Academic literature on the topic 'Аналіз рентгенофазовий'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Аналіз рентгенофазовий.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Аналіз рентгенофазовий"
Штеплюк, І. І., Г. В. Лашкарьов, В. В. Хомяк, О. С. Литвин, П. Д. Мар’янчук, І. І. Тімофєєва, А. І. Євтушенко, and В. Й. Лазоренко. "Особливості впливу умов вирощування на структурні і оптичні властивості плівок Zn0,9Cd0,1O." Ukrainian Journal of Physics 57, no. 6 (June 30, 2012): 653. http://dx.doi.org/10.15407/ujpe57.6.653.
Full textФролова, Л. А., and І. С. Шунькін. "ХАРАКТЕРИСТИКА ГЛИНИСТИХ ПОРІД ПОЛОЗЬКОГО РОДОВИЩА." Таврійський науковий вісник. Серія: Технічні науки, no. 3 (November 2, 2021): 116–23. http://dx.doi.org/10.32851/tnv-tech.2021.3.14.
Full textБарнаков, Ч. Н., Г. П. Хохлова, В. Ю. Малышева, А. Н. Попова, and З. Р. Исмагилов. "Рентгенофазовый анализ кристаллической структуры графитов разной природы." Химия твердого топлива 2015, no. 1 (2015): 28–32. http://dx.doi.org/10.7868/s0023117715010041.
Full text(Alexandra O. Chudinova), Чудинова Александра Олеговна, Ильин Александр Петрович (Alexander P. Ilyin), Роот Людмила Олеговна (Lyudmila O. Root), Мостовщиков Андрей Владимирович (Andrey V. Mostovshchikov), Беспалова Екатерина Александровна (Ekaterina A. Bespalova), and Атулиа Манурадж (Atulya Manuraj). "СИНТЕЗ НИТРИДА НИОБИЯ В УСЛОВИЯХ ТЕПЛОВОГО ВЗРЫВА СМЕСЕЙ НАНОПОРОШКА АЛЮМИНИЯ С ПЕНТАОКСИДОМ НИОБИЯ." Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov 329, no. 11 (April 12, 2019): 97–102. http://dx.doi.org/10.18799/24131830/2018/11/213.
Full textГурбанов, Г. Р., and М. Б. Адыгезалова. "Физико-химические взаимодействия в системе GeSb-=SUB=-2-=/SUB=-Te-=SUB=-4-=/SUB=--PbSb-=SUB=-2-=/SUB=-Te-=SUB=-4-=/SUB=-." Физика и техника полупроводников 54, no. 10 (2020): 1100. http://dx.doi.org/10.21883/ftp.2020.10.49951.9442.
Full textMykhailyk, V. A., Yu F. Snezhkin, T. V. Korinchevska, and Yu I. Gornikov. "ВПЛИВ РЕЖИМУ КОНВЕКТИВНОГО СУШІННЯ НА КРИСТАЛІЧНІСТЬ ПОРОШКІВ З ЯБЛУК ТА ЦУКРОВОГО БУРЯКУ." Industrial Heat Engineering 37, no. 5 (November 5, 2017): 23–37. http://dx.doi.org/10.31472/ihe.5.2015.03.
Full textШулятев, Д. А., М. А. Черников, В. В. Коровушкин, Н. А. Козловская, and М. В. Клюева. "Получение, рентгенофазовый анализ и мессбауэровская спектроскопия квазикристаллов системы Al–Fe–Cu." Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2013, no. 5 (2013): 38–41. http://dx.doi.org/10.7868/s0207352813050120.
Full textShunina, E. V., V. V. Potapov, and D. S. Gorev. "X-RAY PHASE ANALYSIS OF POWDERS NANOSILICA." Современные наукоемкие технологии (Modern High Technologies) 2, no. 3 2019 (2019): 274–79. http://dx.doi.org/10.17513/snt.37478.
Full textТорцева, Ю. С., А. А. Мироненко, И. С. Федоров, and С. В. Васильев. "Использование базы данных ICDD PDF-2 при рентгенофазовом анализе." Ядерная физика и инжиниринг 8, no. 1 (2017): 48–51. http://dx.doi.org/10.1134/s2079562917010213.
Full textЗакирьянов, Д. О., В. А. Чернышев, И. Д. Закирьянова, and Т. В. Ярославцева. "Ab initio расчет структуры и оптических свойств оксигалогенидов свинца Pb-=SUB=-3-=/SUB=-O-=SUB=-2-=/SUB=-X-=SUB=-2-=/SUB=- (X =Cl, Br, I)." Физика твердого тела 59, no. 4 (2017): 695. http://dx.doi.org/10.21883/ftt.2017.04.44270.236.
Full textDissertations / Theses on the topic "Аналіз рентгенофазовий"
Штефан, Вікторія Володимирівна, Анастасія Сергіївна Єпіфанова, and Мирослава Михайлівна Метеньканич. "Рентгенофазовий аналіз композиційного покриття Со-Мо-ТіО₂." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/41564.
Full textВеклин, Р. "Композитний матеріал на основі поліаніліну та нанорозмірного титан (IV) оксиду." Thesis, Київський національний університет технологій та дизайну, 2017. https://er.knutd.edu.ua/handle/123456789/8677.
Full textГригор'єва, Світлана Вікторовна, and Олександр Євгенович Бармін. "Сегрегаційні явища в сплавах Fe−W." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/43755.
Full textКакуріна, Л. В., Вікторія Віталіївна Тараненкова, and Галина Миколаївна Шабанова. "Дослідження продуктів гідратації спеціальних кальцій-барієвих глиноземних цементів з підвищеним вмістом заліза." Thesis, НТУ "ХПІ", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/26062.
Full textКорогодская, Алла Николаевна, and Галина Николаевна Шабанова. "Физико-химические исследования клинкеров специальных хромсодержащих цементов." Thesis, Бурятский научный центр Сибирского отделения Российской академии наук, 2015. http://repository.kpi.kharkov.ua/handle/KhPI-Press/25590.
Full textБулгакова, Анастасія Сергіївна. "Технологія електроосадження функціональних покриттів Со-Мо, Со-Мо-ТіО₂." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2020. http://repository.kpi.kharkov.ua/handle/KhPI-Press/48419.
Full textThe dissertation on competition of a scientific degree of the doctor of philosophy on a specialty 161 – Chemical technologies and engineering (16 – Chemical and bioengineering). – National Technical University "Kharkiv Polytechnic Institute", Ministry of Education and Science of Ukraine, Kharkiv, 2020. The dissertation work is directed on development of technology of reception of a composite covering of Co-Mo-TiO₂ with the raised functional properties. The object of research is the processes of electrochemical production of Co-Mo and Co-Mo-TiO₂ coatings from complex electrolytes. The subject of the research is the technological parameters and kinetic regularities of electrodeposition of functional coatings of Co-Mo and Co-Mo-TiO₂ from ammonia-trilonate electrolytes. In the dissertation work the scientific and practical problem of development of processes of electrochemical reception of coverings with the raised functional properties is solved. The research was carried out using both classical and fundamentally new modern methods: the kinetics of cathodic reduction were studied by linear voltammetry (LVA) and impedance spectroscopy; the phase composition of the precipitates was determined according to X-ray phase analysis (X-ray diffraction), the surface morphology and elemental composition of the obtained samples were studied using a scanning electron microscope (SEM); the microhardness of the coatings was determined by Vickers; the catalytic activity of the coatings was tested for hydrogen evolution reactions; corrosion behavior was studied by impedance spectroscopy and polarization resistance. The introduction substantiates the relevance of research objectives, shows the relationship of work with scientific programs, plans, topics, formulates the purpose and main objectives, provides scientific novelty and practical significance of the results, determined the personal contribution of the applicant, noted approbation of the results. The first section provides an analytical review of information sources. The relevance of the topic at the level not only of the country but also of foreign schools is considered. The articles in which data on influence of structure of electrolytes and modes of electrolysis on processes of deposition of similar coverings are resulted are processed. The analysis of methods of research of functional properties of the received materials is executed. The evaluation of the presented results is carried out. The aspects to which it is expedient to pay attention at creation of a new electrolyte are covered. Based on the results of the analysis of literature data, the direction of research is chosen and the main tasks of the dissertation are formulated. The second section describes the methods of studying the coatings of Co-Mo and Co-Mo-TiO₂: – polarization studies were performed using an IPC-Pro potentiostat at a potential sweep rate of 0,001 to 0,1 V/s. – studies by impedance spectroscopy were performed using an IPC-Pro potentiostat and an FRA frequency response analyzer in the frequency range of 0,03-50 kHz; – galvanostatic electrolysis was performed using stabilized DC sources B5-50. Studies of the structure and composition of the obtained sediments were performed using modern physicochemical methods of analysis: – X-ray phase analysis of coatings was performed using the device DRON-3; – surface morphology and elemental composition of the obtained coatings were examined using a scanning electron microscope; – Vickers microhardness was determined on a PMT-3 hardness tester. Mathematical processing of experimental data was carried out by methods of experiment planning and mathematical statistics using Microsoft Office Excel software package. The third section covers the study by LVA and impedance spectroscopy of the kinetics of electrodeposition processes from simple (sulfate) and complex (ammonia-trilonate) electrolytes of coatings with cobalt and cobalt alloys, in particular Co-Mo alloy, composite coating of Co-Mo-TiO₂ and electrolyganate. Studies of this section have yielded the following results: – the process of electroreduction of cobalt ions from a simple electrolyte is irreversible. Limiting stage - charge transfer; – with the addition of ligands, molybdenum salt and titanium dioxide there is a change in the mechanism of the cathode process. The reaction mechanism is determined by a preliminary first-order chemical reaction; – the values of the order of the reaction confirmed that when adding ligands to the electrolyte, the process becomes multi-stage and complicated by intermediate stages; – calculated values of activation energy indicate that the process in the system "Na₂SO₄ - CoSO₄" is limited by the electrochemical stage, but in the formation of cobalt complexes in the electrolyte, the process is slowed down by the chemical stage; – during electrodeposition of molybdenum coating is the reduction of molybdate oxoions to intermediate oxidation states; – the results of impedance spectroscopy in the deposition of Co-Mo and Co-Mo-TiO₂ precipitates indicate the presence of kinetic and diffusion complications in the mechanism of the cathode process due to the reduction of molybdenum oxoanions according to the film adsorption theory. The fourth section substantiates the compositions of electrolytes for the production of galvanic alloy Co-Mo with the ability to control microhardness, catalytic activity and corrosion resistance by varying the molybdenum content in the alloy. The structure, phase and elemental composition of Co-Mo and Co-Mo-TiO₂ coatings have been studied. The influence of the electrolysis regime on the content of sludge components is analyzed. According to the research of this section, the following results were obtained: – current output depends on the mode of electrolysis and the concentration of electrolyte components; – the molybdenum content in the Co-Mo precipitate decreases with increasing current density and increasing pH. The highest content of Mo 85 % by weight in the alloy is observed at j = 1 A/dm² and within pH = 2–4; – the obtained coatings are well adhered to the base, sufficiently uniform and fine-crystalline; – the results of X-ray phase and elemental analysis indicate the presence in the coating of elements of cobalt, molybdenum and titanium, their compounds in the form of oxides and intermetallics in significant quantities; – the results of scanning microscopy revealed a highly developed surface structure of the composite coating; – the content of components significantly depends on the current density and pH of the electrolyte. The fifth section presents studies of functional properties, such as microhardness, catalytic activity in the reaction of hydrogen evolution in solutions with different pH values, corrosion resistance in chloride and hydroxide solutions, anodic behavior of the obtained coatings in solutions with a wide pH range. According to the results of research, the following data were obtained: – the presence of molybdenum in the electrolyte leads to an increase in the hardness of the coatings - the highest hardness of 429 kg/mm² has an alloy Co50-Mo50. In terms of microhardness (416 kgf/mm²), the composite coating of Co-Mo-TiO₂ is almost not inferior to the Co-Mo alloy; – the highest electrocatalytic activity in the reaction of hydrogen evolut ion in an aqueous solution of 0,1 M and 1 M NaOH has an alloy of Co-Mo with a molybdenum content of 25 wt. %. The introduction of titanium dioxide leads to a significant increase in the catalytic activity of Co-Mo-TiO₂ in comparison with the alloy of Co-Mo in solutions of H₂SO₄, NaOH, Na₂SO₄; – Co-Mo alloys corrosion-resistant in chloride solutions (3 % NaCl; 5 % HCl); – Co-Mo-TiO₂ coatings are corrosion-resistant in 1 M NaOH solutions and 0,1 M NaOH and 0,1 N H₂SO₄ and Na₂SO₄ solutions; – the anodic behavior of coatings containing molybdenum and titanium dioxide is similar to the anodic behavior of cobalt coatings, except for the potential values of the critical points of the polarization dependences; the values of corrosion current of molybdenum sludges and composite coatings are much lower than cobalt. The sixth section offers maps of technological processes of deposition of Co-Mo and Co-Mo-TiO₂ coatings with indication of basic and auxiliary operations, electrolyte compositions, processing modes.
Альами, Давид Абдель Мутталеб, and Виктор Иванович Булавин. "Получение и характеристика катализаторов Ag/Ce₁₋ₓMnₓO₂₋δ." Thesis, НТУ "ХПИ", 2012. http://repository.kpi.kharkov.ua/handle/KhPI-Press/30324.
Full textРыщенко, Михаил Иванович, Елена Юрьевна Федоренко, Е. Б. Дайнеко, М. Ю. Лисюткина, and А. А. Горбунова. "Исследование свойств и фазового состава муллито-тиалитовой керамики, полученной при низких температурах." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/48776.
Full textВолынко, Л. Б., Виктория Витальевна Тараненкова, and Галина Николаевна Шабанова. "Исследование влияния раствора бишофита Затуринского месторождения на физико-механические свойства доломитового вяжущего." Thesis, НТУ "ХПИ", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/26073.
Full textИващенко, М. Ю., Галина Николаевна Шабанова, С. А. Киселева, and Олег Владимирович Костыркин. "Гексаферрит бария как заполнитель при производстве защитных бетонов." Thesis, НТУ "ХПИ", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/26077.
Full textConference papers on the topic "Аналіз рентгенофазовий"
Verdieva, Z. N., I. K. Garkushin, N. N. Verdiev, M. Sh Zeynalov, and P. A. Musaeva. "ENERGY HEAT CARRIERS FROM HALOGENIDES ALKALINE AND ALKALINE EARTH METALS." In RENEWABLE ENERGY: CHALLENGES AND PROSPECTS. ALEF, 2020. http://dx.doi.org/10.33580/2313-5743-2020-8-1-331-339.
Full text