Academic literature on the topic 'Ε-Regularity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ε-Regularity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ε-Regularity"
FOX, JACOB, LÁSZLÓ MIKLÓS LOVÁSZ, and YUFEI ZHAO. "On Regularity Lemmas and their Algorithmic Applications." Combinatorics, Probability and Computing 26, no. 4 (March 28, 2017): 481–505. http://dx.doi.org/10.1017/s0963548317000049.
Full textCONLON, DAVID, JACOB FOX, and BENNY SUDAKOV. "Hereditary quasirandomness without regularity." Mathematical Proceedings of the Cambridge Philosophical Society 164, no. 3 (January 26, 2017): 385–99. http://dx.doi.org/10.1017/s0305004116001055.
Full textChen, Shibing, and Alessio Figalli. "Boundary ε-regularity in optimal transportation." Advances in Mathematics 273 (March 2015): 540–67. http://dx.doi.org/10.1016/j.aim.2014.12.032.
Full textGerke, Stefanie, Yoshiharu Kohayakawa, Vojtěch Rödl, and Angelika Steger. "Small subsets inherit sparse ε-regularity." Journal of Combinatorial Theory, Series B 97, no. 1 (January 2007): 34–56. http://dx.doi.org/10.1016/j.jctb.2006.03.004.
Full textZhang, Yanjun, and Qiaozhen Ma. "Asymptotic Behavior for a Class of Nonclassical Parabolic Equations." ISRN Applied Mathematics 2013 (September 1, 2013): 1–14. http://dx.doi.org/10.1155/2013/204270.
Full textHasselblatt, Boris. "Regularity of the Anosov splitting and of horospheric foliations." Ergodic Theory and Dynamical Systems 14, no. 4 (December 1994): 645–66. http://dx.doi.org/10.1017/s0143385700008105.
Full textHOSSEINI, KAAVE, SHACHAR LOVETT, GUY MOSHKOVITZ, and ASAF SHAPIRA. "An improved lower bound for arithmetic regularity." Mathematical Proceedings of the Cambridge Philosophical Society 161, no. 2 (March 11, 2016): 193–97. http://dx.doi.org/10.1017/s030500411600013x.
Full textChen, Jianyi, Zhitao Zhang, Guijuan Chang, and Jing Zhao. "Periodic Solutions to Klein–Gordon Systems with Linear Couplings." Advanced Nonlinear Studies 21, no. 3 (July 17, 2021): 633–60. http://dx.doi.org/10.1515/ans-2021-2138.
Full textMiura, Tatsuya, and Felix Otto. "Sharp boundary ε-regularity of optimal transport maps." Advances in Mathematics 381 (April 2021): 107603. http://dx.doi.org/10.1016/j.aim.2021.107603.
Full textHan, Xiaoli, and Jun Sun. "An ε-regularity theorem for the mean curvature flow." Journal of Geometry and Physics 62, no. 12 (December 2012): 2329–36. http://dx.doi.org/10.1016/j.geomphys.2012.07.009.
Full textDissertations / Theses on the topic "Ε-Regularity"
Llerena, Montenegro Henry David. "Sur l'interdépendance des variables dans l'étude de quelques équations de la mécanique des fluides." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM048.
Full textThis thesis is devoted to the study of the relationship between the variables in the micropolar fluids equations. This system, which is based on the Navier-Stokes equations, consists in a coupling of two variables: the velocity field vec{u} and the microrotation field vec{w}. Our aim is to provide a better understanding of how information about one variable influences the behavior of the other. To this end, we have divided this thesis into four chapters, where we will study the local regularity properties of Leray-type weak solutions, and later we will focus on the regularity and uniqueness of weak solutions for the stationary case. The first chapter presents a brief physical derivation of the micropolar equations followed by the construction of the Leray-type weak solutions. In Chapter 2, we begin by proving a gain of integrability for both variables vec{u} and vec{w} whenever the velocity belongs to certain Morrey spaces. This result highlights an effect of domination by the velocity. We then show that this effect can also be observed within the framework of the Caffarelli-Kohn-Nirenberg theory, i.e., under an additional smallness hypothesis only on the gradient of the velocity, we can demonstrate that the solution becomes Hölder continuous. For this, we introduce the notion of a partial suitable solution, which is fundamental in this work and represents one of the main novelties. In the last section of this chapter, we derive similar results in the context of the Serrin criterion. In Chapter 3, we focus on the behavior of the L^3-norm of the velocity vec{u} near possible points where regularity may get lost. More precisely, we establish a blow-up criterion for the L^3 norm of the velocity and we improve this result by presenting a concentration phenomenon. We also verify that the limit point L^infty_t L^3_x of the Serrin criterion remains valid for the micropolar fluids equations. Finally, the problem of existence and uniqueness for the stationary micropolar fluids equations is addressed in Chapter 4. Indeed, we prove the existence of weak solutions (vec{u}, vec{w}) in the natural energy space dot{H}^1(mathbb{R}^3) imes H^1(mathbb{R}^3). Moreover, by using the relationship between the variables, we deduce that these solutions are regular. It is worth noting that the trivial solution may not be unique, and to overcome this difficulty, we develop a Liouville-type theorem. Hence, we demonstrate that by imposing stronger decay at infinity only on vec{u}, we can infer the uniqueness of the trivial solution (vec{u},vec{w})=(0,0)
Reiter, Philipp [Verfasser]. "Repulsive knot energies and pseudodifferential calculus : regorous analysis and regularity theory for O'Hara's knot energy family E(α), α ε (2,3) [E (alpha), alpha epsilon (2,3)] / vorgelegt von Philipp Reiter." 2009. http://d-nb.info/995661758/34.
Full textConference papers on the topic "Ε-Regularity"
Zhou, Daqing, and Languo Zhang. "CFD Research on Francis Pump-Turbine Load Rejection Transient Under Pump Condition." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64195.
Full textZhang, Yuliang, Zuchao Zhu, Baoling Cui, and Yi Li. "Characteristic Study of Pressure Fluctuation in Centrifugal Pump." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-06028.
Full textHuang, Xiao-Rui, Zhen Zhang, Xing-Tuan Yang, Sheng-Yao Jiang, and Ji-Yuan Tu. "Numerical Investigation on Turbulent Heat Transfer of Supercritical CO2 in a Helically Coiled Tube." In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81748.
Full text