." Bulletin of Toraighyrov University. Energetics series, no. 1.2022 (March 18, 2022): 131–43. http://dx.doi.org/10.48081/xwwp8243.

Full text
Abstract:
Рассматривается вопрос, связанный с практической реализацией метода косвенного измерения тока однофазного замыкания на землю в сети с изолированной нейтралью. Этот метод основан на использовании зависимости напряжения смещения нейтрали сети от емкости сети относительно земли при осуществлении однофазного замыкания с помощью шунта, в виде емкости заданной величины. Построение этой зависимости осуществляется с помощью разработанной для этой цели программного обеспечения в среде Turbo Basic. Распечатка этой программы приведена в приложении. Возможность осуществления экспериментального измерения напряжения смещения нейтрали проверялась на базе реально существующей распределительной подстанции, которая оснащена батареей статических конденсаторов. Для измерения этого напряжения при однофазном замыкании на землю через шунт, выполненный из элементов батареи статических конденсаторов, разработана схема для реконструкции этой батареи и инструкция по порядку проведения экспериментального его измерения.
APA, Harvard, Vancouver, ISO, and other styles
3

Буньков, Дмитрий Сергеевич, Александр Савельевич Глазырин, Евгений Владимирович Боловин, Юрий Владимирович Крохта, Дмитрий Михайлович Баннов, Владимир Захарович Ковалев, Рустам Нуриманович Хамитов, Сергей Николаевич Кладиев, Сергей Владимирович Ланграф, and Андрей Петрович Леонов. "ИССЛЕДОВАНИЕ АСИНХРОННОЙ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ С КОРОТКОЗАМКНУТЫМ РОТОРОМ ДЛЯ ВОЗОБНОВЛЯЕМОЙ ЭНЕРГЕТИКИ ПРИ НЕСТАЦИОНАРНОМ КОНДЕНСАТОРНОМ ВОЗБУЖДЕНИИ." Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov 331, no. 12 (December 17, 2020): 187–99. http://dx.doi.org/10.18799/24131830/2020/12/2952.

Full text
Abstract:
Актуальность. Доля электроэнергии, вырабатываемой установками на основе возобновляемой энергии, постоянно растет, в связи с чем потребность в развитии систем питания и автоматического управления электрическими машинами, лежащими в основе ветро- и гидрогенераторов, не теряет актуальности. В составе таких генераторных установок переменного тока применяют синхронные электрические машины, асинхронные машины с фазным и короткозамкнутым ротором. Преобразователи частоты, устанавливаемые в статорные и роторные цепи асинхронных машин переменного тока, позволяют управлять процессами их возбуждения, однако для начала генерации требуется использовать дополнительные внешние источники питания. Благодаря остаточному намагничиванию в магнитопроводе можно обеспечить процесс гарантированного самовозбуждения асинхронной машины с помощью подключения батарей конденсаторов к ее статорным обмоткам без применения дополнительного внешнего источника питания. Предложенный способ нестационарного конденсаторного возбуждения позволяет обеспечить адаптацию генераторной установки к изменению режимов работы в условиях децентрализованного электроснабжения. Цель: исследовать предложенную систему стабилизации напряжения асинхронной машины с короткозамкнутым ротором с варьируемым конденсаторным возбуждением в составе источника возобновляемой энергии. Методы: теоретические – теория дифференциальных уравнений, методы численного решения обыкновенных дифференциальных уравнений, теория электропривода, теория электрических машин, численные методы аппроксимации данных, и экспериментальные – проведение испытаний асинхронной электрической машины с нестационарным конденсаторным возбуждением на разработанном испытательном стенде с целью получения нагрузочных характеристик и осциллограмм напряжений на обмотках статора асинхронных машин с короткозамкнутым ротором в различных режимах работы, методы исследования. Результаты. Разработана и изготовлена оригинальная экспериментальная установка с узлом, имитирующим работу турбины. Электромеханический преобразователь энергии выполнен в виде асинхронной машины с короткозамкнутым ротором с нестационарным конденсаторным возбуждением. Блок управления установкой выполнен в виде интегрированного с силовым блоком гальванически развязанного модуля во влагостойком исполнении с применением беспроводного интерфейса связи Bluetooth. Описан и протестирован способ коммутации батарей конденсаторов с применением тиристоров в качестве управляемого ключа с двухсторонней проводимостью. Анализ полученных нагрузочных характеристик показывает принципиальную возможность обеспечить гарантированную выработку электроэнергии со стабилизацией напряжения в допустимых пределах изменения мощности нагрузки. Примененная в составе экспериментальной установки система автоматической коммутации конденсаторов с варьируемой в зависимости от потребляемой мощности емкостью позволила обеспечить приемлемое время динамической реакции на возмущающее воздействие при нестационарной нагрузке.
APA, Harvard, Vancouver, ISO, and other styles
4

Косенков, В. М., and В. М. Бычков. "Влияние индуктивности электрической цепи на энергетические характеристики разряда в воде и деформирования пластин." Письма в журнал технической физики 43, no. 16 (2017): 102. http://dx.doi.org/10.21883/pjtf.2017.16.44939.16706.

Full text
Abstract:
Выполнено экспериментальное исследование влияния индуктивности разрядной цепи на эффективность преобразования энергии, запасаемой в конденсаторной батарее, в канале электрического разряда в воде и в процессе пластического деформирования пластин. Впервые определено положительное влияние увеличения индуктивности разрядной цепи на деформирование пластин, приводящее к увеличению количества используемой для этого энергии. DOI: 10.21883/PJTF.2017.16.44939.16706
APA, Harvard, Vancouver, ISO, and other styles
5

Бродский, И. А., И. В. Галахов, Е. Н. Задорожная, Н. А. Калмыков, Е. А. Копелович, С. Л. Логутенко, А. Ю. Новиков, et al. "СИСТЕМА ЗАРЯДА КОНДЕНСАТОРНОЙ БАТАРЕИ ЛАЗЕРНОЙ УСТАНОВКИ “ИСКРА-5”, "Приборы и техника эксперимента"." Приборы и техника эксперимента, no. 2 (2018): 65–71. http://dx.doi.org/10.7868/s003281621801024x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

TUL’SKY, Vladimir N., Artem S. VANIN, and Mohamed A. TOLBA. "Optimal Capacitor Allocations and Sizing in Radial Distribution Networks Using a Novel Hybrid Particle Swarm Optimization Algorithm." Elektrichestvo, no. 6 (2017): 16–23. http://dx.doi.org/10.24160/0013-5380-2017-6-16-23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Korolev, A. "Results of experimental determination of capacity of the condenser of the charger for battery rooms baterey." Актуальные направления научных исследований XXI века: теория и практика 3, no. 4 (October 26, 2015): 188–90. http://dx.doi.org/10.12737/13920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

SHmatkov, YU M., R. A. Maleev, and V. V. Bujnov. "Electric starting system with high voltage capacitor bank." Izvestiya MGTU MAMI 42, no. 4 (2019): 77–82. http://dx.doi.org/10.31992/2074-0530-2019-42-4-77-82.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zyryanov, Vyacheslav, Natal'ya Kiryanova, and Nikolai Mitrofanov. "The use of higher harmonics limiting devices based on static capacitor batteries in an autonomous power system." Science Bulletin of the Novosibirsk State Technical University, no. 2 (June 13, 2018): 131–42. http://dx.doi.org/10.17212/1814-1196-2018-2-131-142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tereshkevych, L. B., and I. O. Bandura. "Development of Mathematical Model of Battery Control of Static Capacitors with Regard to its Implementation in Microprocessor System." Visnyk of Vinnytsia Politechnical Institute 159, no. 6 (2021): 58–63. http://dx.doi.org/10.31649/1997-9266-2021-159-6-58-63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Nefedov, Yuri, Ilya Khaichenko, Vladimir Babenko, and Valery Krysanov. "Controlled static capacitor banks’ structural features contribution in their energy-savings in low-voltage industrial power supply systems." Energy Safety and Energy Economy 1 (February 2021): 26–31. http://dx.doi.org/10.18635/2071-2219-2021-1-26-31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Очеретяний, Ю. О., and О. С. Тітлов. "Експериментальні дослідження транспортного абсорбційного холодильного приладу." Refrigeration Engineering and Technology 55, no. 5-6 (March 28, 2020): 255–62. http://dx.doi.org/10.15673/ret.v55i5-6.1658.

Full text
Abstract:
Транспортні холодильні пристрої є невід’ємною частиною ланцюга безперервного холодильного обладнання та незамінні для туристів, мисливців та експедиційних працівників. Сучасні аналоги стиснення та термоелектрики транспортних абсорбційних холодильних пристроїв працюють від генераторів електроенергії або від акумуляторних батарей, що призводить до збільшення ваги автомобіля і, зрештою, до додаткових витрат палива. Актуальність досліджень транспортних абсорбційних х холодильних пристроїв пов'язана насамперед з можливістю їх роботи з неелектричними джерелами теплової енергії – пальними елементами. У пальниковому елементі 100% енергії згоряння викопного палива безпосередньо перетворюється на теплову енергію. При цьому коефіцієнт корисної дії сучасних генераторів електричної енергії не перевищує 20%. Тем не менш, для широкого використання транспортних абсорбційних холодильних пристроїв необхідно вживати заходів щодо зменшення споживання енергії, що сприятливо позначиться на вагових параметрах транспортного засобу. Через складність побудови тео­ретичних моделей експериментальним методом було обрано основний метод дослідження транспортних абсорбційних холодильних пристроїв. Об’єктом експериментальних досліджень став транспортний абсорбційний холодильний прилад «Київ» виробництва Васильківського холодильного заводу. У пальному елементі завдяки установці спеціального керамічного елемента каталізатора газ окислюється атмосферним киснем на поверхні каталізатора. Конструкція пальника дозволяє створити якісну суміш повітря-газ і рівномірно розподілити полум'я по всій поверхні каталізатора. Експериментальні дослідження показали, що: а) при роботі з етиловим спиртом і гасом необхідні умови охолодження досягаються в холодильнику; б) при рівних робочих умовах відсутність турбулайзера потоку продуктів згоряння у вентиляційному каналі генератора не дозволяє забезпечити необхідні режими охолодження. Для посилення режимів охолодження тепловіддаючих елементів холодильника (абсорбера та конденсатора) було проведено ряд експериментів із продуванням за допомогою повітряного вентилятора. При низьких температурах навколишнього середовища (16-21 ºС) ефект зовнішнього охолодження прак­тично непомітний – падіння температур в холодильній камері становить 0,8-1,2 ºС, при температурі 22-26 ºС ефект досягає 2,6 ºС, а при 30-33 ºС – 5,3 ºС
APA, Harvard, Vancouver, ISO, and other styles
13

Журомский, В. М. "Математическая модель электропривода высокооборотных центрифуг для обогащения урана как резонансной системы на частоте питания для целей автоматической оптимизации коэффициента мощности электропривода при параллельной компенсации реактивной составляющей батареей конденсаторов." Ядерная физика и инжиниринг 7, no. 2 (2016): 156–61. http://dx.doi.org/10.1134/s2079562916020159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Нос, Олег Викторович, Анатолий Сергеевич Востриков, Александр Александрович Штанг, and Екатерина Юрьевна Малявко. "ПОВЫШЕНИЕ ЭНЕРГОЭФФЕКТИВНОСТИ ПРОИЗВОДСТВА ЗА СЧЕТ ПРИМЕНЕНИЯ СИЛОВЫХ ФИЛЬТРОВ ВЫСШИХ ГАРМОНИК." Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov 330, no. 12 (December 9, 2019): 28–36. http://dx.doi.org/10.18799/24131830/2019/12/2389.

Full text
Abstract:
Актуальность. В настоящее время все большее количество технологических процессов и производств в нефтегазовой отрасли реализуется на базе высокопроизводительного оборудования с полупроводниковыми преобразователями электрической энергии, в число которых, например, входят частотно-регулируемые электроприводы переменного тока или бесперебойные источники питания, которые относятся к классу нелинейных нагрузок и могут вызывать большое количество негативных явлений в работе распределительных сетей, включающих в себя несимметрию фазных напряжений и токов, резонансные процессы, тепловые потери в нейтральном проводе, перегрев двигателей и трансформаторов и т. д. Для улучшения электромагнитной совместимости различного рода электроприемников в составе промышленных систем электроснабжения довольно часто используют пассивные конденсаторные батареи для коррекции коэффициента мощности, которые малоэффективны в случае нелинейных процессов. Кроме этого, данный тип компенсационных устройств продолжает потреблять реактивную энергию при отсутствии каких-либо нагрузок и не удовлетворяет современным требованиям в области энергосбережения. Описанные выше недостатки в работе трехфазных систем переменного тока требуют разработки новых схемотехнических решений, методов анализа энергетических процессов и синтеза алгоритмов силовой фильтрации, позволяющих обеспечить нормированные показатели качества электрической энергии в распределительных сетях низкого и среднего классов напряжения вне зависимости от конкретного вида электрических цепей нагрузки. Цель исследования заключается в комплексном анализе существующих технических решений, направленных на повышение электромагнитной совместимости распределительных сетей, а также в описании основных ограничений в работе силовых фильтрокомпенсирующих устройств применительно к промышленным объектам минерально-сырьевого комплекса; в разработке базовых структур активных силовых фильтров с пониженными требованиями по производительности, объему памяти и быстродействию программно-аппаратной части системы управления, практическое применение которых обеспечивает нормированное качество электрической энергии при изменении режимов работы технологического оборудования или конфигурации питающей линии. Объекты: автономные или децентрализованные электроэнергетические системы переменного тока с преобразовательными устройствами силовой электроники и частотно-регулируемыми электроприводами, а также элементами силовой цепи с нелинейными характеристиками, например, реакторами или трансформаторами с насыщенными сердечниками, в которых присутствуют значительные искажения в мгновенной форме трехфазных сигналов; пассивные и активные силовые фильтры высших гармоник. Методы: некоммутативная алгебра кватернионов; четырехмерное гиперкомплексное пространство; методы спектрального анализа и разложения в ряд Фурье. Результат: краткий обзор различных подходов и технических средств к повышению качества электрической энергии в системах электроснабжения промышленных объектов минерально-сырьевого сектора, а также системы управления,рамках которых достигается синусоидальный закон изменения во времени сетевых токов с нулевым или опережающим/отстающим угловым сдвигом при одновременном соблюдении условия симметрии по мгновенным значениям.
APA, Harvard, Vancouver, ISO, and other styles
15

Белей, В. Ф., Г. А. Решетников, and К. В. Коротких. "Research of higher harmonic components of voltage and current and their influence on the functioning of shipboard electrical equipment." MORSKIE INTELLEKTUAL`NYE TEHNOLOGII)</msg>, no. 4(54) (December 2, 2021): 34–43. http://dx.doi.org/10.37220/mit.2021.54.4.004.

Full text
Abstract:
Одним из направлений научно-технического прогресса на объектах морской индустрии является широкое использование технологий, основанных на нелинейных элементах, что позволяет значительно снизить их массогабаритные показатели и расшить их функциональные возможности. Однако применение таких технологий приводит к ухудшению качества электрической энергии, в первую очередь за счет высших гармонических составляющих напряжения и тока. В статье показана природа высших гармонических, выполнен анализ разделов «Правил классификации и постройки морских судов. 2021», российских и ряда зарубежных стандартов в области качества электроэнергии, регламентирующих уровень высших гармонических составляющих напряжения и тока в электрических сетях и системах. В работе приведены результаты теоретических и экспериментальных исследований влияния высших гармонических составляющих на функционирование судового электрооборудования: асинхронных электродвигателей, силовых кабелей, трансформаторов, конденсаторных батарей и систем освещения. Определены выражения, позволяющие оценить это влияние. Показано, что в основном это влияние проявляется: в дополнительном нагреве электрооборудования за счет поверхностного эффекта; вибрации асинхронных электродвигателей при высоких значениях 5 и 7 гармоник напряжения судовой электрической сети. One of the areas of scientific and technological progress at the facilities of the marine industry is the widespread use of technologies based on nonlinear elements, which can significantly reduce their weight-size parameters and dimensions and expand their functional capabilities. However, the use of such technologies leads to a deterioration in the quality of electrical energy, primarily due to higher harmonic components of voltage and current. The article shows the nature of higher harmonics, analyzes the sections of the «Rules for the Classification and Construction of Sea-Going Vessels. 2021», Russian and a number of foreign standards in the field of electric power quality, regulating the level of higher harmonic components of voltage and current in electrical networks and systems. The paper presents the results of theoretical and experimental studies of the influence of higher harmonic components on the functioning of shipboard electrical equipment: asynchronous electric motors, power cables, transformers, capacitor banks and lighting systems. Formulas have been determined to assess this effect. It is shown that the influence is mainly manifested: in additional heating of electrical equipment due to the skin effect; vibrations of asynchronous electric motors at high values of 5th and 7th voltage harmonics of the ship's electrical network.
APA, Harvard, Vancouver, ISO, and other styles
16

Гуржій, Андрій Миколайович, Валерій Яковлевич Жуйков, Анатолій Тимофійович Орлов, Віктор Михайлович Співак, Олександр Володимирович Богдан, Микола Іванович Шут, Людмила Юріївна Благодаренко, et al. "Викладання фізики з використанням вітчизняної електронної цифрової лабораторії, створеної на основі ІКТ." Theory and methods of e-learning 4 (February 17, 2014): 69–78. http://dx.doi.org/10.55056/e-learn.v4i1.372.

Full text
Abstract:
У зв’язку із загальною інформатизацією освіти і швидким розвитком цифрових засобів обробки інформації назріла необхідність впровадження в лабораторні практикуми вищих та середніх навчальних закладів цифрових засобів збору, обробки та оформлення експериментальних результатів, в тому числі під час виконання лабораторних робот з основ електротехнічних пристроїв та систем. При цьому надмірне захоплення віртуальними лабораторними роботами на основі комп’ютерного моделювання в порівнянні з реальним (натурним) експериментом може призводити до втрати особової орієнтації в технології освіти і відсутності надалі у випускників навчальних закладів ряду практичних навичок.У той же час світові компанії, що спеціалізуються в учбово-технічних засобах, переходять на випуск учбового устаткування, що узгоджується з комп’ютерною технікою: аналого-цифрових перетворювачів і датчиків фізико-хімічних величин, учбових приладів керованих цифро-аналоговими пристроями, автоматизованих учбово-експеримен­тальних комплексів, учбових експериментальних установок дистанційного доступу.У зв’язку із цим в області реального експерименту відбувається поступовий розвиток інформаційних джерел складної структури, до яких, у тому числі, відносяться комп’ютерні лабораторії, що останнім часом оформлюються у новий засіб реалізації учбового натурного експерименту – цифрові електронні лабораторії (ЦЕЛ).Відомі цифрові лабораторії для шкільних курсів фізики, хімії та біології (найбільш розповсюджені компаній Vernier Software & Technology, USA та Fourier Systems Inc., Israel) можуть бути використані у ВНЗ України, але вони мають обмежений набір датчиків, необхідність періодичного ручного калібрування, використовують застарілий та чутливий до електромагнітних завад аналоговий інтерфейс та спрощене програмне забезпечення, що не дозволяє проводити статистичну обробку результатів експерименту та з урахуванням низької розрядності аналого-цифрових перетворювачів не може використовуватись для проведення науково-дослідних робіт у вищих навчальних закладах, що є однією із складових підготовки висококваліфікованих спеціалістів, особливо в університетах, які мають статус дослідницьких.Із вітчизняних аналогів відомі окремі компоненти цифрових лабораторій, що випускаються ТОВ «фірма «ІТМ» м. Харків. Вони поступаються продукції компаній Vernier Software & Technology, USA та Fourier Systems Inc. та мають близькі цінові характеристики на окремі компоненти. Тому необхідність розробки вітчизняної цифрової навчальної лабораторії є нагальною, проблематика досліджень та предмет розробки актуальні.Метою проекту є створення сучасної вітчизняної цифрової електронної лабораторії та відпрацювання рекомендацій по використанню у викладанні на її основі базового переліку науково-природничих та біомедичних дисциплін у ВНЗ I-IV рівнів акредитації при значному зменшенні витрат на закупку приладів, комп’ютерної техніки та навчального-методичного забезпечення. В роботі використані попередні дослідження НДІ Прикладної електроніки НТУУ «КПІ» в галузі МЕМС-технологій (micro-electro-mechanical) при створенні датчиків фізичних величин, виконано огляд технічних та методичних рішень, на яких базуються існуючі навчальні цифрові лабораторії та датчики, розроблені схемотехнічні рішення датчиків фізичних величин, проведено конструювання МЕМС – первинних перетворювачів, та пристроїв реєстрації інформації. Розроблені прикладні програми інтерфейсу пристроїв збору інформації та вбудованих мікроконтролерів датчиків. Сформульовані вихідні дані для розробки бездротового інтерфейсу датчиків та програмного забезпечення цифрової лабораторії.Таким чином, у даній роботі пропонується нова вітчизняна цифрова електронна лабораторія, що складається з конструкторської документації та дослідних зразків обладнання, програмного забезпечення та розробленого єдиного підходу до складання навчальних методик для цифрових лабораторій, проведення лабораторних практикумів з метою економії коштів під час створення нових лабораторних робіт із реєстрацією даних, обробки результатів вимірювань та оформленням результатів експерименту за допомогою комп’ютерної техніки.Цифрова електронна лабораторія складається із таких складових частин: набірного поля (НП); комплектів модулів (М) із стандартизованим вихідним інтерфейсом, з яких складається лабораторний макет для досліджування об’єкту (це – набір електронних елементів: резисторів, ємностей, котушок індуктивності, цифро-аналогових та аналого-цифрових перетворювачів (ЦАП та АЦП відповідно)) та різноманітних датчиків фізичних величин; комп’ютерів студента (планшетного комп’ютера або спеціалізованого комп’ютера) з інтерфейсами для датчиків; багатовходових пристроїв збору даних та їх перетворення у вигляд, узгоджений з інтерфейсом комп’ютера (реєстратор інформації або Data Logger); комп’ютер викладача (або серверний комп’ютер із спеціалізованим програмним забезпеченням); пристрої зворотного зв’язку (актюатори), що керуються комп’ютером; трансивери для бездротового прийому та передачі інформації з НП.Таким чином, з’являється новий клас бездротових мереж малої дальності. Ці мережі мають ряд особливостей. Пристрої, що входять в ці мережі, мають невеликі розміри і живляться в основному від батарей. Ці мережі є Ad-Hoc мережами – високоспеціалізованими мережами з динамічною зміною кількісного складу мережі. У зв’язку з цим виникають завдання створення та функціонування даних мереж – організація додавання і видалення пристроїв, аутентифікація пристроїв, ефективна маршрутизація, безпека даних, що передаються, «живучість» мережі, продовження часу автономної роботи кінцевих пристроїв.Протокол ZigBee визначає характер роботи мережі датчиків. Пристрої утворюють ієрархічну мережу, яка може містити координатор, маршрутизатори і кінцеві пристрої. Коренем мережі являється координатор ZigBee. Маршрутизатори можуть враховувати ієрархію, можлива також оптимізація інформаційних потоків. Координатор ZigBee визначає мережу і встановлює для неї оптимальні параметри. Маршрутизатори ZigBee підключаються до мережі або через координатор ZigBee, або через інші маршрутизатори, які вже входять у мережу. Кінцеві пристрої можуть з’єднуватися з довільним маршрутизатором ZigBee або координатором ZigBee. По замовчуванню трафік повідомлень розповсюджується по вітках ієрархії. Якщо маршрутизатори мають відповідні можливості, вони можуть визначати оптимізовані маршрути до визначеної точки і зберігати їх для подальшого використання в таблицях маршрутизації.В основі будь-якого елементу для мережі ZigBee лежить трансивер. Активно розробляються різного роду трансивери та мікроконтролери, в які потім завантажується ряд керуючих програм (стек протоколів ZigBee). Так як розробки ведуться багатьма компаніями, то розглянемо та порівняємо новинки трансиверів тільки кількох виробників: СС2530 (Texas Instruments), AT86RF212 (Atmel), MRF24J40 (Microchip).Texas Instruments випускає широкий асортимент трансиверів. Основні з них: CC2480, СС2420, CC2430, CC2431, CC2520, CC2591. Всі вони відрізняються за характеристиками та якісними показниками. Новинка від TI – мікросхема СС2530, що підтримує стандарт IEEE 802.15.4, призначена для організації мереж стандарту ZigBee Pro, а також засобів дистанційного керування на базі ZigBee RF4CE і обладнання стандарту Smart Energy. ІС СС2530 об’єднує в одному кристалі РЧ-трансивер і мікроконтролер, ядро якого сумісне зі стандартним ядром 8051 і відрізняється від нього поліпшеною швидкодією. ІС випускається в чотирьох виконаннях CC2530F32/64/128/256, що розрізняються обсягом флеш-пам’яті – 32/64/128/256 Кбайт, відповідно. В усьому іншому всі ІС ідентичні: вони поставляються в мініатюрному RoHS-сумісному корпусі QFN40 розмірами 6×6 мм і мають однакові робочі характеристики. СС2530 являє собою істотно покращений варіант мікросхеми СС2430. З точки зору технічних параметрів і функціональних можливостей мікросхема СС2530 перевершує або не поступається CC2430. Однак через підвищену вихідну потужність (4,5 дБм) незначно виріс струм споживання (з 27 до 34 мА) при передачі. Крім того, ці мікросхеми мають різні корпуси і кількість виводів (рис. 1). Рис. 1. Трансивери СС2530, СС2430 та СС2520 фірми Texas Instruments AT86RF212 – малопотужний і низьковольтний РЧ-трансивер діапазону 800/900 МГц, який спеціально розроблений для недорогих IEEE 802.15.4 ZigBee-сумісних пристроїв, а також для ISM-пристроїв з підвищеними швидкостями передачі даних. Працюючи в діапазонах частот менше 1 ГГц, він підтримує передачу даних на малих швидкостях (20 і 40 Кбіт/с) за стандартом IEEE 802.15.4-2003, а також має опціональну можливість передачі на підвищених швидкостях (100 і 250 Кбіт/с) при використанні модуляції O-QPSK у відповідності зі стандартом IEEE 802.15.4-2006. Більше того, при використанні спеціальних високошвидкісних режимів, можлива передача на швидкості до 1000 Кбіт/с. AT86RF212 можна вважати функціональним блоком, який з’єднує антену з інтерфейсом SPI. Всі критичні для РЧ тракту компоненти, за винятком антени, кварцового резонатора і блокувальних конденсаторів, інтегровані в ІС. Для поліпшення загальносистемної енергоефективності та розвантаження керуючого мікроконтролера в ІС інтегровані прискорювачі мережевих протоколів (MAC) і AES- шифрування.Компанія Microchip Technology виробляє 8-, 16- і 32- розрядні мікроконтролери та цифрові сигнальні контролери, а також аналогові мікросхеми і мікросхеми Flash-пам’яті. На даний момент фірма випускає передавачі, приймачі та трансивери для реалізації рішень для IEEE 802.15.4/ZigBee, IEEE 802.11/Wi-Fi, а також субгігагерцового ISM-діапазону. Наявність у «портфелі» компанії PIC-мікроконтролерів, аналогових мікросхем і мікросхем пам’яті дозволяє їй запропонувати клієнтам комплексні рішення для бездротових рішень. MRF24J40 – однокристальний приймач, що відповідає стандарту IEEE 802.15.4 для бездротових рішень ISM-діапазону 2,405–2,48 ГГц. Цей трансивер містить фізичний (PHY) і MAC-функціонал. Разом з мікроспоживаючими PIC-мікроконтролерами і готовими стеками MiWi і ZigBee трансивер дозволяє реалізувати як прості (на базі стека MiWi), так і складніші (сертифіковані для роботи в мережах ZigBee) персональні бездротові мережі (Wireless Personal Area Network, WPAN) для портативних пристроїв з батарейним живленням. Наявність MAC-рівня допомагає зменшити навантаження на керуючий мікроконтролер і дозволяє використовувати недорогі 8-розрядні мікроконтролери для побудови радіомереж.Ряд компаній випускає завершені модулі ZigBee (рис. 2). Це невеликі плати (2÷5 кв.см.), на яких встановлено чіп трансивера, керуючий мікроконтролер і необхідні дискретні елементи. У керуючий мікроконтролер, у залежності від бажання і можливості виробника закладається або повний стек протоколів ZigBee, або інша програма, що реалізує можливість простого зв’язку між однотипними модулями. В останньому випадку модулі іменуються ZigBee-готовими (ZigBee-ready) або ZigBee-сумісними (ZigBee compliant).Всі модулі дуже прості в застосуванні – вони містять широко поширені інтерфейси (UART, SPI) і управляються за допомогою невеликого набору нескладних команд. Застосовуючи такі модулі, розробник позбавлений від роботи з високочастотними компонентами, так як на платі присутній ВЧ трансивер, вся необхідна «обв’язка» і антена. Модулі містять цифрові й аналогові входи, інтерфейс RS-232 і, в деяких випадках, вільну пам’ять для прикладного програмного забезпечення. Рис. 2. Модуль ZigBee із трансивером MRF24J40 компанії Microchip Для прикладу, компанія Jennic випускає лінійку ZigBee-сумісних радіомодулів, побудованих на низькоспоживаючому бездротовому мікроконтролері JN5121. Застосування радіомодуля значно полегшує процес розробки ZigBee-мережі, звільняючи розробника від необхідності конструювання високочастотної частини виробу. Використовуючи готовий радіомодуль, розробник отримує доступ до всіх аналогових і цифрових портів вводу-виводу чіпу JN5121, таймерам, послідовного порту і інших послідовних інтерфейсів. У серію входять модулі з керамічної антеною або SMA-коннектором з дальністю зв’язку до 200 метрів. Розмір модуля 18×30 мм. Версія модуля з підсилювачем потужності і підсилювачем вхідного сигналу має розмір 18×40 мм і забезпечує дальність зв’язку більше 1 км. Кожен модуль поставляється з вбудованим стеком протоколу рівня 802.15.4 MAC або ZigBee-стеком.За висновками експертів з аналізу ринку сьогодні одним з найперспективніших є ринок мікросистемних технологій, що сягнув 40 млрд. доларів станом на 2006 рік зі значними показниками росту. Самі мікросистемні технології (МСТ) почали розвиватися ще з середини ХХ ст. і, отримуючи щоразу нові поштовхи з боку нових винаходів, чергових удосконалень технологій, нових галузей науки та техніки, динамічно розвиваються і дедалі ширше застосовуються у широкому спектрі промислової продукції у всьому світі.Прилад МЕМС є об’єднанням електричних та механічних елементів в одну систему дуже мініатюрних розмірів (значення розмірів механічних елементів найчастіше лежать у мікронному діапазоні), і достатньо часто такий прилад містить мікрокомп’ютерну схему керування для здійснення запрограмованих дій у системі та обміну інформацією з іншими приладами та системами.Навіть з побіжного аналізу структури МЕМС зрозуміло, що сумарний технологічний процес є дуже складним і тривалим. Так, залежно від складності пристрою технологічний процес його виготовлення, навіть із застосуванням сучасних технологій, може тривати від кількох днів до кількох десятків днів. Попри саме виготовлення, доволі тривалими є перевірка та відбраковування. Часто виготовляється відразу партія однотипних пристроїв, причому вихід якісної продукції часто не перевищує 2 %.Для виготовлення сучасних МЕМС використовується широка гама матеріалів: різноманітні метали у чистому вигляді та у сплавах, неметали, мінеральні сполуки та органічні матеріали. Звичайно, намагаються використовувати якомога меншу кількість різнорідних матеріалів, щоби покращити технологічність МЕМС та знизити собівартість продукції. Тому розширення спектра матеріалів прийнятне лише за наявності специфічних вимог до елементів пристрою.Спектр наявних типів сенсорів в арсеналі конструктора значно ширший та різноманітніший, що зумовлено багатоплановим застосуванням МЕМС. Переважно використовуються ємнісні, п’єзоелектричні, тензорезистивні, терморезистивні, фотоелектричні сенсори, сенсори на ефекті Холла тощо. Розроблені авторами в НДІ Прикладної електроніки МЕМС-датчики, їх характеристики, маса та розміри наведені у табл. 1.Таблиця 1 №з/пМЕМС-датчикиТипи датчиківДіапазони вимірюваньГабарити, маса1.Відносного тиску, тензорезистивніДВТ-060ДВТ-1160,01–300 МПа∅3,5–36 мм,5–130 г2.Абсолютного тиску,тензорезистивніДАТ-0220,01–60 МПа∅16 мм,20–50 г3.Абсолютного тиску, ємнісніДАТЄ-0090,05–1 МПа5×5 мм4.Лінійного прискорення,тензорезистивніДЛП-077±(500–100 000) м/с224×24×8 мм,100 г5.Лінійного прискорення,ємнісніАЛЄ-049АЛЄ-050±(5,6–1200) м/с235×35×22 мм, 75 г6.Кутової швидкості,ємнісніДКШ-011100–1000 °/с
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography