Journal articles on the topic 'Β-lactoglobulin fibrils'

To see the other types of publications on this topic, follow the link: Β-lactoglobulin fibrils.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Β-lactoglobulin fibrils.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Gowda, Vasantha, Michal Biler, Andrei Filippov, Malisa V. Mantonico, Eirini Ornithopoulou, Mathieu Linares, Oleg N. Antzutkin, and Christofer Lendel. "Structural characterisation of amyloid-like fibrils formed by an amyloidogenic peptide segment of β-lactoglobulin." RSC Advances 11, no. 45 (2021): 27868–79. http://dx.doi.org/10.1039/d1ra03575d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gosal, Walraj S., Simon B. Ross-Murphy, Paul D. A. Pudney, and Allan H. Clark. "Characterisation of amyloid fibrils formed from β-lactoglobulin." Biochemical Society Transactions 30, no. 3 (June 1, 2002): A83. http://dx.doi.org/10.1042/bst030a083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jones, Owen G., Stephan Handschin, Jozef Adamcik, Ludger Harnau, Sreenath Bolisetty, and Raffaele Mezzenga. "Complexation of β-Lactoglobulin Fibrils and Sulfated Polysaccharides." Biomacromolecules 12, no. 8 (August 8, 2011): 3056–65. http://dx.doi.org/10.1021/bm200686r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Arnaudov, Luben N., Renko de Vries, Hans Ippel, and Carlo P. M. van Mierlo. "Multiple Steps during the Formation of β-Lactoglobulin Fibrils." Biomacromolecules 4, no. 6 (November 2003): 1614–22. http://dx.doi.org/10.1021/bm034096b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rabe, Rebecca, Ute Hempel, Laurine Martocq, Julia K. Keppler, Jenny Aveyard, and Timothy E. L. Douglas. "Dairy-Inspired Coatings for Bone Implants from Whey Protein Isolate-Derived Self-Assembled Fibrils." International Journal of Molecular Sciences 21, no. 15 (August 3, 2020): 5544. http://dx.doi.org/10.3390/ijms21155544.

Full text
Abstract:
To improve the integration of a biomaterial with surrounding tissue, its surface properties may be modified by adsorption of biomacromolecules, e.g., fibrils. Whey protein isolate (WPI), a dairy industry by-product, supports osteoblastic cell growth. WPI’s main component, β-lactoglobulin, forms fibrils in acidic solutions. In this study, aiming to develop coatings for biomaterials for bone contact, substrates were coated with WPI fibrils obtained at pH 2 or 3.5. Importantly, WPI fibrils coatings withstood autoclave sterilization and appeared to promote spreading and differentiation of human bone marrow stromal cells (hBMSC). In the future, WPI fibrils coatings could facilitate immobilization of biomolecules with growth stimulating or antimicrobial properties.
APA, Harvard, Vancouver, ISO, and other styles
6

Ma, Baoliang, Wen Li, Xudong Zhu, Guiling Liu, Fan Zhang, Fang Wu, Xiping Jiang, and Jinbing Xie. "Folic acid inhibits the amyloid fibrils formation of β-lactoglobulin." European Journal of BioMedical Research 1, no. 1 (February 10, 2017): 22. http://dx.doi.org/10.18088/ejbmr.1.1.2015.pp22-27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Da, Lorena Silva Pinho, Enrico Federici, Xiaobing Zuo, Jan Ilavsky, Ivan Kuzmenko, Zhi Yang, Owen Griffith Jones, and Osvaldo Campanella. "Heat accelerates degradation of β-lactoglobulin fibrils at neutral pH." Food Hydrocolloids 124 (March 2022): 107291. http://dx.doi.org/10.1016/j.foodhyd.2021.107291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dunstan, Dave E., Paul Hamilton-Brown, Peter Asimakis, William Ducker, and Joseph Bertolini. "Shear-induced structure and mechanics of β-lactoglobulin amyloid fibrils." Soft Matter 5, no. 24 (2009): 5020. http://dx.doi.org/10.1039/b914089a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Peng, Dengfeng, Jinchu Yang, Jing Li, Cuie Tang, and Bin Li. "Foams Stabilized by β-Lactoglobulin Amyloid Fibrils: Effect of pH." Journal of Agricultural and Food Chemistry 65, no. 48 (November 28, 2017): 10658–65. http://dx.doi.org/10.1021/acs.jafc.7b03669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Akkermans, Cynthia, Paul Venema, Atze Jan van der Goot, Remko M. Boom, and Erik van der Linden. "Enzyme-Induced Formation of β-Lactoglobulin Fibrils by AspN Endoproteinase." Food Biophysics 3, no. 4 (August 13, 2008): 390–94. http://dx.doi.org/10.1007/s11483-008-9094-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Wang, Jing, Hong Hua Xu, and Yan Xu. "Nanofibril Formation of Whey Protein Concentrate and their Properties of Fibril Dispersions." Advanced Materials Research 634-638 (January 2013): 1268–73. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.1268.

Full text
Abstract:
Compared with β-lactoglobulin or WPI, the complex compositions for whey protein concentrate (WPC) impacted the nano-fibrils formation, the heat-induced conversion of WPC into fibrils needed alternative methods with lower pH and higher heating temperature. 3wt% WPC could form long semi-flexible fibrils with diameters from 24nm to 28nm by heating at 90°C, pH 1.8 for 10h. The major driving forces both fibrils (pH 1.8) and particulate aggregates (pH 6.5) from WPC were studied using transmission electron microscopy (TEM), turbidity, surface hydrophobicity and free sulfydryl group (-SH). The results indicated that surface hydrophobicity interaction played a dominant role in the formation of fibrils aggregates, while the disulphide bonds after heating to form fibrils aggregates at the acidic pH 1.8 was weaker than that of formation particulate aggregates at pH 6.5.
APA, Harvard, Vancouver, ISO, and other styles
12

Bateman, Libei, Aiqian Ye, and Harjinder Singh. "Re-formation of Fibrils from Hydrolysates of β-Lactoglobulin Fibrils during in Vitro Gastric Digestion." Journal of Agricultural and Food Chemistry 59, no. 17 (September 14, 2011): 9605–11. http://dx.doi.org/10.1021/jf2020057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kroes-Nijboer, Ardy, Yvette S. Lubbersen, Paul Venema, and Erik van der Linden. "Thioflavin T fluorescence assay for β-lactoglobulin fibrils hindered by DAPH." Journal of Structural Biology 165, no. 3 (March 2009): 140–45. http://dx.doi.org/10.1016/j.jsb.2008.11.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Bolder, Suzanne G., Hanneke Hendrickx, Leonard M. C. Sagis, and Erik van der Linden. "Ca2+-Induced Cold-Set Gelation of Whey Protein Isolate Fibrils." Applied Rheology 16, no. 5 (October 1, 2006): 258–64. http://dx.doi.org/10.1515/arh-2006-0018.

Full text
Abstract:
Abstract In this paper we describe the rheological behaviour of Ca2+-induced cold-set gels of whey protein mixtures. Cold- set gels are important applications for products with a low thermal stability. In previous work [1], we determined the state diagram for whey protein mixtures that were heated for 10 h at pH 2 at 80°C. Under these conditions, the major whey protein, β-lactoglobulin (β-lg), forms fibrils. When whey protein mixtures are heated at protein concentrations in the liquid solution regime of the state diagram, cold-set gels can be formed by adding Ca2+ ions at pH 7. We studied the rheological behaviour of cold-set gels for various sample compositions for whey protein mixtures. When keeping the total whey protein concentration constant, the elastic modulus, G’, for the cold-set gels decreased for increasing a-lactalbumin and bovine serum albumin ratios, because less material (β- lg fibrils) was available to form a gel network. In the cold-set gels the interactions between the β-lg fibrils induced by the calcium ions are dominant. The β-lg fibrils are forming the cold-set gel network and therefore determine the gel strength. a-Lactalbumin and bovine serum albumin are not incorporated in the stress-bearing structure of the gels.
APA, Harvard, Vancouver, ISO, and other styles
15

Bolisetty, Sreenath, Jozef Adamcik, and Raffaele Mezzenga. "Snapshots of fibrillation and aggregation kinetics in multistranded amyloid β-lactoglobulin fibrils." Soft Matter 7, no. 2 (2011): 493–99. http://dx.doi.org/10.1039/c0sm00502a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Gilbert, Jay, Osvaldo Campanella, and Owen G. Jones. "Electrostatic Stabilization of β-lactoglobulin Fibrils at Increased pH with Cationic Polymers." Biomacromolecules 15, no. 8 (July 22, 2014): 3119–27. http://dx.doi.org/10.1021/bm500762u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Wu, Xiaoli, Katsuyoshi Nishinari, Zhiming Gao, Meng Zhao, Ke Zhang, Yapeng Fang, Glyn O. Phillips, and Fatang Jiang. "Gelation of β-lactoglobulin and its fibrils in the presence of transglutaminase." Food Hydrocolloids 52 (January 2016): 942–51. http://dx.doi.org/10.1016/j.foodhyd.2015.09.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Carbonaro, M., A. Di Venere, A. Filabozzi, P. Maselli, V. Minicozzi, S. Morante, E. Nicolai, A. Nucara, E. Placidi, and F. Stellato. "Role of dietary antioxidant (−)-epicatechin in the development of β-lactoglobulin fibrils." Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1864, no. 7 (July 2016): 766–72. http://dx.doi.org/10.1016/j.bbapap.2016.03.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Raynes, Jared K., Li Day, Pauline Crepin, Mathew H. Horrocks, and John A. Carver. "Coaggregation of κ-Casein and β-Lactoglobulin Produces Morphologically Distinct Amyloid Fibrils." Small 13, no. 14 (February 1, 2017): 1603591. http://dx.doi.org/10.1002/smll.201603591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bolisetty, Sreenath, Jijo J. Vallooran, Jozef Adamcik, and Raffaele Mezzenga. "Magnetic-Responsive Hybrids of Fe3O4 Nanoparticles with β-Lactoglobulin Amyloid Fibrils and Nanoclusters." ACS Nano 7, no. 7 (June 14, 2013): 6146–55. http://dx.doi.org/10.1021/nn401988m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Jurado, Rocío, and Natividad Gálvez. "Apoferritin Amyloid-Fibril Directed the In Situ Assembly and/or Synthesis of Optical and Magnetic Nanoparticles." Nanomaterials 11, no. 1 (January 8, 2021): 146. http://dx.doi.org/10.3390/nano11010146.

Full text
Abstract:
The coupling of proteins that can assemble, recognise or mineralise specific inorganic species is a promising strategy for the synthesis of nanoscale materials with a controllable morphology and functionality. Herein, we report that apoferritin protein amyloid fibrils (APO) have the ability to assemble and/or synthesise various metal and metal compound nanoparticles (NPs). As such, we prepared metal NP–protein hybrid bioconjugates with improved optical and magnetic properties by coupling diverse gold (AuNPs) and magnetic iron oxide nanoparticles (MNPs) to apoferritin amyloid fibrils and compared them to the well-known β-lactoglobulin (BLG) protein. In a second approach, we used of solvent-exposed metal-binding residues in APO amyloid fibrils as nanoreactors for the in situ synthesis of gold, silver (AgNPs) and palladium nanoparticles (PdNPs). Our results demonstrate, the versatile nature of the APO biotemplate and its high potential for preparing functional hybrid bionanomaterials. Specifically, the use of apoferritin fibrils as vectors to integrate magnetic MNPs or AuNPs is a promising synthetic strategy for the preparation of specific contrast agents for early in vivo detection using various bioimaging techniques.
APA, Harvard, Vancouver, ISO, and other styles
22

Jurado, Rocío, and Natividad Gálvez. "Apoferritin Amyloid-Fibril Directed the In Situ Assembly and/or Synthesis of Optical and Magnetic Nanoparticles." Nanomaterials 11, no. 1 (January 8, 2021): 146. http://dx.doi.org/10.3390/nano11010146.

Full text
Abstract:
The coupling of proteins that can assemble, recognise or mineralise specific inorganic species is a promising strategy for the synthesis of nanoscale materials with a controllable morphology and functionality. Herein, we report that apoferritin protein amyloid fibrils (APO) have the ability to assemble and/or synthesise various metal and metal compound nanoparticles (NPs). As such, we prepared metal NP–protein hybrid bioconjugates with improved optical and magnetic properties by coupling diverse gold (AuNPs) and magnetic iron oxide nanoparticles (MNPs) to apoferritin amyloid fibrils and compared them to the well-known β-lactoglobulin (BLG) protein. In a second approach, we used of solvent-exposed metal-binding residues in APO amyloid fibrils as nanoreactors for the in situ synthesis of gold, silver (AgNPs) and palladium nanoparticles (PdNPs). Our results demonstrate, the versatile nature of the APO biotemplate and its high potential for preparing functional hybrid bionanomaterials. Specifically, the use of apoferritin fibrils as vectors to integrate magnetic MNPs or AuNPs is a promising synthetic strategy for the preparation of specific contrast agents for early in vivo detection using various bioimaging techniques.
APA, Harvard, Vancouver, ISO, and other styles
23

Pan, Shiyu, Zhihui Zhai, Kai Yang, Yao Xiang, Shoufeng Tang, Yating Zhang, Tifeng Jiao, Qingrui Zhang, and Deling Yuan. "β-Lactoglobulin amyloid fibrils supported Fe(III) to activate peroxydisulfate for organic pollutants elimination." Separation and Purification Technology 289 (May 2022): 120806. http://dx.doi.org/10.1016/j.seppur.2022.120806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Dave, Anant C., Simon M. Loveday, Skelte G. Anema, Trevor S. Loo, Gillian E. Norris, Geoffrey B. Jameson, and Harjinder Singh. "β-Lactoglobulin Self-Assembly: Structural Changes in Early Stages and Disulfide Bonding in Fibrils." Journal of Agricultural and Food Chemistry 61, no. 32 (August 5, 2013): 7817–28. http://dx.doi.org/10.1021/jf401084f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Bateman, Libei, Aiqian Ye, and Harjinder Singh. "In Vitro Digestion of β-Lactoglobulin Fibrils Formed by Heat Treatment at Low pH." Journal of Agricultural and Food Chemistry 58, no. 17 (September 8, 2010): 9800–9808. http://dx.doi.org/10.1021/jf101722t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Rogers, S. S., P. Venema, J. P. M. van der Ploeg, E. van der Linden, L. M. C. Sagis, and A. M. Donald. "Investigating the permanent electric dipole moment of β-lactoglobulin fibrils, using transient electric birefringence." Biopolymers 82, no. 3 (June 15, 2006): 241–52. http://dx.doi.org/10.1002/bip.20483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Chang, Hon Weng, Tai Boon Tan, Phui Yee Tan, Imededdine Arbi Nehdi, Hassen Mohamed Sbihi, and Chin Ping Tan. "Microencapsulation of fish oil-in-water emulsion using thiol-modified β-lactoglobulin fibrils-chitosan complex." Journal of Food Engineering 264 (January 2020): 109680. http://dx.doi.org/10.1016/j.jfoodeng.2019.07.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Dave, Anant C., Simon M. Loveday, Skelte G. Anema, Geoffrey B. Jameson, and Harjinder Singh. "Formation of nano-fibrils from the A, B and C variants of bovine β-lactoglobulin." International Dairy Journal 41 (February 2015): 64–67. http://dx.doi.org/10.1016/j.idairyj.2014.09.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Bolisetty, Sreenath, Ludger Harnau, Jin-mi Jung, and Raffaele Mezzenga. "Gelation, Phase Behavior, and Dynamics of β-Lactoglobulin Amyloid Fibrils at Varying Concentrations and Ionic Strengths." Biomacromolecules 13, no. 10 (September 7, 2012): 3241–52. http://dx.doi.org/10.1021/bm301005w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Serfert, Y., C. Lamprecht, C. P. Tan, J. K. Keppler, E. Appel, F. J. Rossier-Miranda, K. Schroen, et al. "Characterisation and use of β-lactoglobulin fibrils for microencapsulation of lipophilic ingredients and oxidative stability thereof." Journal of Food Engineering 143 (December 2014): 53–61. http://dx.doi.org/10.1016/j.jfoodeng.2014.06.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Sasaki, Naoki, Yuna Saitoh, Rajesh Kumar Sharma, and Kazuya Furusawa. "Determination of the elastic modulus of β-lactoglobulin amyloid fibrils by measuring the Debye-Waller factor." International Journal of Biological Macromolecules 92 (November 2016): 240–45. http://dx.doi.org/10.1016/j.ijbiomac.2016.07.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Rühs, Patrick A., Christine Affolter, Erich J. Windhab, and Peter Fischer. "Shear and dilatational linear and nonlinear subphase controlled interfacial rheology of β-lactoglobulin fibrils and their derivatives." Journal of Rheology 57, no. 3 (May 2013): 1003–22. http://dx.doi.org/10.1122/1.4802051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Rühs, Patrick A., Nathalie Scheuble, Erich J. Windhab, Raffaele Mezzenga, and Peter Fischer. "Simultaneous Control of pH and Ionic Strength during Interfacial Rheology of β-Lactoglobulin Fibrils Adsorbed at Liquid/Liquid Interfaces." Langmuir 28, no. 34 (August 15, 2012): 12536–43. http://dx.doi.org/10.1021/la3026705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Chang, Hon Weng, Tai Boon Tan, Phui Yee Tan, Faridah Abas, Oi Ming Lai, Yong Wang, Yonghua Wang, Imededdine Arbi Nehdi, and Chin Ping Tan. "Physical properties and stability evaluation of fish oil-in-water emulsions stabilized using thiol-modified β-lactoglobulin fibrils-chitosan complex." Food Research International 105 (March 2018): 482–91. http://dx.doi.org/10.1016/j.foodres.2017.11.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Chang, Hon Weng, Tai Boon Tan, Phui Yee Tan, Faridah Abas, Oi Ming Lai, Yong Wang, Yonghua Wang, Imededdine Arbi Nehdi, and Chin Ping Tan. "Microencapsulation of fish oil using thiol-modified β-lactoglobulin fibrils/chitosan complex: A study on the storage stability and in vitro release." Food Hydrocolloids 80 (July 2018): 186–94. http://dx.doi.org/10.1016/j.foodhyd.2018.02.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Suo, Zhiguang, Xialing Hou, Yu Liu, Feifei Xing, Yingying Chen, and Lingyan Feng. "β-Lactoglobulin amyloid fibril-templated gold nanoclusters for cellular multicolor fluorescence imaging and colorimetric blood glucose assay." Analyst 145, no. 21 (2020): 6919–27. http://dx.doi.org/10.1039/d0an01357a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ye, Xinchen, Mikael S. Hedenqvist, Maud Langton, and Christofer Lendel. "On the role of peptide hydrolysis for fibrillation kinetics and amyloid fibril morphology." RSC Advances 8, no. 13 (2018): 6915–24. http://dx.doi.org/10.1039/c7ra10981d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Mazaheri, Mansooreh, Ali Akbar Moosavi-Movahedi, Ali Akbar Saboury, Fariba Khodagholi, Fatemeh Shaerzadeh, and Nader Sheibani. "Curcumin Protects β-Lactoglobulin Fibril Formation and Fibril-Induced Neurotoxicity in PC12Cells." PLOS ONE 10, no. 7 (July 17, 2015): e0133206. http://dx.doi.org/10.1371/journal.pone.0133206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ng, Shy Kai, Kar Lin Nyam, Imededdine Arbi Nehdi, Gun Hean Chong, Oi Ming Lai, and Chin Ping Tan. "Impact of stirring speed on β-lactoglobulin fibril formation." Food Science and Biotechnology 25, S1 (March 2016): 15–21. http://dx.doi.org/10.1007/s10068-016-0093-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

马, 保亮. "Dithiothreitol Inhibits the Amyloid Fibril Formation of β-Lactoglobulin." Biophysics 02, no. 04 (2014): 39–44. http://dx.doi.org/10.12677/biphy.2014.24005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Ma, Baoliang, Xiong You, and Fujiao Lu. "Inhibitory effects of β-ionone on amyloid fibril formation of β-lactoglobulin." International Journal of Biological Macromolecules 64 (March 2014): 162–67. http://dx.doi.org/10.1016/j.ijbiomac.2013.12.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Gosal, Walraj S., Allan H. Clark, and Simon B. Ross-Murphy. "Fibrillar β-Lactoglobulin Gels: Part 1. Fibril Formation and Structure." Biomacromolecules 5, no. 6 (November 2004): 2408–19. http://dx.doi.org/10.1021/bm049659d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kroes-Nijboer, Ardy, Paul Venema, Jacob Bouman, and Erik van der Linden. "The Critical Aggregation Concentration of β-Lactoglobulin-Based Fibril Formation." Food Biophysics 4, no. 2 (January 27, 2009): 59–63. http://dx.doi.org/10.1007/s11483-009-9101-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Sardar, Subrata, Sampa Pal, Sanhita Maity, Jishnu Chakraborty, and Umesh Chandra Halder. "Amyloid fibril formation by β-lactoglobulin is inhibited by gold nanoparticles." International Journal of Biological Macromolecules 69 (August 2014): 137–45. http://dx.doi.org/10.1016/j.ijbiomac.2014.05.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Loveday, S. M., X. L. Wang, M. A. Rao, S. G. Anema, and H. Singh. "β-Lactoglobulin nanofibrils: Effect of temperature on fibril formation kinetics, fibril morphology and the rheological properties of fibril dispersions." Food Hydrocolloids 27, no. 1 (May 2012): 242–49. http://dx.doi.org/10.1016/j.foodhyd.2011.07.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Hamada, Daizo, and Christopher M. Dobson. "A kinetic study of β-lactoglobulin amyloid fibril formation promoted by urea." Protein Science 11, no. 10 (April 13, 2009): 2417–26. http://dx.doi.org/10.1110/ps.0217702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Maity, Sanhita, Sampa Pal, Subrata Sardar, Nayim Sepay, Hasan Parvej, Shahnaz Begum, Ramkrishna Dalui, Niloy Das, Anirban Pradhan, and Umesh Chandra Halder. "Inhibition of amyloid fibril formation of β-lactoglobulin by natural and synthetic curcuminoids." New Journal of Chemistry 42, no. 23 (2018): 19260–71. http://dx.doi.org/10.1039/c8nj03194k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Arnaudov, Luben N., Renko de Vries, and Martien A. Cohen Stuart. "Time-resolved small-angle neutron scattering during heat-induced fibril formation from bovine β-lactoglobulin." Journal of Chemical Physics 124, no. 8 (February 28, 2006): 084701. http://dx.doi.org/10.1063/1.2171418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Krebs, Mark R. H., Glyn L. Devlin, and Athene M. Donald. "Amyloid Fibril-Like Structure Underlies the Aggregate Structure across the pH Range for β-Lactoglobulin." Biophysical Journal 96, no. 12 (June 2009): 5013–19. http://dx.doi.org/10.1016/j.bpj.2009.03.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Loveday, S. M., M. A. Rao, L. K. Creamer, and H. Singh. "Factors Affecting Rheological Characteristics of Fibril Gels: The Case of β-Lactoglobulin and α-Lactalbumin." Journal of Food Science 74, no. 3 (April 2009): R47—R55. http://dx.doi.org/10.1111/j.1750-3841.2009.01098.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography