Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Μm TSMC“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Μm TSMC" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Μm TSMC"
CHENG, KUO-HSING, SHUN-WEN CHENG und WEN-SHIUAN LEE. „64-BIT PIPELINE CARRY LOOKAHEAD ADDER USING ALL-N-TRANSISTOR TSPC LOGICS“. Journal of Circuits, Systems and Computers 15, Nr. 01 (Februar 2006): 13–27. http://dx.doi.org/10.1142/s0218126606002915.
Der volle Inhalt der QuelleShokrani, Mohammad Reza, Mojtaba Khoddam, Mohd Nizar B. Hamidon, Noor Ain Kamsani, Fakhrul Zaman Rokhani und Suhaidi Bin Shafie. „An RF Energy Harvester System Using UHF Micropower CMOS Rectifier Based on a Diode Connected CMOS Transistor“. Scientific World Journal 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/963709.
Der volle Inhalt der QuellePandey, Neeta, und Rajeshwari Pandey. „Current Mode Full-Wave Rectifier Based on a Single MZC-CDTA“. Active and Passive Electronic Components 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/967057.
Der volle Inhalt der QuelleLi, Zhi Yuan, und Xiang Ning Fan. „Design of a 0.7~3.8GHz Wideband Power Amplifier in 0.18-μm CMOS Process“. Applied Mechanics and Materials 364 (August 2013): 429–33. http://dx.doi.org/10.4028/www.scientific.net/amm.364.429.
Der volle Inhalt der QuelleWang, Bin, und Qing Sheng Hu. „A High-Speed 64b/66b Decoder Used in SerDes“. Applied Mechanics and Materials 556-562 (Mai 2014): 1549–52. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.1549.
Der volle Inhalt der QuelleYu, Zhou, Xiang Ning Fan, Zai Jun Hua und Chen Xu. „Design of a 0.7~2.6GHz Wideband Power Amplifier in 0.18-μm CMOS Process“. Applied Mechanics and Materials 618 (August 2014): 543–47. http://dx.doi.org/10.4028/www.scientific.net/amm.618.543.
Der volle Inhalt der QuelleLee, Chae-Eun, Younginha Jung und Yoon-Kyu Song. „8-Channel Biphasic Current Stimulator Optimized for Retinal Prostheses“. Journal of Nanoscience and Nanotechnology 21, Nr. 8 (01.08.2021): 4298–302. http://dx.doi.org/10.1166/jnn.2021.19405.
Der volle Inhalt der QuelleMohan, Jitendra, und Sudhanshu Maheshwari. „Cascadable Current-Mode First-Order All-Pass Filter Based on Minimal Components“. Scientific World Journal 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/859784.
Der volle Inhalt der QuelleBouzerara, Lyes, und Mohand Belaroussi. „Current mode approach: High performance 0.35 μm CMOS class AB push-pull current amplifier“. Facta universitatis - series: Electronics and Energetics 16, Nr. 2 (2003): 195–204. http://dx.doi.org/10.2298/fuee0302195b.
Der volle Inhalt der QuelleFAN, CHIH-PENG, und CHIA-HAO FANG. „LOW-POWER INSTRUCTION ADDRESS BUS CODING WITH XOR–BITS ARCHITECTURE“. Journal of Circuits, Systems and Computers 18, Nr. 01 (Februar 2009): 45–57. http://dx.doi.org/10.1142/s0218126609004910.
Der volle Inhalt der QuelleDissertationen zum Thema "Μm TSMC"
Chou, Tsung-Yi, und 周宗毅. „4-Gbps On-chip Interconnect Circuit in TSMC 0.18 μm Technology“. Thesis, 2007. http://ndltd.ncl.edu.tw/handle/76684066811559151718.
Der volle Inhalt der Quelle國立臺灣大學
電子工程學研究所
95
This work is based on a novel structure of transmission line — slotted semi-coaxial line and adopts the proposed peripheral circuits to solve the problem of global interconnect. This work adopted TSMC 0.18μm technology and it is proved by the measurement results that the proposed structure can transmit up to 4 Gbps data at 1.8V peak-to-peak. The system which adopted the proposed transmission line is also faster than the conventional RC repeater.
Lin, Guan-Wei, und 林冠瑋. „Design of Millimeter-wave Front-end Circuit With TSMC & UMC 0.18 μm CMOS-MEMS Process“. Thesis, 2015. http://ndltd.ncl.edu.tw/handle/8362xy.
Der volle Inhalt der Quelle國立中正大學
電機工程研究所
103
This thesis presents the design of three millimeter-wave front-end circuits using TSMC 0.18 μm and UMC 0.18 μm CMOS-MEMS technologies, including a broadside coupler-based reflection-type phase shifter with continuous-phase-tuning mechanism, a DC-70 GHz CMOS-MEMS SPST switch with low operating voltage, and an active-circulator-based reflection-type phase shifter. The broadside coupler-based reflection-type phase shifter with continuous-phase-tuning mechanism is implemented in TSMC 0.18 μm CMOS-MEMS process. In this design, the number of switching states is increased, leading to larger achievable phase tuning range. With 47-volt actuation voltage, the simulation result shows that the ~134°phase tuning range can be achieved while the insertion loss is 4.3 0.5dB at 70-GHz. The second circuit is a DC-70 GHz CMOS-MEMS SPST switch, which is implemented in both UMC and TSMC 0.18 μm CMOS-MEMS process. The electrical-driven actuator was carefully designed to reduce the operating voltage down to 12 V. The measurement result shows that the insertion loss is less than 0.4 dB in ON-state, but the isolation is not good in OFF-state due to the unexpected silicon oxide accumulation. The last one is an active-circulator-based reflection-type phase shifter. The active quasi-circulator is constructed by CMOS transistors, while the MEMS-driven capacitance is adopted as reflective load. It is implemented in TSMC 0.18 μm CMOS-MEMS process. The Simulation result shows that the phase tuning range is 102° under a 35-volt supply voltage at 24-GHz.
Konferenzberichte zum Thema "Μm TSMC"
Prajapati, Jignesh R., und Zuber M. Patel. „High linearity low noise figure mixer for Wi-max in 0.18 μm tsmc technology“. In 2016 International Conference on Signal and Information Processing (IConSIP). IEEE, 2016. http://dx.doi.org/10.1109/iconsip.2016.7857456.
Der volle Inhalt der QuelleChen, Wen-Yu, Yi-Feng Zhang, Paul C. P. Chao und Eka Fitrah Pribadi. „Design and Implementation of a High Accuracy Interpolation Encoder IC for Magnetic Sensor“. In ASME 2019 28th Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/isps2019-7476.
Der volle Inhalt der QuellePribadi, Eka Fitrah, Rajeev Kumar Pandey und Paul C. P. Chao. „A High-Resolution and Low Offset Delta-Sigma Analog to Digital Converter for Detecting Photoplethysmography Signal“. In ASME 2021 30th Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/isps2021-65248.
Der volle Inhalt der QuelleChao, Paul C. P., Chin-I. Su, Trong-Hieu Tran und Hsiao-Wen Zan. „A 3.2 mW Mixed-Signal Readout Circuit for an Organic Vertical Nano-Junctions Sensor“. In ASME 2016 Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/isps2016-9599.
Der volle Inhalt der QuelleWang, Mu-Chun, Zhen-Ying Hsieh, Chieu-Ying Hsu, Shuang-Yuan Chen und Heng-Sheng Huang. „A 2.4-GHz 0.18μm Full-CMOS Single-Stage Class-E Power Amplifier With Temperature Effect for ISM Band Wireless Communication“. In 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2007. http://dx.doi.org/10.1115/mnc2007-21085.
Der volle Inhalt der QuelleChao, Paul C. P., Li-Chi Hsu und Trong-Hieu Tran. „A New Small-Sized Non-Dispersive Infrared (NDIR) Sensor and its Drive/Readout Circuits“. In ASME 2016 Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/isps2016-9562.
Der volle Inhalt der QuelleChen, Hung-Che, Yung-Hua Kao, Paul C. P. Chao und Chin-Long Wey. „A New Automatic Readout Circuit for a Gas Sensor With Organic Vertical Nano-Junctions“. In ASME 2016 Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/isps2016-9582.
Der volle Inhalt der QuelleChang, C. P., W. W. Yen und Paul C. P. Chao. „A New Wireless Power Transfer Circuit With a Single-Stage Regulating Rectifier for Flexible Sensor Patches“. In ASME 2020 29th Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/isps2020-1951.
Der volle Inhalt der Quelle