Academic literature on the topic 'Π-Conjugated Polymers'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Π-Conjugated Polymers.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Π-Conjugated Polymers"

1

Ma, Junyu, Guolin Lu, Xiaoyu Huang, and Chun Feng. "π-Conjugated-polymer-based nanofibers through living crystallization-driven self-assembly: preparation, properties and applications." Chemical Communications 57, no. 98 (2021): 13259–74. http://dx.doi.org/10.1039/d1cc04825b.

Full text
Abstract:
π-Conjugated-polymer-based nanofibers endowed with both topological merits from fiber-like nanostructures and structural merits from π-conjugated polymers represent one of the most exciting and rapidly expanding fields.
APA, Harvard, Vancouver, ISO, and other styles
2

Otsuka, S., G. Tanaka, and T. Yamamoto. "π-Conjugated Conductive Polymers." International Polymer Science and Technology 35, no. 7 (July 2008): 23–29. http://dx.doi.org/10.1177/0307174x0803500704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Holdcroft, S. "Patterning π-Conjugated Polymers." Advanced Materials 13, no. 23 (December 2001): 1753–65. http://dx.doi.org/10.1002/1521-4095(200112)13:23<1753::aid-adma1753>3.0.co;2-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chaudhuri, Saikat, Manikandan Mohanan, Andreas V. Willems, Jeffery A. Bertke, and Nagarjuna Gavvalapalli. "β-Strand inspired bifacial π-conjugated polymers." Chemical Science 10, no. 23 (2019): 5976–82. http://dx.doi.org/10.1039/c9sc01724k.

Full text
Abstract:
β-Strand inspired bifacial π-conjugated polymers that are soluble despite the absence of pendant solubilizing chains are reported. Precise tunability of the bifacial monomer height enables control of polymer solubility and intermolecular interactions.
APA, Harvard, Vancouver, ISO, and other styles
5

Jeong, WonJo, Kyumin Lee, Jaeyoung Jang, and In Hwan Jung. "Development of Benzobisoxazole-Based Novel Conjugated Polymers for Organic Thin-Film Transistors." Polymers 15, no. 5 (February 24, 2023): 1156. http://dx.doi.org/10.3390/polym15051156.

Full text
Abstract:
Benzo[1,2-d:4,5-d′]bis(oxazole) (BBO) is a heterocyclic aromatic ring composed of one benzene ring and two oxazole rings, which has unique advantages on the facile synthesis without any column chromatography purification, high solubility on the common organic solvents and planar fused aromatic ring structure. However, BBO conjugated building block has rarely been used to develop conjugated polymers for organic thin film transistors (OTFTs). Three BBO-based monomers, BBO without π-spacer, BBO with non-alkylated thiophene π-spacer and BBO with alkylated thiophene π-spacer, were newly synthesized and they were copolymerized with a strong electron-donating cyclopentadithiophene conjugated building block to give three p-type BBO-based polymers. The polymer containing non-alkylated thiophene π-spacer showed the highest hole mobility of 2.2 × 10−2 cm2 V−1 s−1, which was 100 times higher than the other polymers. From the 2D grazing incidence X-ray diffraction data and simulated polymeric structures, we found that the intercalation of alkyl side chains on the polymer backbones was crucial to determine the intermolecular ordering in the film states, and the introduction of non-alkylated thiophene π-spacer to polymer backbone was the most effective to promote the intercalation of alkyl side chains in the film states and hole mobility in the devices.
APA, Harvard, Vancouver, ISO, and other styles
6

Ghosh, Samrat, Yusuke Tsutsui, Katsuaki Suzuki, Hironori Kaji, Kayako Honjo, Takashi Uemura, and Shu Seki. "Impact of the position of the imine linker on the optoelectronic performance of π-conjugated organic frameworks." Molecular Systems Design & Engineering 4, no. 2 (2019): 325–31. http://dx.doi.org/10.1039/c8me00079d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Matsumoto, Fukashi, and Yoshiki Chujo. "Chiral π-conjugated organoboron polymers." Pure and Applied Chemistry 81, no. 3 (January 1, 2009): 433–37. http://dx.doi.org/10.1351/pac-con-08-08-01.

Full text
Abstract:
A novel π-conjugated organoboron polymer with a chiral side chain was prepared by way of hydroboration polymerization between an optically active diyne monomer and triisopropylphenylborane. The achiral analog of this organoboron polymer was also prepared as reference material. Optical properties and optical activity were investigated by UV-vis absorption, fluorescence emission, and circular dichroism (CD) spectroscopy. Concentration dependence and the influence of solvent effects upon chiroptical activity are described.
APA, Harvard, Vancouver, ISO, and other styles
8

Bässler, H., V. I. Arkhipov, E. V. Emelianova, A. Gerhard, A. Hayer, C. Im, and J. Rissler. "Excitons in π-conjugated polymers." Synthetic Metals 135-136 (April 2003): 377–82. http://dx.doi.org/10.1016/s0379-6779(02)00603-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yasuda, Takuma, Itaru Osaka, Kazuo Tanaka, and Keiji Tanaka. "Special issue: π-conjugated polymers." Polymer Journal 55, no. 4 (April 2023): 295. http://dx.doi.org/10.1038/s41428-022-00750-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kausar, Ayesha. "Conjugated Polymer/Graphene Oxide Nanocomposites—State-of-the-Art." Journal of Composites Science 5, no. 11 (November 5, 2021): 292. http://dx.doi.org/10.3390/jcs5110292.

Full text
Abstract:
Graphene oxide is an imperative modified form of graphene. Similar to graphene, graphene oxide has gained vast interest for the myriad of industrial applications. Conjugated polymers or conducting polymers are well known organic materials having conducting backbone. These polymers have semiconducting nature due to π-conjugation along the main chain. Doping and modification have been used to enhance the electrical conductivity of the conjugated polymers. The nanocomposites of the conjugated polymers have been reported with the nanocarbon nanofillers including graphene oxide. This review essentially presents the structure, properties, and advancements in the field of conducting polymer/graphene oxide nanocomposites. The facile synthesis, processability, and physical properties of the polymer/graphene oxide nanocomposites have been discussed. The conjugated polymer/graphene oxide nanocomposites have essential significance for the supercapacitors, solar cells, and anti-corrosion materials. Nevertheless, the further advanced properties and technical applications of the conjugated polymer/graphene oxide nanocomposites need to be explored to overcome the challenges related to the high performance.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Π-Conjugated Polymers"

1

He, Yinghui. "Novel N-type Π-conjugated Polymers for all-polymer solar cells." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0651/document.

Full text
Abstract:
Les cellules solaires organiques (OSC) apparaissent comme une technologie prometteuse pour les énergies renouvelables en raison de leur poids léger, leur grande flexibilité et leur processus de fabrication peu coûteux. Jusqu'à présent, la plupart des OPV ont utilisé des dérivés de Fullerene, tels que PCBM ou PC71BM, en tant qu'accepteur d'électrons dans la couche active, qui s'est avéré être un goulet d'étranglement pour cette technologie. Par conséquent, le développement d'accepteurs non-fullerene est devenu la nouvelle force motrice de ce domaine. Les cellules solaires tout-polymères (tous-PSC) qui ont les avantages de la robustesse, de la stabilité et de l'accessibilité ont déjà atteint PCE jusqu'à 9%. Ainsi, le développement de nouveaux matériaux accepteurs est impératif pour améliorer les performances de tous les PSC
Organic solar cells (OSCs) appear as a promising technology for renewable energy owing to their light weight, great flexibility and low-cost fabrication process. So far most of the OPV shave been using fullerene derivatives, such as PCBM or PC71BM, as the electron acceptor in the active layer, which have been proven to a bottleneck for this technology. Therefore,developing non-fullerene acceptors has become the new driving force for this field. All-polymer solar cells (all-PSCs) that have the advantages of robustness, stability and tunability have already achieved PCE up to 9%. Thus, developing novel acceptor materials is imperative for improving the performance of all-PSCs
APA, Harvard, Vancouver, ISO, and other styles
2

Mask, Walker. "MODELING THE CONDENSED-PHASE BEHAVIOR OF Π-CONJUGATED POLYMERS." UKnowledge, 2019. https://uknowledge.uky.edu/chemistry_etds/120.

Full text
Abstract:
It is well established that the morphology and physical properties of an organic semiconducting (OSC) material regulate its electronic properties. However, structure-function relationships remain difficult to describe in polymer-based OSC, which are of particular interest due to their robust mechanical properties. If relationships among the molecular and bulk levels of structure can be found, they can aid in the design of improved materials. To explore and detail important structure-function relationships in polymer-based OSC, this work employs molecular dynamics (MD) simulations to study various π-conjugated polymers in different environments. Two independent investigations are discussed in this work. One investigation examines how the purposeful disruption of the π-conjugated backbone to increase the chain flexibility impacts the chain structure and packing in the condensed phase. This is done by adding a conjugation break spacer (CBS) unit of one to ten carbons in length into the monomer structure of diketopyrrolopyrrole-based polymers. It is found that trends in the folding and glass structure follow the increase and the parity (odd versus even) of the CBS length. The second investigation analyzes a variety of polymers and small molecule acceptor (SMA) blends to observe the effects of changing the shape of either component and the physical properties of the material, as well as the structure of the polymer chains. It is found that the conjugated core, the side chains, and the planarity or sphericity each influence the density and diffusion of the materials made.
APA, Harvard, Vancouver, ISO, and other styles
3

Riehn, Robert. "Optical near-field investigations of π-conjugated polymers." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Miyake, Junpei. "Synthesis of Novel Hybrid-Type π-Conjugated Polymers." 京都大学 (Kyoto University), 2009. http://hdl.handle.net/2433/124548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jadhav, R. "New π-conjugated materials for optoelectronic applications." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2019. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/4586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ishida, Tamao. "Synthesis and functionalization of through-space π-conjugated polymers." 京都大学 (Kyoto University), 2006. http://hdl.handle.net/2433/144030.

Full text
Abstract:
Kyoto University (京都大学)
0048
新制・課程博士
博士(工学)
甲第12345号
工博第2674号
新制||工||1378(附属図書館)
24181
UT51-2006-J337
京都大学大学院工学研究科高分子化学専攻
(主査)教授 中條 善樹, 教授 増田 俊夫, 教授 檜山 爲次郎
学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
7

Adriana, Gelover Santiago Carmen. "π-conjugated polymers containing dithiafulvene and thioketene dimer units." 京都大学 (Kyoto University), 2005. http://hdl.handle.net/2433/144937.

Full text
Abstract:
Kyoto University (京都大学)
0048
新制・課程博士
博士(工学)
甲第11593号
工博第2539号
新制||工||1345(附属図書館)
23236
UT51-2005-D342
京都大学大学院工学研究科高分子化学専攻
(主査)教授 中條 善樹, 教授 増田 俊夫, 教授 伊藤 紳三郎
学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
8

Elmalem, Einat. "Synthesis of π-conjugated polymers via Suzuki cross-coupling polymerization." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jagtap, Subodh Prakash. "Design and synthesis of and π-stacked conjugated oligomers and polymers." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/47574.

Full text
Abstract:
Interchain interactions between π-systems have a strong effect on the properties of conjugated organic materials that find application in devices such as light emitting diodes (OLEDs), organic photovoltaics (OPVs), and field effect transistors (FETs). We have prepared covalently-stacked oligo(1,4-phenylene ethynylene)s and oligo(1,4-phenylene vinylene)s to study the influence of chain-chain interactions on the electronic structure of closely packed conjugated units. These serve as models for segments of conjugated materials in thin film devices. Extension of this concept has allowed us to prepare multi-tiered systems that display the influence of pi-stacking. The stacked architectures were prepared by multi-step synthesis of the scaffolds, followed by metal-catalyzed cross coupling reactions (Sonogashira, Heck, Suzuki couplings) to incorporate the conjugated oligomers. The optical and electrochemical properties of these stacked compounds and polymers were compared to their unstacked linear counterparts. These studies provide a platform for the exploration of the nature of charge carriers and excitons in a broad class of materials that have significant potential in addressing challenges in power generation, lighting and electronics.
APA, Harvard, Vancouver, ISO, and other styles
10

Giraud, Lauriane. "Bis-vanillin substrates as source of π-conjugated polymers for organic electronic." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0404.

Full text
Abstract:
Ces travaux de thèse portent sur la synthèse de polymères π-conjugués biosourcés issus de la vanilline, visant des applications potentielles en électronique organique (photovoltaïque ou Organic Light Emitting Diode, OLED). Des polyazométhines de masses molaires élevées, issus de la copolymérisation entre la divanilline et différentes diamines, ont été obtenus par polymérisation sous irradiation micro-onde durant 5 minutes puis séchage à l’évaporateur rotatif. Ces derniers ont une absorbance dans le proche UV mais un chemin de conjugaison très court, comme l’a révélé l’analyse de molécules modèles. Pour améliorer ce chemin de conjugaison, une molécule à base de divanilline a été synthétisée avec les fonctions aldéhyde en position para par rapport à la liaison entre les deux cycles aromatiques. Cette para-divanilline, encore jamais décrite, a été utilisée pour la synthèse de polyazomethines. Ces derniers présentent également un court chemin de conjugaison en raison de l’encombrement stérique entre les deux groupes phényle. Une dernière famille de polymère a alors été étudiée : les polythiazolothiazoles à base de divanilline. Ces polymères présentent des propriétés d’émission qui se caractérisent par une émission dans le bleu en solution et dans le jaune à l’état de film. Des molécules modèles à base de benzothiazole ont également été synthétisées et présentent un rendement quantique de fluorescence de 20% ainsi qu’un empilement π en « chevrons », leur conférant un fort potentiel pour diverses applications en électronique organique
The objective of this PhD is to synthesize π-conjugated bio-based polymers from vanillin, with potential applications in the field of organic electronic (photovoltaic, Organic Light Emitting Diode, OLED). Polyazomethines with high molar masses were obtained via the copolymerization of divanillin with various diamines. This polycondensation was performed in 5 minutes under microwave irradiation, followed by solvent removal using a rotary evaporator. Divanillin-based polyazomethines absorb in the near-UV range but have a short conjugation pathway, as revealed investigations on model compounds. To improve this conjugated pathway, a divanillin-based molecule bearing aldehyde functions in para positions with respect to the link between the rings, was designed. This so-called para-divanillin, never reported before, was copolymerized to yield polyazomethines. These latter polymers also have a short conjugation pathway due to steric hindrance between the two aromatic rings of the para-divanillin skeleton. A last family of divanillin-based polymers was thus investigated: polythiazolothiazoles. The latter exhibit specific emission properties as they emit in the blue range in solution and in the yellow range in films. Benzothiazole-based model compounds were also synthesized and exhibited a fluorescence quantum yield of 20% and “herringbone-like” π-stacking, giving them a strong potential for various organic electronic applications
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Π-Conjugated Polymers"

1

Häußler, Matthias, and Ben Zhong Tang. "Hyperbranched π-Conjugated Polymers." In Hyperbranched Polymers, 273–300. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470929001.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

MacLachlan, Mark J. "Metal-Containing π-Conjugated Polymers." In Frontiers in Transition Metal-Containing Polymers, 161–215. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470086063.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yamamoto, Takakazu, and Hiroki Fukumoto. "Metal Complexes of π-Conjugated Polymers and Related Polymers." In Macromolecules Containing Metal and Metal-Like Elements, 285–96. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471727652.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hirao, Toshikazu. "Metal Conjugates with Redox-Active π-Conjugated Polymers or Molecules." In Macromolecules Containing Metal and Metal-Like Elements, 209–26. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471727652.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Asano, A. "Chapter 9. Polymer Blends, Nanocomposites, Rubbers and π-Conjugated Polymers." In NMR Methods for Characterization of Synthetic and Natural Polymers, 175–210. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788016483-00175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Singh Gautam, Bhanu Pratap, Girijesh Kumar Verma, Nidhi Sharma, Himanshu Pandey, Virendra Kumar, and Manjul Gondwal. "Mixed Valence π-Conjugated Coordination Polymers for OLEDs." In Organic Light Emitting Diode (OLED) Toward Smart Lighting and Displays Technologies, 149–73. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003260417-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Collard, David M. "π-Stacked Oligomers as Models for Semiconducting Conjugated Organic Materials." In π-Stacked Polymers and Molecules, 185–243. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54129-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Xie, Chen, and Kanyi Pu. "π-Conjugated/Semiconducting Polymer Nanoparticles for Photoacoustic Imaging." In Conjugated Polymers for Biological and Biomedical Applications, 111–33. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527342747.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yokozawa, Tsutomu. "Catalyst-Transfer Condensation Polymerization for Precision Synthesis of π-Conjugated Polymers." In Conjugated Polymer Synthesis, 35–58. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527632664.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yanagi, Hisao, Yusuke Ohtsuka, Tatsuya Muneishi, and Atsushi Ishizumi. "Light-Emitting Field-Effect Transistors with π-Conjugated Liquid Crystalline Polymer." In Liquid Crystalline Polymers, 307–25. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-22894-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Π-Conjugated Polymers"

1

Abdou, Mohammad S. A., Z. W. Xie, J. Lowe, and Steven Holdcroft. "Microlithography of π-conjugated polymers." In SPIE's 1994 Symposium on Microlithography, edited by Omkaram Nalamasu. SPIE, 1994. http://dx.doi.org/10.1117/12.175388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kersting, R., U. Lemmer, R. F. Mahrt, K. Leo, H. Kurz, H. Bässler, and E. O. Göbel. "Ultrafast Energy Relaxation in π-Conjugated Polymers." In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/otfa.1993.wb.3.

Full text
Abstract:
In recent years, the promising prospects for applications of polymers in optoelectronic and nonlinear optical devices have stimulated much interest in their fundamental optical properties. Among the attractive polymers for electroluminescent devices are poly(phenylenevinylene)(PPV) and poly(phenyl-p-phenylenevinylene) (PPPV). Although high quantum yields are demonstrated [1], several fundamental properties like the large Stokes shift between absorption and luminescence are not well understood. For an optimization of material parameters, a detailed understanding of the optical response is needed.
APA, Harvard, Vancouver, ISO, and other styles
3

Matsui, Tatsunosuke, Yuto Inose, Hiroki Mori, Takao Kinoshita, Mingkai Liu, David A. Powell, and Ilya V. Shadrivov. "Reconfigurable THz and microwave metamaterials based on π-conjugated polymers." In 2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). IEEE, 2016. http://dx.doi.org/10.1109/imws-amp.2016.7588374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Osaka, I. "Development of New π-Conjugated Polymers for Efficient Organic Photovoltaics." In 2019 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2019. http://dx.doi.org/10.7567/ssdm.2019.a-1-01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hide, F., M. A. Diaz-Garcia, M. McGehee, B. J. Schwartz, and A. J. Heeger. "Conjugated Polymers as Materials for Thin Film Solid State Lasers." In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/otfa.1997.wd.1.

Full text
Abstract:
Optically pumped gain narrowing and lasing have been demonstrated in submicron thick films, neat and undiluted, of photoluminescent conjugated polymers. The dramatic collapse of the emission line width occurs at very low pump energy thresholds (~10 μJ/cm2). Gain narrowing is found in over a dozen different conjugated polymers representing a variety of molecular structures, including poly(p-phenylenevinylene), poly(p-phenylene) and polyfluorene derivatives; the emission wavelengths in these materials span the visible spectrum. The short gain lengths in conjugated polymers are attributed to the high density of chromophores, the large density of states associated with the interband (π-π*) transition in quasi-one-dimensional systems, and the Stokes shift which minimizes self-absorption and allows optical pumping to the excited state without simultaneously stimulating emission (thereby yielding population inversion). Lasing and gain narrowing are compared for a soluble poly(phenylene vinylene) derivative using two different resonant structures: planar waveguides and microcavities. In both cases, the gain narrowing threshold is at 0.05 - 0.1 μJ per 10 ns pulse focused to approximately 1.5 mm. Single mode microcavity lasers are obtained when a cavity resonance occurs at the wavelength where the gain of the polymer is a maximum. Low threshold lasing (threshold more than an order of magnitude below that observed in planar waveguides and microcavities) has also been demonstrated using distributed feedback in a planar chip film configuration.
APA, Harvard, Vancouver, ISO, and other styles
6

Lane, Paul A., Xing Wei, and Z. Valy Vardeny. "Spin and spectral signatures of polaron pairs in π-conjugated polymers." In Optical Science, Engineering and Instrumentation '97, edited by Z. Valy Vardeny and Lewis J. Rothberg. SPIE, 1997. http://dx.doi.org/10.1117/12.279274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Osaka, Itaru. "Design and Synthesis of π-Conjugated Polymers for Efficient Organic Photovoltaics." In 7th Asia-Pacific International Conference on Perovskite, Organic Photovoltaics and Optoelectronics. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2023. http://dx.doi.org/10.29363/nanoge.iperop.2024.061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chouk, Rihab, Manel Bergaoui, Nejmeddine Smida, and Mohamed Khalfaoui. "Electrical and Molecular Engineering of π-Conjugated Polymers for Multilayer OLED Application." In 2020 17th International Multi-Conference on Systems, Signals & Devices (SSD). IEEE, 2020. http://dx.doi.org/10.1109/ssd49366.2020.9364133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ehrenfreund, Eitan A., and Z. Valy Vardeny. "Phonon spectroscopy in π-conjugated polymers: the role of the excited electronic states." In Optical Science, Engineering and Instrumentation '97, edited by Z. Valy Vardeny and Lewis J. Rothberg. SPIE, 1997. http://dx.doi.org/10.1117/12.295532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ueberhofen, K., R. O. Garay, K. Müllen, and C. Bubeck. "Nonlinear Optical Waveguide Spectroscopy of Poly(p-Phenylenevinylene)." In Nonlinear Optics: Materials, Fundamentals and Applications. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/nlo.1996.nwd.3.

Full text
Abstract:
Poly(p-phenylenevinylene) (PPV) is a typical representative of conjugated polymers, which have a highly delocalized, one-dimensional conjugated π-electron system. These polymers have found much interest, because most of them can be processed rather easily to thin film waveguides and because of their large third-order nonlinearities [1-3]. Thin films of PPV are prepared by spin-coating of a soluble precursor polymer on fused silica substrates and thermal annealing under vacuum as described recently [4]. We have used thin films of PPV to develop and demonstrate a sensitive characterization method of the intensity dependent refractive index n = n0 + n2I and absorption coefficient α = α0 + α2I. The utility of any material for applications in photonics depends primarily on these quantities.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Π-Conjugated Polymers"

1

Partee, Jonathan. Optically detected magnetic resonance studies on π-conjugate polymers and novel carbon allotropes. Office of Scientific and Technical Information (OSTI), February 1999. http://dx.doi.org/10.2172/348885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography