Zeitschriftenartikel zum Thema „ZnSeS“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: ZnSeS.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "ZnSeS" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Kulakovich, O. S., L. I. Gurinovich, L. I. Trotsiuk, A. A. Ramanenka, Hongbo Li, N. A. Matveevskaya und S. V. Gaponenko. „Manipulation of the quantum dots photostability using gold nanoparticles“. Doklady of the National Academy of Sciences of Belarus 66, Nr. 2 (06.05.2022): 148–55. http://dx.doi.org/10.29235/1561-8323-2022-66-2-148-155.

Der volle Inhalt der Quelle
Annotation:
The effect of plasmonic films containing gold nanoparticles of different shape (nanospheres and nanorods) on the photostability of InP/ZnSe/ZnSeS/ZnS and CdSe/ZnCdS/ZnS quantum dots with core/shell structure has been determined. Gold nanospheres increase the photostability of InP/ZnSe/ZnSeS/ZnS quantum dots when excited by blue LED radiation when reducing the average lifetime of the excited state of quantum dots and, accordingly, when reducing the probability of Auger processes. An increase in the average lifetime of the excited state of CdSe/ZnCdS/ZnS quantum dots in complexes with gold nanorods leads to a decrease in the photostability upon excitation at 449 and 532 nm.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bao, Zhen, Zhen-Feng Jiang, Qiang Su, Hsin-Di Chiu, Heesun Yang, Shuming Chen, Ren-Jei Chung und Ru-Shi Liu. „ZnSe:Te/ZnSeS/ZnS nanocrystals: an access to cadmium-free pure-blue quantum-dot light-emitting diodes“. Nanoscale 12, Nr. 21 (2020): 11556–61. http://dx.doi.org/10.1039/d0nr01019g.

Der volle Inhalt der Quelle
Annotation:
The emission wavelength of ZnSe/ZnS quantum dots was successfully tuned from the violet (∼420 nm) to pure-blue (∼455 nm) region by doping Te into the ZnSe core. A specific structure QLED fabricated with ZnSe:0.03Te/ZnSeS/ZnS QDs realized pure-blue emission.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Cingolani, R., M. Lomascolo, N. Lovergine, M. Dabbicco, M. Ferrara und I. Suemune. „Excitonic properties of ZnSe/ZnSeS superlattices“. Applied Physics Letters 64, Nr. 18 (02.05.1994): 2439–41. http://dx.doi.org/10.1063/1.111592.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chen, Hsueh-Shih, Bertrand Lo, Jen-Yu Hwang, Gwo-Yang Chang, Chien-Ming Chen, Shih-Jung Tasi und Shian-Jy Jassy Wang. „Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS Quantum Dots Synthesized from ZnO“. Journal of Physical Chemistry B 108, Nr. 50 (Dezember 2004): 19566. http://dx.doi.org/10.1021/jp040689k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Chen, Hsueh-Shih, Bertrand Lo, Jen-Yu Hwang, Gwo-Yang Chang, Chien-Ming Chen, Shih-Jung Tasi und Shian-Jy Jassy Wang. „Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS Quantum Dots Synthesized from ZnO“. Journal of Physical Chemistry B 108, Nr. 44 (November 2004): 17119–23. http://dx.doi.org/10.1021/jp047035w.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Boemare, C., Maria Helena Nazaré, W. Taudt, J. Söllner und M. Heuken. „Photoreflectance, Reflectivity and Photoluminescence of MOVPE Grown ZnSe/GaAs Epilayers and ZnSeS/ZnSe Superlattices“. Materials Science Forum 196-201 (November 1995): 567–72. http://dx.doi.org/10.4028/www.scientific.net/msf.196-201.567.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Adegoke, Oluwasesan, Min-Woong Seo, Tatsuya Kato, Shoji Kawahito und Enoch Y. Park. „Gradient band gap engineered alloyed quaternary/ternary CdZnSeS/ZnSeS quantum dots: an ultrasensitive fluorescence reporter in a conjugated molecular beacon system for the biosensing of influenza virus RNA“. Journal of Materials Chemistry B 4, Nr. 8 (2016): 1489–98. http://dx.doi.org/10.1039/c5tb02449h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Jang, Eun-Pyo, Jung-Ho Jo, Seung-Won Lim, Han-Byule Lim, Hwi-Jae Kim, Chang-Yeol Han und Heesun Yang. „Unconventional formation of dual-colored InP quantum dot-embedded silica composites for an operation-stable white light-emitting diode“. Journal of Materials Chemistry C 6, Nr. 43 (2018): 11749–56. http://dx.doi.org/10.1039/c8tc04095h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kulakovich, O., L. Gurinovich, Hui Li, A. Ramanenka, L. Trotsiuk, A. Muravitskaya, Jing Wei et al. „Photostability enhancement of InP/ZnSe/ZnSeS/ZnS quantum dots by plasmonic nanostructures“. Nanotechnology 32, Nr. 3 (22.10.2020): 035204. http://dx.doi.org/10.1088/1361-6528/abbdde.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Mabrouk, Salima, Hervé Rinnert, Lavinia Balan, Jordane Jasniewski, Sébastien Blanchard, Ghouti Medjahdi, Rafik Ben Chaabane und Raphaël Schneider. „Highly Luminescent and Photostable Core/Shell/Shell ZnSeS/Cu:ZnS/ZnS Quantum Dots Prepared via a Mild Aqueous Route“. Nanomaterials 12, Nr. 18 (19.09.2022): 3254. http://dx.doi.org/10.3390/nano12183254.

Der volle Inhalt der Quelle
Annotation:
An aqueous-phase synthesis of 3-mercaptopropionic acid (3-MPA)-capped core/shell/shell ZnSeS/Cu:ZnS/ZnS QDs was developed. The influence of the Cu-dopant location on the photoluminescence (PL) emission intensity was investigated, and the results show that the introduction of the Cu dopant in the first ZnS shell leads to QDs exhibiting the highest PL quantum yield (25%). The influence of the Cu-loading in the dots on the PL emission was also studied, and a shift from blue–green to green was observed with the increase of the Cu doping from 1.25 to 7.5%. ZnSeS/Cu:ZnS/ZnS QDs exhibit an average diameter of 2.1 ± 0.3 nm and are stable for weeks in aqueous solution. Moreover, the dots were found to be photostable under the continuous illumination of an Hg–Xe lamp and in the presence of oxygen, indicating their high potential for applications such as sensing or bio-imaging.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Shin, Dong‐Wook, Yo‐Han Suh, Sanghyo Lee, Bo Hou, Soo Deok Han, Yuljae Cho, Xiang‐Bing Fan et al. „Waterproof Flexible InP@ZnSeS Quantum Dot Light‐Emitting Diode“. Advanced Optical Materials 8, Nr. 6 (März 2020): 1901362. http://dx.doi.org/10.1002/adom.201901362.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Chang, Jun Hyuk, Hak June Lee, Seunghyun Rhee, Donghyo Hahm, Byeong Guk Jeong, Gabriel Nagamine, Lazaro A. Padilha, Kookheon Char, Euyheon Hwang und Wan Ki Bae. „Pushing the Band Gap Envelope of Quasi-Type II Heterostructured Nanocrystals to Blue: ZnSe/ZnSe1-XTeX/ZnSe Spherical Quantum Wells“. Energy Material Advances 2021 (05.02.2021): 1–10. http://dx.doi.org/10.34133/2021/3245731.

Der volle Inhalt der Quelle
Annotation:
Quasi-type II heterostructured nanocrystals (NCs) have been of particular interest due to their great potential for controlling the interplay of charge carriers. However, the lack of material choices for quasi-type II NCs restricts the accessible emission wavelength from red to near-infrared (NIR), which hinders their use in light-emitting applications that demand a wide range of visible colors. Herein, we demonstrate a new class of quasi-type II nanoemitters formulated in ZnSe/ZnSe1-XTeX/ZnSe seed/spherical quantum well/shell heterostructures (SQWs) whose emission wavelength ranges from blue to orange. In a given geometry, ZnSe1-XTeX emissive layers grown between the ZnSe seed and the shell layer are strained to fit into the surrounding media, and thus, the lattice mismatch between ZnSe1-XTeX and ZnSe is effectively alleviated. In addition, composition of the ZnSe1-XTeX emissive layer and the dimension of the ZnSe shell layer are engineered to tailor the distribution and energy of electron and hole wave functions. Benefitting from the capabilities to tune the charge carriers on demand and to form defect-free heterojunctions, ZnSe/ZnSe1-XTeX/ZnSe/ZnS NCs show near-unity photoluminescence quantum yield (PL QY>90%) in a broad range of emission wavelengths (peak PL from 450 nm to 600 nm). Finally, we exemplify dichromatic white NC-based light-emitting diodes (NC-LEDs) employing the mixed layer of blue- and yellow-emitting ZnSe/ZnSe1-XTeX/ZnSe/ZnS SQW NCs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Nga, Pham Thu, Nguyen Hai Yen, Dinh Hung Cuong, Nguyen Ngoc Hai, Nguyen Xuan Nghia, Vu Thi Hong Hanh, Le Van Vu und Laurent Coolen. „Study on the fabrication of CdZnSe/ZnSeS ternary alloy quantum dots“. International Journal of Nanotechnology 12, Nr. 5/6/7 (2015): 525. http://dx.doi.org/10.1504/ijnt.2015.067910.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Lim, Jaehoon, Wan Ki Bae, Donggu Lee, Min Ki Nam, Joohyun Jung, Changhee Lee, Kookheon Char und Seonghoon Lee. „InP@ZnSeS, Core@Composition Gradient Shell Quantum Dots with Enhanced Stability“. Chemistry of Materials 23, Nr. 20 (25.10.2011): 4459–63. http://dx.doi.org/10.1021/cm201550w.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Vikram, Ajit, Vivek Kumar, Utkarsh Ramesh, Karthik Balakrishnan, Nuri Oh, Kishori Deshpande, Trevor Ewers, Peter Trefonas, Moonsub Shim und Paul J. A. Kenis. „A Millifluidic Reactor System for Multistep Continuous Synthesis of InP/ZnSeS Nanoparticles“. ChemNanoMat 4, Nr. 9 (19.07.2018): 943–53. http://dx.doi.org/10.1002/cnma.201800160.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Nguyen, Hai Yen, Willy Daney de Marcillac, Clotilde Lethiec, Ngoc Hong Phan, Catherine Schwob, Agnès Maître, Quang Liem Nguyen et al. „Synthesis and optical properties of core/shell ternary/ternary CdZnSe/ZnSeS quantum dots“. Optical Materials 36, Nr. 9 (Juli 2014): 1534–41. http://dx.doi.org/10.1016/j.optmat.2014.04.020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Park, Sangjun, Jeehye Yang, Seunghan Kim, Donghyo Hahm, Hyunwoo Jo, Wan Ki Bae und Moon Sung Kang. „Light‐Emitting Electrochemical Cells with Polymer‐Blended InP/ZnSeS Quantum Dot Active Layer“. Advanced Optical Materials 8, Nr. 24 (29.10.2020): 2001535. http://dx.doi.org/10.1002/adom.202001535.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Adegoke, Oluwasesan, Philani Mashazi, Tebello Nyokong und Patricia B. C. Forbes. „Fluorescence properties of alloyed ZnSeS quantum dots overcoated with ZnTe and ZnTe/ZnS shells“. Optical Materials 54 (April 2016): 104–10. http://dx.doi.org/10.1016/j.optmat.2016.02.024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Zeng, Ruosheng, Rongan Shen, Yunqiang Zhao, Zhiguo Sun, Xingsheng Li, Jinju Zheng, Sheng Cao und Bingsuo Zou. „Water-soluble, highly emissive, color-tunable, and stable Cu-doped ZnSeS/ZnS core/shell nanocrystals“. CrystEngComm 16, Nr. 16 (2014): 3414. http://dx.doi.org/10.1039/c3ce42273a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Hajj Hussein, R., O. Pagès, A. Polian, A. V. Postnikov, H. Dicko, F. Firszt, K. Strzałkowski et al. „Pressure-induced phonon freezing in the ZnSeS II–VI mixed crystal: phonon–polaritons andab initiocalculations“. Journal of Physics: Condensed Matter 28, Nr. 20 (26.04.2016): 205401. http://dx.doi.org/10.1088/0953-8984/28/20/205401.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Syrotyuk, S. V., A. Y. Nakonechnyi, Yu V. Klysko, H. I. Vlakh-Vyhrynovska und Z. E. Veres. „Electronic and magnetic properties of ZnSeS solid solution modified by Mn impurity, Zn vacancy and pressure“. Physics and Chemistry of Solid State 25, Nr. 1 (15.02.2024): 65–72. http://dx.doi.org/10.15330/pcss.25.1.65-72.

Der volle Inhalt der Quelle
Annotation:
The spin-polarized electronic energy spectra of the ZnSeS solid solution were obtained based on calculations for the supercell, which contains 64 atoms. At the first stage, the properties of the material based on the Mn:ZnSeS supercell, in which Mn replaces the Zn atom, were calculated. The calculation results reveal that the material is a semiconductor for both spin orientations. The second stage is based on the simultaneous presence of a Mn impurity and a cation vacancy. Comparing the results of the first two stages allows us to reveal significant changes in the electronic energy structure caused by the cation vacancy. The material with a vacancy exhibits metallic properties for both spin orientations. The third stage is implemented for the supercell without a vacancy, but under the action of hydrostatic pressure. The material exhibits semiconducting properties for both values of the spin moment. At the fourth stage, the Mn:ZnSeS supercell with a vacancy and under pressure is considered. In the presence of pressure and a VZn vacancy, the ZnMnSeS material exhibits metallic properties for both spin orientations. A material with a vacancy and under pressure can be characterized as a magnetic metal.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Jo, Hyun-Jun, und In-Ho Bae. „Electroreflectance Study of ZnSe in ZnSe/GaAs Heterostructure“. Journal of the Korean Vacuum Society 21, Nr. 6 (30.11.2012): 322–27. http://dx.doi.org/10.5757/jkvs.2012.21.6.322.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Liu, Pai, Yajun Lou, Shihao Ding, Wenda Zhang, Zhenghui Wu, Hongcheng Yang, Bing Xu, Kai Wang und Xiao Wei Sun. „Green InP/ZnSeS/ZnS Core Multi‐Shelled Quantum Dots Synthesized with Aminophosphine for Effective Display Applications“. Advanced Functional Materials 31, Nr. 11 (20.01.2021): 2008453. http://dx.doi.org/10.1002/adfm.202008453.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Lee, YuJin, Dae-Yeon Jo, Taehee Kim, Jung-Ho Jo, Jumi Park, Heesun Yang und Dongho Kim. „Effectual Interface and Defect Engineering for Auger Recombination Suppression in Bright InP/ZnSeS/ZnS Quantum Dots“. ACS Applied Materials & Interfaces 14, Nr. 10 (03.03.2022): 12479–87. http://dx.doi.org/10.1021/acsami.1c20088.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Mabrouk, Salima, Hervé Rinnert, Lavinia Balan, Sébastien Blanchard, Jordane Jasniewski, Ghouti Medjahdi, Rafik Ben Chaabane und Raphaël Schneider. „Aqueous synthesis of highly luminescent ternary alloyed Mn-doped ZnSeS quantum dots capped with 2-mercaptopropionic acid“. Journal of Alloys and Compounds 858 (März 2021): 158315. http://dx.doi.org/10.1016/j.jallcom.2020.158315.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Zhang, Xiaoli, Lipeng Wu, Youwei Zhang, Ruiqiang Xu und Yajun Lou. „Sodium-doped InP/ZnSeS/ZnS quantum dots as a saturable absorber for passive Q-switched fiber lasers“. Journal of Luminescence 263 (November 2023): 120153. http://dx.doi.org/10.1016/j.jlumin.2023.120153.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Lai, Chun-Feng, Yu-Ching Chang und Yu-Shan Huang. „Enhanced Luminous Efficacy and Stability of InP/ZnSeS/ZnS Quantum Dot-Embedded SBA-15 Mesoporous Particles for White Light-Emitting Diodes“. Nanomaterials 12, Nr. 9 (04.05.2022): 1554. http://dx.doi.org/10.3390/nano12091554.

Der volle Inhalt der Quelle
Annotation:
Environmentally friendly quantum dots (QDs) of InP-based materials are widely investigated, but their reliability remains inadequate to realize their full potential and wide application. In this study, InP/ZnSeS/ZnS QDs (pristine QDs) were dispersed and embedded into Santa Barbara Amorphous-15 mesoporous particles (SBA-15 MPs) for the first time. A solvent-free method for preparing QD white light-emitting diodes (WLEDs) that is compatible with the WLED packaging process was developed. The photoluminescence (PL) spectrum of pristine QD powder exhibited cluster states and had huge redshift of approximately 23 nm. By comparison, the PL spectrum of the SBA-15 MP/QD hybrid powder had a slight redshift of approximately 8 nm, only because the pristine QDs were dispersed and embedded well in the SBA-15 MPs. The PL intensity of the SBA-15 MP/QD hybrid powder slightly decreased after heating and cooling compared with that of the pristine QDs. Moreover, the luminous efficacy of the SBA-15 MP/QD hybrid WLEDs was enhanced by approximately 14% compared with that of the pristine QD-WLEDs. Furthermore, reliability analysis revealed that the SBA-15 MPs could improve the stability of the pristine QDs on chips. Thus, these MPs promise good potential for applications in mini-LEDs in the future.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Yoo, Jeong-Yeol, Yoon-Jeong Choi und Jong-Gyu Kim. „Synthesis of narrow blue emission gradient ZnSeS quantum dots and their quantum dot light-emitting diode device performance“. Journal of Luminescence 240 (Dezember 2021): 118415. http://dx.doi.org/10.1016/j.jlumin.2021.118415.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Kim, Misung, Weon Ho Shin und Jiwon Bang. „Highly luminescent and stable green-emitting In(Zn,Ga)P/ZnSeS/ZnS small-core/thick-multishell quantum dots“. Journal of Luminescence 205 (Januar 2019): 555–59. http://dx.doi.org/10.1016/j.jlumin.2018.10.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Min, Chan-Hong, und Jin Joo. „Studies on the effect of acetate ions on the optical properties of InP/ZnSeS core/shell quantum dots“. Journal of Industrial and Engineering Chemistry 82 (Februar 2020): 254–60. http://dx.doi.org/10.1016/j.jiec.2019.10.021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Park, Seon A., Woon Ho Jung, Jeong-Yeol Yoo, Chil Won Lee, Jang Sub Kim, Jong-Gyu Kim und Byung Doo Chin. „Electrical resonant effects of ligands on the luminescent properties of InP/ZnSeS/ZnS quantum dots and devices configured therefrom“. Organic Electronics 87 (Dezember 2020): 105955. http://dx.doi.org/10.1016/j.orgel.2020.105955.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Zimdars, Julia, Jan Pilger, Michael Entrup, Daniel Deiting, Andreas H. Schäfer und Michael Bredol. „A facile synthesis of alloyed Mn-doped ZnSeS nanoparticles using a modified selenium/sulfur precursor in a one-pot approach“. New Journal of Chemistry 40, Nr. 10 (2016): 8465–70. http://dx.doi.org/10.1039/c6nj01493c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Ke, Bao, Xianwei Bai, Rongkai Wang, Yayun Shen, Chunxiao Cai, Kun Bai, Ruosheng Zeng, Bingsuo Zou und Zhencheng Chen. „Alkylthiol-enabled Se powder dissolving for phosphine-free synthesis of highly emissive, large-sized and spherical Mn-doped ZnSeS nanocrystals“. RSC Advances 7, Nr. 71 (2017): 44867–73. http://dx.doi.org/10.1039/c7ra06873e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Umlauff, M., W. Langbein, H. Kalt, M. Scholl, J. Söllner, M. Heuken, H. Frost, A. Nebel und R. Beigang. „Optical Nonlinearities in ZnSe/ZnSSe Heterostructures“. Materials Science Forum 182-184 (Februar 1995): 203–6. http://dx.doi.org/10.4028/www.scientific.net/msf.182-184.203.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Krysa, A. B., Yu V. Korostelin, V. I. Kozlovsky, P. V. Shapkin, H. Kalisch, R. Rüland, M. Heuken und K. Heime. „ZnSe/ZnMgSSe structures on ZnSSe substrates“. Journal of Crystal Growth 214-215 (Juni 2000): 355–58. http://dx.doi.org/10.1016/s0022-0248(00)00107-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Haase, M. A., H. Cheng, D. K. Misemer, T. A. Strand und J. M. DePuydt. „ZnSe‐ZnSSe electro‐optic waveguide modulators“. Applied Physics Letters 59, Nr. 25 (16.12.1991): 3228–29. http://dx.doi.org/10.1063/1.105740.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Lim, Jaehoon, Myeongjin Park, Wan Ki Bae, Donggu Lee, Seonghoon Lee, Changhee Lee und Kookheon Char. „Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots“. ACS Nano 7, Nr. 10 (24.09.2013): 9019–26. http://dx.doi.org/10.1021/nn403594j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Kang, Hyelim, Sohee Kim, Ji Hye Oh, Hee Chang Yoon, Jung-Ho Jo, Heesun Yang und Young Rag Do. „Color-by-Blue QD-Emissive LCD Enabled by Replacing RGB Color Filters with Narrow-Band GR InP/ZnSeS/ZnS QD Films“. Advanced Optical Materials 6, Nr. 11 (15.03.2018): 1701239. http://dx.doi.org/10.1002/adom.201701239.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Lomascolo, M., R. Cingolani, C. Stevens, M. Dabbicco, M. Ferrara, K. Syassen, G. H. Li und I. Suemune. „Radiative mechanisms in ZnSe/ZnSSe symmetric superlattices“. Superlattices and Microstructures 16, Nr. 4 (Dezember 1994): 367–70. http://dx.doi.org/10.1006/spmi.1994.1153.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Adegoke, Oluwasesan, Craig McKenzie und Niamh Nic Daeid. „Multi-shaped cationic gold nanoparticle-l-cysteine-ZnSeS quantum dots hybrid nanozyme as an intrinsic peroxidase mimic for the rapid colorimetric detection of cocaine“. Sensors and Actuators B: Chemical 287 (Mai 2019): 416–27. http://dx.doi.org/10.1016/j.snb.2019.02.074.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Stevens, C. J., R. Cingolani, L. Calcagnile, M. Dabbicco, R. A. Taylor, J. F. Ryan, M. Lomascolo und I. Suemune. „Excitonic processes and lasing in ZnSSe/ZnSe superlattices“. Superlattices and Microstructures 16, Nr. 4 (Dezember 1994): 371–77. http://dx.doi.org/10.1006/spmi.1994.1154.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Akinci, Özden, H. Hakan Gürel und Hilmi Ünlü. „Semi-empirical tight binding modelling of CdSTe/CdTe, ZnSSe/ZnSe and ZnSSe/ CdSe heterostructures“. Thin Solid Films 517, Nr. 7 (Februar 2009): 2431–37. http://dx.doi.org/10.1016/j.tsf.2008.11.040.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Chen, W. R., S. J. Chang, Y. K. Su, T. Y. Tsai, J. F. Chen, W. H. Lan, W. J. Lin, Y. T. Cherng, C. H. Liu und U. H. Liaw. „ZnSe epitaxial layers and ZnSSe/ZnSe strain layer superlattices grown by molecular beam epitaxy“. Superlattices and Microstructures 32, Nr. 1 (Juli 2002): 59–63. http://dx.doi.org/10.1006/spmi.2002.1057.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Li, X., W. I. Wang und I. W. Tao. „‘Flip-chip’ transfer of ZnSSe/ZnSe/CdZnSe LED films“. Electronics Letters 31, Nr. 6 (16.03.1995): 491–93. http://dx.doi.org/10.1049/el:19950344.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Seemann, M., F. Kieseling, H. Stolz, G. Manzke, K. Henneberger, T. Passow und D. Hommel. „Phase resolved polariton interferences in a ZnSe-ZnSSe heterostructure“. physica status solidi (c) 3, Nr. 7 (August 2006): 2453–56. http://dx.doi.org/10.1002/pssc.200668107.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Mabrouk, Salima, Hervé Rinnert, Lavinia Balan, Jordane Jasniewski, Ghouti Medjahdi, Rafik Ben Chaabane und Raphaël Schneider. „Aqueous synthesis of core/shell/shell ZnSeS/Cu:ZnS/ZnS quantum dots and their use as a probe for the selective photoluminescent detection of Pb2+ in water“. Journal of Photochemistry and Photobiology A: Chemistry 431 (Oktober 2022): 114050. http://dx.doi.org/10.1016/j.jphotochem.2022.114050.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Tenishev, L. N., S. A. Permogorov, D. L. Fedorov, G. G. Yakushcheva und P. I. Kuznetsov. „Free Exciton Luminescence in ZnCdSe Solid Solutions, ZnSe Epitaxial Films and ZnSe1-xSx/ZnSe1-ySySuperlattices“. Acta Physica Polonica A 90, Nr. 5 (November 1996): 959–64. http://dx.doi.org/10.12693/aphyspola.90.959.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Jo, Jung-Ho, Dae-Yeon Jo, Sun-Hyoung Lee, Suk-Young Yoon, Han-Byule Lim, Bum-Joo Lee, Young Rag Do und Heesun Yang. „InP-Based Quantum Dots Having an InP Core, Composition-Gradient ZnSeS Inner Shell, and ZnS Outer Shell with Sharp, Bright Emissivity, and Blue Absorptivity for Display Devices“. ACS Applied Nano Materials 3, Nr. 2 (28.01.2020): 1972–80. http://dx.doi.org/10.1021/acsanm.0c00008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Adegoke, Oluwasesan, Kayode Oyinlola, Ojodomo J. Achadu und Zhugen Yang. „Blue-emitting SiO2-coated Si-doped ZnSeS quantum dots conjugated aptamer-molecular beacon as an electrochemical and metal-enhanced fluorescence biosensor for SARS-CoV-2 spike protein“. Analytica Chimica Acta 1281 (November 2023): 341926. http://dx.doi.org/10.1016/j.aca.2023.341926.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Matsumura, Nobuo, Mitsutaka Tsubokura, Nobuhiro Nakamura, Kazuhiro Miyagawa, Yoichi Miyanagi und Junji Saraie. „Nitrogen-Doped ZnSe and ZnSSe Grown by Molecular Beam Epitaxy“. Japanese Journal of Applied Physics 29, Part 2, No. 2 (20.02.1990): L221—L224. http://dx.doi.org/10.1143/jjap.29.l221.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie