Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Ε-Regularity“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Ε-Regularity" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Ε-Regularity"
FOX, JACOB, LÁSZLÓ MIKLÓS LOVÁSZ und YUFEI ZHAO. „On Regularity Lemmas and their Algorithmic Applications“. Combinatorics, Probability and Computing 26, Nr. 4 (28.03.2017): 481–505. http://dx.doi.org/10.1017/s0963548317000049.
Der volle Inhalt der QuelleCONLON, DAVID, JACOB FOX und BENNY SUDAKOV. „Hereditary quasirandomness without regularity“. Mathematical Proceedings of the Cambridge Philosophical Society 164, Nr. 3 (26.01.2017): 385–99. http://dx.doi.org/10.1017/s0305004116001055.
Der volle Inhalt der QuelleChen, Shibing, und Alessio Figalli. „Boundary ε-regularity in optimal transportation“. Advances in Mathematics 273 (März 2015): 540–67. http://dx.doi.org/10.1016/j.aim.2014.12.032.
Der volle Inhalt der QuelleGerke, Stefanie, Yoshiharu Kohayakawa, Vojtěch Rödl und Angelika Steger. „Small subsets inherit sparse ε-regularity“. Journal of Combinatorial Theory, Series B 97, Nr. 1 (Januar 2007): 34–56. http://dx.doi.org/10.1016/j.jctb.2006.03.004.
Der volle Inhalt der QuelleZhang, Yanjun, und Qiaozhen Ma. „Asymptotic Behavior for a Class of Nonclassical Parabolic Equations“. ISRN Applied Mathematics 2013 (01.09.2013): 1–14. http://dx.doi.org/10.1155/2013/204270.
Der volle Inhalt der QuelleHasselblatt, Boris. „Regularity of the Anosov splitting and of horospheric foliations“. Ergodic Theory and Dynamical Systems 14, Nr. 4 (Dezember 1994): 645–66. http://dx.doi.org/10.1017/s0143385700008105.
Der volle Inhalt der QuelleHOSSEINI, KAAVE, SHACHAR LOVETT, GUY MOSHKOVITZ und ASAF SHAPIRA. „An improved lower bound for arithmetic regularity“. Mathematical Proceedings of the Cambridge Philosophical Society 161, Nr. 2 (11.03.2016): 193–97. http://dx.doi.org/10.1017/s030500411600013x.
Der volle Inhalt der QuelleChen, Jianyi, Zhitao Zhang, Guijuan Chang und Jing Zhao. „Periodic Solutions to Klein–Gordon Systems with Linear Couplings“. Advanced Nonlinear Studies 21, Nr. 3 (17.07.2021): 633–60. http://dx.doi.org/10.1515/ans-2021-2138.
Der volle Inhalt der QuelleMiura, Tatsuya, und Felix Otto. „Sharp boundary ε-regularity of optimal transport maps“. Advances in Mathematics 381 (April 2021): 107603. http://dx.doi.org/10.1016/j.aim.2021.107603.
Der volle Inhalt der QuelleHan, Xiaoli, und Jun Sun. „An ε-regularity theorem for the mean curvature flow“. Journal of Geometry and Physics 62, Nr. 12 (Dezember 2012): 2329–36. http://dx.doi.org/10.1016/j.geomphys.2012.07.009.
Der volle Inhalt der QuelleDissertationen zum Thema "Ε-Regularity"
Llerena, Montenegro Henry David. „Sur l'interdépendance des variables dans l'étude de quelques équations de la mécanique des fluides“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM048.
Der volle Inhalt der QuelleThis thesis is devoted to the study of the relationship between the variables in the micropolar fluids equations. This system, which is based on the Navier-Stokes equations, consists in a coupling of two variables: the velocity field vec{u} and the microrotation field vec{w}. Our aim is to provide a better understanding of how information about one variable influences the behavior of the other. To this end, we have divided this thesis into four chapters, where we will study the local regularity properties of Leray-type weak solutions, and later we will focus on the regularity and uniqueness of weak solutions for the stationary case. The first chapter presents a brief physical derivation of the micropolar equations followed by the construction of the Leray-type weak solutions. In Chapter 2, we begin by proving a gain of integrability for both variables vec{u} and vec{w} whenever the velocity belongs to certain Morrey spaces. This result highlights an effect of domination by the velocity. We then show that this effect can also be observed within the framework of the Caffarelli-Kohn-Nirenberg theory, i.e., under an additional smallness hypothesis only on the gradient of the velocity, we can demonstrate that the solution becomes Hölder continuous. For this, we introduce the notion of a partial suitable solution, which is fundamental in this work and represents one of the main novelties. In the last section of this chapter, we derive similar results in the context of the Serrin criterion. In Chapter 3, we focus on the behavior of the L^3-norm of the velocity vec{u} near possible points where regularity may get lost. More precisely, we establish a blow-up criterion for the L^3 norm of the velocity and we improve this result by presenting a concentration phenomenon. We also verify that the limit point L^infty_t L^3_x of the Serrin criterion remains valid for the micropolar fluids equations. Finally, the problem of existence and uniqueness for the stationary micropolar fluids equations is addressed in Chapter 4. Indeed, we prove the existence of weak solutions (vec{u}, vec{w}) in the natural energy space dot{H}^1(mathbb{R}^3) imes H^1(mathbb{R}^3). Moreover, by using the relationship between the variables, we deduce that these solutions are regular. It is worth noting that the trivial solution may not be unique, and to overcome this difficulty, we develop a Liouville-type theorem. Hence, we demonstrate that by imposing stronger decay at infinity only on vec{u}, we can infer the uniqueness of the trivial solution (vec{u},vec{w})=(0,0)
Reiter, Philipp [Verfasser]. „Repulsive knot energies and pseudodifferential calculus : regorous analysis and regularity theory for O'Hara's knot energy family E(α), α ε (2,3) [E (alpha), alpha epsilon (2,3)] / vorgelegt von Philipp Reiter“. 2009. http://d-nb.info/995661758/34.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Ε-Regularity"
Zhou, Daqing, und Languo Zhang. „CFD Research on Francis Pump-Turbine Load Rejection Transient Under Pump Condition“. In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64195.
Der volle Inhalt der QuelleZhang, Yuliang, Zuchao Zhu, Baoling Cui und Yi Li. „Characteristic Study of Pressure Fluctuation in Centrifugal Pump“. In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-06028.
Der volle Inhalt der QuelleHuang, Xiao-Rui, Zhen Zhang, Xing-Tuan Yang, Sheng-Yao Jiang und Ji-Yuan Tu. „Numerical Investigation on Turbulent Heat Transfer of Supercritical CO2 in a Helically Coiled Tube“. In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81748.
Der volle Inhalt der Quelle