Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: ZnGeP2.

Zeitschriftenartikel zum Thema „ZnGeP2“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "ZnGeP2" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

СЛЮНЬКО, Е. С., Н. Н. ЮДИН, В. М. КАЛЫГИНА, et al. "Effect of diffusion doping of ZnGeP2with Mg and Ca atoms on the optical properties of single crystals." Optika atmosfery i okeana 37, no. 4(423) (2024): 302–6. http://dx.doi.org/10.15372/aoo20240406.

Der volle Inhalt der Quelle
Annotation:
С целью увеличения оптической прочности нелинейного кристалла дифосфида цинка-германия (ZnGeP2) изучено влияние на порог оптического пробоя на длине волны 2091 нм примесных атомов Mg и Ca, введенных в кристаллическую решетку ZnGeP2. Примесь вводилась путем диффузионного легирования посредством напыления материала на подложку из ZnGeP2с последующим отжигом в вакууме при температуре 750 °C в течение 200 ч. Показано, что введение примесных атомов Mg в монокристалл приводит к увеличению порога оптического пробоя на 31%. При легировании ZnGeP2атомами Ca наблюдается противоположная тенденция. Выдвин
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Voevodin, Vladimir, Svetlana Bereznaya, Yury S. Sarkisov, Nikolay N. Yudin, and Sergey Yu Sarkisov. "Terahertz Generation by Optical Rectification of 780 nm Laser Pulses in Pure and Sc-Doped ZnGeP2 Crystals." Photonics 9, no. 11 (2022): 863. http://dx.doi.org/10.3390/photonics9110863.

Der volle Inhalt der Quelle
Annotation:
Terahertz wave generation through the optical rectification of 780 nm femtosecond laser pulses in ZnGeP2 crystals has been studied. All of the possible interactions of types I and II were analyzed by modeling and experimentally. We demonstrate the possibility of broadband “low-frequency” terahertz generation by an ee–e interaction (with two pumping waves and a generated terahertz wave; all of these had extraordinary polarization in the crystal) and “high-frequency” terahertz generation by an oe–e interaction. The arising possibility of achieving the narrowing of the terahertz generation bandwi
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ning, Jing, Rong Dai, Qiao Wu, Lei Zhang, Tingting Shao, and Fuchun Zhang. "Density Functional Theory Study of Infrared Nonlinear Optical Crystal ZnGeP2." Journal of Nanoelectronics and Optoelectronics 16, no. 10 (2021): 1544–53. http://dx.doi.org/10.1166/jno.2021.3110.

Der volle Inhalt der Quelle
Annotation:
The electronic structure and optical properties of ZnGeP2 crystal were studied using DFT. The electronic structure results showed that ZnGeP2 is a nonlinear optical crystal with a direct wide bandgap. The bandgap was calculated to be 1.99 eV using the HSE06 method, which is exactly equal to the experimental value. The optical properties showed strong absorption and reflection in the ultraviolet region and strong transmittance in the infrared region. The average static refractive index of ZnGeP2 was 2.73, and the static birefractive index was 0.04. The above results indicate that ZnGeP2 is a po
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Zhao, Xin, Shi Fu Zhu, and Yong Qiang Sun. "Growth of ZnGeP2 Single Crystal by Three-Temperature-Zone Furnace." Advanced Materials Research 179-180 (January 2011): 945–48. http://dx.doi.org/10.4028/www.scientific.net/amr.179-180.945.

Der volle Inhalt der Quelle
Annotation:
In order to meet the requirements of growing high-quality ZnGeP2, a crystal growth furnace with three-temperature-zone was designed and fabricated based on a conventional vertical two-zone tubular resistance furnace. Appropriate temperature gradients of 12~15°C/cm at the growth interface and stable thermal profile were obtained. A crack-free ZnGeP2 single crystal with size of Φ15mm×30mm was grown successfully in the furnace mentioned above. The as-grown crystal was characterized by X-ray diffraction (XRD) and Infrared (IR) spectrophotometers. It is found that there is a cleavage face of (101)
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Yudin, Nikolay N., Andrei Khudoley, Mikhail Zinovev, et al. "Experimental Investigation of Laser Damage Limit for ZPG Infrared Single Crystal Using Deep Magnetorheological Polishing of Working Surfaces." Crystals 14, no. 1 (2023): 32. http://dx.doi.org/10.3390/cryst14010032.

Der volle Inhalt der Quelle
Annotation:
Zinc germanium phosphide (ZGP) crystals have garnered significant attention for their nonlinear properties, making them good candidates for powerful mid-IR optical parametric oscillators and second-harmonic generators. A ZnGeP2 single crystal was treated by deep magnetorheological processing (MRP) until an Angstrom level of roughness. The studies presented in this article are devoted to the experimental evaluation of the influence of deep removal (up to 150 μm) from the surface of a ZnGeP2 single crystal by magnetorheological polishing on the parameters of optical breakdown. It was shown that
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Pal, S., D. Sharma, M. Chandra, et al. "Thermodynamic properties of chalcogenide and pnictide ternary tetrahedral semiconductors." Chalcogenide Letters 21, no. 1 (2024): 1–9. http://dx.doi.org/10.15251/cl.2024.211.1.

Der volle Inhalt der Quelle
Annotation:
In this paper, we present thermodynamic properties such as heat of formation, heat of fusion and entropy of fusion for chalcopyrite structured solids with the product of ionic charges and nearest neighbour distance d (Å). The heat of formation (∆Hf) of these compounds exhibit a linear relationship when plotted on a log-log scale against the nearest neighbour distance d (Å), but fall on different straight lines according to the ionic charge product of the compounds. On the basis of this result two simple heat of formation (∆Hf)heat of fusion (∆HF), and heat of formation (∆Hf)entropy of fusion
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Yudin, Nikolai, Oleg Antipov, Ilya Eranov, et al. "Laser-Induced Damage Threshold of Single Crystal ZnGeP2 at 2.1 µm: The Effect of Crystal Lattice Quality at Various Pulse Widths and Repetition Rates." Crystals 12, no. 5 (2022): 652. http://dx.doi.org/10.3390/cryst12050652.

Der volle Inhalt der Quelle
Annotation:
The ZnGeP2 crystal is a material of choice for powerful mid-IR optical parametric oscillators and amplifiers. In this paper, we present the experimental analysis of the optical damage threshold of ZnGeP2 nonlinear crystals induced by a repetitively-pulsed Ho3+:YAG laser at 2091 nm. Two types of ZnGeP2 crystals grown under different conditions were examined using the laser and holographic techniques. The laser-induced damage threshold (LIDT) determined by the pulse fluence or peak intensity was studied as a function of the pulse repetition rate (PRR) and laser exposure duration. The main crysta
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Voevodin, Vladimir I., Valentin N. Brudnyi, Yury S. Sarkisov, Xinyang Su, and Sergey Yu Sarkisov. "Electrical Relaxation and Transport Properties of ZnGeP2 and 4H-SiC Crystals Measured with Terahertz Spectroscopy." Photonics 10, no. 7 (2023): 827. http://dx.doi.org/10.3390/photonics10070827.

Der volle Inhalt der Quelle
Annotation:
Terahertz photoconductivity and charge carrier recombination dynamics at two-photon (ZnGeP2) and three-photon (4H-SiC) excitation were studied. Thermally annealed, high-energy electron-irradiated and Sc-doped ZnGeP2 crystals were tested. The terahertz charge carrier mobilities were extracted from both the differential terahertz transmission at a specified photoexcitation condition and the Drude–Smith fitting of the photoconductivity spectra. The determined terahertz charge carrier mobility values are ~453 cm2/V·s for 4H-SiC and ~37 cm2/V·s for ZnGeP2 crystals. The charge carrier lifetimes and
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Yudin, Nikolai, Andrei Khudoley, Mikhail Zinoviev, et al. "The Influence of Angstrom-Scale Roughness on the Laser-Induced Damage Threshold of Single-Crystal ZnGeP2." Crystals 12, no. 1 (2022): 83. http://dx.doi.org/10.3390/cryst12010083.

Der volle Inhalt der Quelle
Annotation:
Magnetorheological processing was applied to polish the working surfaces of single-crystal ZnGeP2, in which a non-aqueous liquid with the magnetic particles of carbonyl iron with the addition of nanodiamonds was used. Samples of a single-crystal ZnGeP2 with an Angstrom level of surface roughness were received. The use of magnetorheological polish allowed the more accurate characterization of the possible structural defects that emerged on the surface of a single crystal and had a size of ~0.5–1.5 μm. The laser-induced damage threshold (LIDT) value at the indicated orders of magnitude of the su
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Yudin, Nikolay, Mikhail Zinoviev, Vladimir Kuznetsov, et al. "Effect of Dopants on Laser-Induced Damage Threshold of ZnGeP2." Crystals 13, no. 3 (2023): 440. http://dx.doi.org/10.3390/cryst13030440.

Der volle Inhalt der Quelle
Annotation:
The effect of doping Mg, Se, and Ca by diffusion into ZnGeP2 on the optical damage threshold at a wavelength of 2.1 μm has been studied. It has been shown that diffusion-doping with Mg and Se leads to an increase in the laser-induced damage threshold (LIDT) of a single crystal (monocrystal), ZnGeP2; upon annealing at a temperature of 750 °C, the damage threshold of samples doped with Mg and Se increases by 31% and 21% from 2.2 ± 0.1 J/cm2 to 2.9 ± 0.1 and 2.7 ± 0.1 J/cm2, respectively. When ZnGeP2 is doped with Ca, the opposite trend is observed. It has been suggested that the changes in the L
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Schnepf, Rekha R., Andrea Crovetto, Prashun Gorai, et al. "Reactive phosphine combinatorial co-sputtering of cation disordered ZnGeP2 films." Journal of Materials Chemistry C 10, no. 3 (2022): 870–79. http://dx.doi.org/10.1039/d1tc04695k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Schunemann, Peter G., and Thomas M. Pollak. "Ultralow Gradient HGF-Grown ZnGeP2 and CdGeAs2 and Their Optical Properties." MRS Bulletin 23, no. 7 (1998): 23–27. http://dx.doi.org/10.1557/s0883769400029043.

Der volle Inhalt der Quelle
Annotation:
ZnGeP2 and CdGeAs2 have long been recognized as promising crystals for infrared frequency generation. They exhibit the highest nonlinear optical coefficients (d36 equals 75 pm/V and 236 pm/V for ZnGeP2 and CdGeAs2, respectively) among all known compounds that possess adequate birefringence for phase matching. ZnGeP2's transparency range (0.62−13 μm) makes it the optimum material for shifting the wavelength of 2-μm pump lasers into the 3–5-μm range via optical parametric oscillation (OPO), whereas that of CdGeAs2 (2.3–18 μm) is better suited for doubling the frequency of CO2 lasers (9–11 μm) in
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Dyomin, Victor, Alexander Gribenyukov, Sergey Podzyvalov, et al. "Application of Infrared Digital Holography for Characterization of Inhomogeneities and Voluminous Defects of Single Crystals on the Example of ZnGeP2." Applied Sciences 10, no. 2 (2020): 442. http://dx.doi.org/10.3390/app10020442.

Der volle Inhalt der Quelle
Annotation:
In this work, the method of IR digital holography intended for detection of volumetric defects in ZnGeP2 single crystals has been tested. The holographic method is verified by a comparison of the results obtained with the data obtained by other methods. The spatial resolution of the experimental setup is ~15–20 µm. The volumetric defects of the ZnGeP2 crystal structure (in samples with thickness up to 50 mm) such as growth striations, dislocation chain, and inclusions of the second phase (Zn3P2) shaped as needles up to ~100 µm long and ~10 µm wide have been visualized by the method of IR digit
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Yudin, Nikolai N., Eduard A. Sosnin, Dmitry V. Beloplotov та ін. "Effect of plasma etching on optical breakdown threshold of nonlinear ZnGeP2 crystals in wavelength region ~ 2.1 μm". Izvestiya vysshikh uchebnykh zavedenii. Fizika 68, № 5 (2025): 56–65. https://doi.org/10.17223/00213411/68/5/7.

Der volle Inhalt der Quelle
Annotation:
Studies of the effect of plasma cleaning of the surface on the optical stability of monocrystal ZnGeP2 were carried out. A change in the threshold of optical breakdown was established at various parameters of plasma cleaning of the surface of crystals. When a polished ZnGeP2 surface is exposed to low-temperature plasma in an atmosphere with an electron concentration of 1014-1015 cm-3 at a voltage of 13-20 kV and a pulse repetition rate of 50-100 Hz, a 30% increase in the optical breakdown threshold of samples is observed during 500 000 pulses with ~ 40 ns duration.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Kalygina, Vera, Sergey Podzyvalov, Nikolay Yudin, et al. "Effect of UV and IR Radiation on the Electrical Characteristics of Ga2O3/ZnGeP2 Hetero-Structures." Crystals 13, no. 8 (2023): 1203. http://dx.doi.org/10.3390/cryst13081203.

Der volle Inhalt der Quelle
Annotation:
The data on electrical and photoelectric characteristics of Ga2O3/ZnGeP2 hetero-structures formed by RF magnetron sputtering Ga2O3 target with a purity of (99.99%) were obtained. The samples are sensitive to UV radiation with a wavelength of λ = 254 nm and are able to work offline as detectors of short-wave radiation. Structures with Ga2O3 film that was not annealed at 400 °C show weak sensitivity to long-wavelength radiation, including white light and near-IR (λ = 808 and 1064 nm). After annealing in an air environment (400 °C, 30 min), ZnGeP2 crystals in contact with Ga2O3 show n-type conduc
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Moldovan, M., and N. C. Giles. "Broad-band photoluminescence from ZnGeP2." Journal of Applied Physics 87, no. 10 (2000): 7310–15. http://dx.doi.org/10.1063/1.372985.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Verozubova, G. A., A. I. Gribenyukov, and Yu P. Mironov. "Two-temperature synthesis of ZnGeP2." Inorganic Materials 43, no. 10 (2007): 1040–45. http://dx.doi.org/10.1134/s0020168507100020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Zinovev, Mikhail, Nikolay N. Yudin, Igor Kinyaevskiy, et al. "Multispectral Anti-Reflection Coatings Based on YbF3/ZnS Materials on ZnGeP2 Substrate by the IBS Method for Mid-IR Laser Applications." Crystals 12, no. 10 (2022): 1408. http://dx.doi.org/10.3390/cryst12101408.

Der volle Inhalt der Quelle
Annotation:
A multispectral anti-reflective coating of high radiation strength for laser applications in the IR spectrum for nonlinear ZnGeP2 crystals has been developed for the first time. The coating was constructed using YbF3/ZnS. The developed coating was obtained by a novel approach using ion-beam deposition of these materials on a ZnGeP2 substrate. It has a high LIDT of more than 2 J/cm2. Optimal layer deposition regimes were found for high film density and low absorption, and good adhesion of the coating to the substrate was achieved. At the same time, there was no dissociation of the double compou
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Bairamov, B. H., V. Yu Rud', and Yu V. Rud'. "Properties of Dopants in ZnGeP2, CdGeAs2, AgGaS2 and AgGaSe2." MRS Bulletin 23, no. 7 (1998): 41–44. http://dx.doi.org/10.1557/s0883769400029080.

Der volle Inhalt der Quelle
Annotation:
Ternary-chalcopyrite structure ZnGeP2, CdGeAs2 (II-IV-V2) and AgGaS2, AgGaSe2 (I-III-VI2) compounds are currently of technological interest. They show the most promise for practical nonlinear optical applications in the areas of high-efficiency optical parametric oscillators and frequency up-converters for the infrared (ir) range as well as for widespectral-range optoelectronic devices. (See also the article by Schunemann, Schepler, and Budni in this issue.) However extensive realization of their potential has still not been achieved. One of the principal difficulties in the way to obtaining h
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Yudin, N. N., O. L. Antipov, A. I. Gribenyukov, et al. "Influence of line-by-line processing technology on the optical breakthreshold of a ZnGeP2 single crystal." Izvestiya vysshikh uchebnykh zavedenii. Fizika, no. 11 (2021): 102–7. http://dx.doi.org/10.17223/00213411/64/11/102.

Der volle Inhalt der Quelle
Annotation:
The threshold of optical breakdown of a ZnGeP2 single crystal manufactured by LOK LLC, Russia, was determined, which was W0d =1.8 J / cm2, and the threshold of optical breakdown of a crystal manufactured by Harbin Institute of Technology, China, was also measured, which was W0d =2.1 J/cm2 (at a wavelength of 2,097 microns of laser radiation and a pulse repetition frequency of 10 kHz with a pulse duration of 35 ns).The effect of post-processing of ZnGeP2 single crystals (polishing of working surfaces )is investigated, application of antireflection interference coatings) to the threshold of opti
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Collins, Sean M., Jeanne M. Hankett, Azhar I. Carim, and Stephen Maldonado. "Preparation of photoactive ZnGeP2 nanowire films." Journal of Materials Chemistry 22, no. 14 (2012): 6613. http://dx.doi.org/10.1039/c2jm16453a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Zapol, Peter, Ravindra Pandey, Mel Ohmer, and Julian Gale. "Atomistic calculations of defects in ZnGeP2." Journal of Applied Physics 79, no. 2 (1996): 671. http://dx.doi.org/10.1063/1.360811.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Wang, Lijun, Lihua Bai, K. T. Stevens, et al. "Luminescence associated with copper in ZnGeP2." Journal of Applied Physics 92, no. 1 (2002): 77–81. http://dx.doi.org/10.1063/1.1481971.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Verozubova, G. A., and A. I. Gribenyukov. "Growth of ZnGeP2 crystals from melt." Crystallography Reports 53, no. 1 (2008): 158–63. http://dx.doi.org/10.1134/s1063774508010215.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Verozubova, G. A., A. I. Gribenyukov, V. V. Korotkova, and M. P. Ruzaikin. "ZnGeP2 synthesis and growth from melt." Materials Science and Engineering: B 48, no. 3 (1997): 191–97. http://dx.doi.org/10.1016/s0921-5107(97)00046-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Xing, G. C., K. J. Bachmann, and J. B. Posthill. "High‐pressure vapor transport of ZnGeP2." Applied Physics Letters 56, no. 3 (1990): 271–73. http://dx.doi.org/10.1063/1.103285.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Mason, P. D., D. J. Jackson, and E. K. Gorton. "CO2 laser frequency doubling in ZnGeP2." Optics Communications 110, no. 1-2 (1994): 163–66. http://dx.doi.org/10.1016/0030-4018(94)90190-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Karavaev, P. M., V. M. Abusev, and G. A. Medvedkin. "Photorefractive effect in ZnGeP2 single crystal." Technical Physics Letters 32, no. 6 (2006): 498–500. http://dx.doi.org/10.1134/s1063785006060149.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Shimony, Y., O. Raz, G. Kimmel, and M. P. Dariel. "On defects in tetragonal ZnGeP2 crystals." Optical Materials 13, no. 1 (1999): 101–9. http://dx.doi.org/10.1016/s0925-3467(99)00018-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Bacewicz, R., A. Pietnoczka, W. Gehlhoff, and V. G. Voevodin. "Local order in ZnGeP2:Mn crystals." physica status solidi (a) 204, no. 7 (2007): 2296–301. http://dx.doi.org/10.1002/pssa.200622598.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Tyuterev, V. G. "Electron short-wave phonon scattering in crystals with chalcopyrite lattice." Canadian Journal of Physics 98, no. 8 (2020): 818–23. http://dx.doi.org/10.1139/cjp-2019-0523.

Der volle Inhalt der Quelle
Annotation:
Electron short-wavelength phonon scattering is an effective channel for energy relaxation in crystals with a pseudo-direct optical gap. The equilibrium parameters of crystal structures and spectra of electrons and phonons in the ternary chalcopyrite compounds ZnSiP2 and ZnGeP2 are calculated self-consistently in good agreement with available experimental and theoretical calculations. The ab initio probabilities of phonon-assisted intervalley scattering of electrons in the conduction bands of the pseudo-direct-gap compounds ZnSiP2 and ZnGeP2 between the central Γ minima and the lowest lateral m
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Zinovev, Mikhail, Nikolay N. Yudin, Vladimir Kuznetsov, et al. "High-Strength Optical Coatings for Single-Crystal ZnGeP2 by the IBS Method Using Selenide and Oxide Materials." Ceramics 6, no. 1 (2023): 514–24. http://dx.doi.org/10.3390/ceramics6010030.

Der volle Inhalt der Quelle
Annotation:
The paper presents the results on the development of an optical coating for a single-crystal ZnGeP2 substrate based on a selenide-oxide pair of materials (ZnSe/Al2O3). The obtained coating ensures the operation of OPO in the mid-IR range up to 5 μm wavelengths. The possibility of ZnSe sputtering by the IBS method is shown. The obtained optical coating has a high laser-induced damage threshold (LIDT) value at a 2097 µm wavelength: J/cm2 in energy density and = 101 W/cm2 in power density at a 10 KHz pulse repetition frequency and a pulse duration of 35 ns. Thus, it is shown for the first time th
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Vasilyeva, Inga G., and Ruslan E. Nikolaev. "Non-stoichiometry and point native defects in non-oxide non-linear optical large single crystals: advantages and problems." CrystEngComm 24, no. 8 (2022): 1495–506. http://dx.doi.org/10.1039/d1ce01423d.

Der volle Inhalt der Quelle
Annotation:
Advances and limitations in the field of growing large, high optical quality single crystals of AgGaS2 (AGS), AgGaGeS4 (AGGS), ZnGeP2 (ZGP), LiInS2 (LIS), LiGaS2 (LGS), LiInSe2 (LISe), LiGaSe2 (LGSe) and LiGaTe2 (LGT) are considered in this article.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Yudin, Nikolay, Mikhail Zinovev, Vladimir Kuznetsov, et al. "Investigation of thermo-optical effects in a nonlinear ZnGeP2 crystal during parametric generation." E3S Web of Conferences 592 (2024): 01011. http://dx.doi.org/10.1051/e3sconf/202459201011.

Der volle Inhalt der Quelle
Annotation:
This work is dedicated to investigating the thermo-optical effects in a nonlinear ZnGeP2 crystal during parametric generation. The stable regime of the laser resonator was determined. It was found that for a resonator length of 43 mm, a stable regime was observed for all focal lengths of the thermal lens induced in the crystal. However, increasing the resonator length to 183 mm, the stability zone of the cavity no longer extends to the entire range of focal lengths of the induced thermal lens. Thus, the resonator becomes unstable for focal lengths of the induced thermal lens f ≤ 150 mm, which
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Posthill, J. B., G. C. Xing, G. S. Solomon, K. J. Bachmann, and M. L. Timmons. "Phase identification and defect structures in II-IV-V2 heteroepitaxial semiconductor thin films grown on III-V substrates." Proceedings, annual meeting, Electron Microscopy Society of America 47 (August 6, 1989): 582–83. http://dx.doi.org/10.1017/s0424820100154883.

Der volle Inhalt der Quelle
Annotation:
The ternary chalcopyrite-structure compound semiconductors (space group , Fig. 1) offer several promising materials properties that may be useful in electronic and optoelectronic devices. These compounds have a wide range of direct and pseudodirect band gaps, and they generally lattice match well to available substrates for heteroepitaxial growth. However, before the properties of this class of materials can be fully exploited, specific issues pertaining to the crystal growth (both bulk and epitaxial) must be understood and optimized. This contribution briefly describes some of our microstruct
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Xie, Hu, Bei Jun Zhao, Shi Fu Zhu, et al. "Characterization and Vertical Elements Distribution of ZnGeP2 Single Crystals." Key Engineering Materials 680 (February 2016): 493–97. http://dx.doi.org/10.4028/www.scientific.net/kem.680.493.

Der volle Inhalt der Quelle
Annotation:
A large, crack-free ZnGeP2 single crystal with size of Φ26 mm×70 mm was grown in a vertical three-zone tubular furnace by modified vertical Bridgman method, i.e. real-time temperature compensation technique with small temperature gradient in double-wall quartz ampoule. The as-grown single crystal was characterized by X-ray diffractometer (XRD), energy dispersive spectrometer (EDS), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). It was found that there is a face of (100) and its second-order XRD peaks were observed. The vertical elements distribution
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Dietz, N., I. Tsveybak, W. Ruderman, G. Wood, and K. J. Bachmann. "Native defect related optical properties of ZnGeP2." Applied Physics Letters 65, no. 22 (1994): 2759–61. http://dx.doi.org/10.1063/1.112555.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Rablau, C. I., and N. C. Giles. "Sharp-line luminescence and absorption in ZnGeP2." Journal of Applied Physics 90, no. 7 (2001): 3314–18. http://dx.doi.org/10.1063/1.1399028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Krivosheeva, A. V., V. L. Shaposhnikov, V. V. Lyskouski, V. E. Borisenko, F. Arnaud d’Avitaya, and J. L. Lazzari. "Prospects on Mn-doped ZnGeP2 for spintronics." Microelectronics Reliability 46, no. 9-11 (2006): 1747–49. http://dx.doi.org/10.1016/j.microrel.2006.08.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Verozubova, G. A., A. O. Okunev, A. I. Gribenyukov, A. Yu Trofimiv, E. M. Trukhanov, and A. V. Kolesnikov. "Growth and defect structure of ZnGeP2 crystals." Journal of Crystal Growth 312, no. 8 (2010): 1122–26. http://dx.doi.org/10.1016/j.jcrysgro.2009.11.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Cheng, Jiang, Shifu Zhu, Beijun Zhao, et al. "Chemical etching orientation of ZnGeP2 single crystals." Journal of Crystal Growth 318, no. 1 (2011): 729–32. http://dx.doi.org/10.1016/j.jcrysgro.2010.11.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Yang, Yongjuan, Yujun Zhang, Qingtian Gu, Huaijin Zhang, and Xutang Tao. "Growth and annealing characterization of ZnGeP2 crystal." Journal of Crystal Growth 318, no. 1 (2011): 721–24. http://dx.doi.org/10.1016/j.jcrysgro.2010.11.039.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Shimony, Y., R. Fledman, I. Dahan, and G. Kimmel. "Anti-phase domain boundaries in ZnGeP2 (ZGP)." Optical Materials 16, no. 1-2 (2001): 119–23. http://dx.doi.org/10.1016/s0925-3467(00)00067-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Kataev, Yu G., I. A. Bobrovnikova, V. G. Voevodin, E. I. Drigolenko, L. G. Nesteryuk, and M. P. Yakubenya. "Preparation and properties of epitaxial ZnGeP2 films." Soviet Physics Journal 31, no. 4 (1988): 321–23. http://dx.doi.org/10.1007/bf00892644.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Rud’, V. Yu, and Yu V. Rud’. "ZnGeP2 heterocontact with layered III–VI semiconductors." Technical Physics Letters 23, no. 6 (1997): 415–16. http://dx.doi.org/10.1134/1.1261718.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Endo, T., Y. Sato, H. Takizawa, and M. Shimada. "High-pressure synthesis of ZnSiP2 and ZnGeP2." Journal of Materials Science Letters 11, no. 9 (1992): 567–69. http://dx.doi.org/10.1007/bf00728610.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

ЗИНОВЬЕВ, М. М., В. С. КУЗНЕЦОВ, Н. Н. ЮДИН, et al. "DIELECTRIC POLARIZING MIRROR FOR OPO SYSTEMS IN THE MID-IR RANGE." Optika atmosfery i okeana 36, no. 9(416) (2023): 763–72. http://dx.doi.org/10.15372/aoo20230908.

Der volle Inhalt der Quelle
Annotation:
Представлены результаты разработки поляризационного диэлектрического зеркала на подложке ZnSe для лазерных систем среднего ИК-диапазона. Расчет пленочной периодической структуры проводился в программном обеспечении Optilayer. В качестве материалов для создания интерференционного покрытия использовались сульфид цинка (ZnS) и фторид иттербия (YbF3). Определены оптические параметры этих материалов в широком спектральном диапазоне. Расчет пленочной периодической структуры проводился в программном обеспечении Optilayer, а само покрытие нанесено на подложку методом ионно-лучевого распыления. Порог л
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Grechin, Sergey G., and Ilyia A. Muravev. "Crystal ZnGeP2 for Nonlinear Frequency Conversion: Physical Parameters, Phase-Matching and Nonlinear Properties: Revision." Photonics 11, no. 5 (2024): 450. http://dx.doi.org/10.3390/photonics11050450.

Der volle Inhalt der Quelle
Annotation:
The article presents a comparative analysis of published data for the physical parameters of the ZGP (ZnGeP2) crystal, its nonlinear and phase-matching properties, and functional capabilities for all frequency conversion processes (harmonics, sum and difference frequencies, and parametric generation). At the first time, the possibilities for obtaining the temperature-noncritical processes for some combinations of wavelengths are shown.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Verozubova, G. A., A. Yu Trofimov, E. M. Trukhanov, et al. "Melt nonstoichiometry and defect structure of ZnGeP2 crystals." Crystallography Reports 55, no. 1 (2010): 65–70. http://dx.doi.org/10.1134/s1063774510010116.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Setzler, S. D., P. G. Schunemann, T. M. Pollak, et al. "Characterization of defect-related optical absorption in ZnGeP2." Journal of Applied Physics 86, no. 12 (1999): 6677–81. http://dx.doi.org/10.1063/1.371743.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!