Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „ZnGeP2“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "ZnGeP2" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "ZnGeP2"
Voevodin, Vladimir, Svetlana Bereznaya, Yury S. Sarkisov, Nikolay N. Yudin und Sergey Yu Sarkisov. „Terahertz Generation by Optical Rectification of 780 nm Laser Pulses in Pure and Sc-Doped ZnGeP2 Crystals“. Photonics 9, Nr. 11 (16.11.2022): 863. http://dx.doi.org/10.3390/photonics9110863.
Der volle Inhalt der QuelleNing, Jing, Rong Dai, Qiao Wu, Lei Zhang, Tingting Shao und Fuchun Zhang. „Density Functional Theory Study of Infrared Nonlinear Optical Crystal ZnGeP2“. Journal of Nanoelectronics and Optoelectronics 16, Nr. 10 (01.10.2021): 1544–53. http://dx.doi.org/10.1166/jno.2021.3110.
Der volle Inhalt der QuelleZhao, Xin, Shi Fu Zhu und Yong Qiang Sun. „Growth of ZnGeP2 Single Crystal by Three-Temperature-Zone Furnace“. Advanced Materials Research 179-180 (Januar 2011): 945–48. http://dx.doi.org/10.4028/www.scientific.net/amr.179-180.945.
Der volle Inhalt der QuellePal, S., D. Sharma, M. Chandra, M. Mittal, P. Singh, M. Lal und A. S. Verma. „Thermodynamic properties of chalcogenide and pnictide ternary tetrahedral semiconductors“. Chalcogenide Letters 21, Nr. 1 (01.01.2024): 1–9. http://dx.doi.org/10.15251/cl.2024.211.1.
Der volle Inhalt der QuelleYudin, Nikolay N., Andrei Khudoley, Mikhail Zinovev, Elena Slyunko, Sergey Podzyvalov, Vladimir Kuznetsov, Gennady Gorodkin et al. „Experimental Investigation of Laser Damage Limit for ZPG Infrared Single Crystal Using Deep Magnetorheological Polishing of Working Surfaces“. Crystals 14, Nr. 1 (27.12.2023): 32. http://dx.doi.org/10.3390/cryst14010032.
Der volle Inhalt der QuelleYudin, Nikolai, Oleg Antipov, Ilya Eranov, Alexander Gribenyukov, Galina Verozubova, Zuotao Lei, Mikhail Zinoviev et al. „Laser-Induced Damage Threshold of Single Crystal ZnGeP2 at 2.1 µm: The Effect of Crystal Lattice Quality at Various Pulse Widths and Repetition Rates“. Crystals 12, Nr. 5 (02.05.2022): 652. http://dx.doi.org/10.3390/cryst12050652.
Der volle Inhalt der QuelleVoevodin, Vladimir I., Valentin N. Brudnyi, Yury S. Sarkisov, Xinyang Su und Sergey Yu Sarkisov. „Electrical Relaxation and Transport Properties of ZnGeP2 and 4H-SiC Crystals Measured with Terahertz Spectroscopy“. Photonics 10, Nr. 7 (16.07.2023): 827. http://dx.doi.org/10.3390/photonics10070827.
Der volle Inhalt der QuelleYudin, Nikolai, Andrei Khudoley, Mikhail Zinoviev, Sergey Podzvalov, Elena Slyunko, Elena Zhuravleva, Maxim Kulesh, Gennadij Gorodkin, Pavel Kumeysha und Oleg Antipov. „The Influence of Angstrom-Scale Roughness on the Laser-Induced Damage Threshold of Single-Crystal ZnGeP2“. Crystals 12, Nr. 1 (08.01.2022): 83. http://dx.doi.org/10.3390/cryst12010083.
Der volle Inhalt der QuelleYudin, Nikolay, Mikhail Zinoviev, Vladimir Kuznetsov, Elena Slyunko, Sergey Podzvalov, Vladimir Voevodin, Alexey Lysenko et al. „Effect of Dopants on Laser-Induced Damage Threshold of ZnGeP2“. Crystals 13, Nr. 3 (03.03.2023): 440. http://dx.doi.org/10.3390/cryst13030440.
Der volle Inhalt der QuelleSchnepf, Rekha R., Andrea Crovetto, Prashun Gorai, Anna Park, Megan Holtz, Karen N. Heinselman, Sage R. Bauers et al. „Reactive phosphine combinatorial co-sputtering of cation disordered ZnGeP2 films“. Journal of Materials Chemistry C 10, Nr. 3 (2022): 870–79. http://dx.doi.org/10.1039/d1tc04695k.
Der volle Inhalt der QuelleDissertationen zum Thema "ZnGeP2"
Cheng, Siqi [Verfasser]. „Multi-picosecond Ho:YLF-pumped supercontinuum generation and ZnGeP2-based optical parametric amplifiers in the fingerprint regime / Siqi Cheng“. Hamburg : Staats- und Universitätsbibliothek Hamburg Carl von Ossietzky, 2020. http://d-nb.info/1229625518/34.
Der volle Inhalt der QuelleBlanton, Eric Williams. „Characterization and Control of ZnGeN2 Cation Lattice Ordering and a Thermodynamic Model for ZnGeN2-ZnSnN2 Alloy Growth“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1448295996.
Der volle Inhalt der QuelleBekele, Challa Megenassa. „SYNTHESIS AND CHARACTERIZATION OF GaN AND ZnGeN2“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=case1165271807.
Der volle Inhalt der QuelleBeddelem, Nicole. „Croissance et caractérisation de nitrures ZnGeN2 pour applications optoélectroniques“. Thesis, Université de Lorraine, 2019. http://www.theses.fr/2019LORR0029/document.
Der volle Inhalt der QuelleThe II-IV-nitrides ZnSiN2, ZnGeN2 and ZnSnN2 represent a semiconductors family close to the III-nitrides (GaN and its aluminum and indium containing alloys). They are obtained by replacing periodically the group III element (Ga) by a group II element (Zn) and by a group IV element (Si, Ge or Sn), its left and right neighbors in the periodic table. The crystalline structure of ZnGeN2 is therefore really close to the one of wurtzite GaN. They show a lattice mismatch smaller than 1 %. The band gap of ZnGeN2 is almost identical to GaN and their large band offset enables the design of a type II heterostructure. These data set the stage for the theoretical study of II-IV-N2 integration into the active zones of GaN LEDs. These type II quantum wells could contribute to enhance the emission properties of GaN-based light emitters at high wavelengths (green and beyond). The ZnSn{x}Ge{1-x}N2 alloy (with x = 0 to x = 1) being rather unknown, the objective of this thesis is the experimental study of sputtered thin films of this material. Its structural, optical and electrical properties are investigated through different analysis methods. It seems possible to adjust its lattice parameter a (from 3.22 A to 3.41 A) as well as its band gap (from 2.1 eV for ZnSnN2 to 3.0 eV for ZnGeN2) but also its electrical properties on several orders of magnitude. The use of GaN substrates enables the investigation of the interface between both materials and quasi-epitaxy effects
Rolles, Mélanie. „Étude théorique de la faisabilité des LED à base de ZnGeN2“. Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0206/document.
Der volle Inhalt der QuelleNitride LEDs development presents significant scientific and societal issues. The aim is to get low-cost, high efficiency LEDs with accurate color-rending (typically the Color Rending Index has to be higher than 90). Due to their large band gap (from 0.8 to 6.2 eV), III-N materials, as GaN and alloys, are still used for LEDs development. Nevertheless, they present several huge limitations mainly due to the evolution of InGaN properties for higher Indium concentrations. Strain and polarization effects affect then the LED quality through the reduction of the spontaneous emission. New high-performance devices require the development of new materials and the introduction of ZnGeN2 layers could be an alternative solution. We report here on a new green and red-emitting light emitting device (LED) architecture containing only 16% of indium. The structure is based on the use of a new type-II ZnGeN2/In0.16Ga0.84N quantum well. Type II InGaN-ZnGeN2 quantum wells (QWs) were proposed for the improvement of efficiency in active regions and realizing then devices operating in a large wavelength range from UV to IR. The zinc germanium nitride (ZnGeN2) is a new promising semiconductor for optoelectronic devices such as LED or photovoltaic cells due to its large, direct, and adjustable band gap, most particularly considered to overcome the green-gap issue in LED technology. ZnGeN2 derives from the III-nitride elements by replacing the III-group alternatively by a group II (Zn) and a group IV (Ge). Both the energy band gap and the lattice parameters of ZnGeN2 are very close to those of GaN. The crystallographic organizations are similar and the recently predicted large band offset between GaN and ZnGeN2 allows the formation of a type-II InGaN-ZnGeN2 heterostructure. Studies of ZnGeN2 based quantum well behaviors are scarce and no information on the overall electro-optical operation of such LED is available. We simulate here with SILVACO/ATLAS the complete behavior of a green and red LED structures in which the active region is a type-II ZnGeN2/In0.16Ga0.84N quantum well. A thin AlGaN layer is used as a barrier for a better carrier confinement. The position and the thickness of the ZnGeN2 layer are parameters used to examine the luminous and electrical behavior as well as the external quantum efficiency of this LED compared to a standard InGaN-based LED emitting at the same wavelength. Inserting a ZnGeN2 layer in a conventional type-I InGaN QW structure yields significant modifications. The strong confinement of holes in the ZnGeN2 layer allows the use of a lower In-content InGaN QW with uniform In content. We demonstrate a significant enhancement of the spontaneous emission and the possibility to reach both a better quantum efficiency and light output when using the type-II structure. The self-consistent 6-band k.p method is used to perform the band structure calculations, which consider the effect of strain, the valence band mixing, and the spontaneous and piezoelectric polarizations
Rablău, Corneliu Ioan. „Photoluminescence and optical absorption spectroscopy of infrared materials Cr²+:ZnSe and ZnGeP₂“. Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=1124.
Der volle Inhalt der QuelleTitle from document title page. Document formatted into pages; contains xv, 200 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 194-200).
Stevens, Kevin T. „Electron-nuclear double resonance studies of point defects in AgGaSe₂ and ZnGeP₂“. Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=1130.
Der volle Inhalt der QuelleTitle from document title page. Document formatted into pages; contains ix, 165 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 118-122).
Shea, Lauren Elizabeth. „ZnGa2 O4 and ZnGa2 O4: Mn2+ for potential use in vacuum fluorescent displays“. Thesis, Virginia Tech, 1993. http://hdl.handle.net/10919/40552.
Der volle Inhalt der QuelleMaster of Science
Peshek, Timothy John. „Studies in the Growth and Properties of ZnGeN2 and the Thermochemistry of GaN“. online version, 2008. http://rave.ohiolink.edu/etdc/view.cgi?acc%5Fnum=case1207231457.
Der volle Inhalt der QuelleJayatunga, Benthara Hewage Dinushi. „Heterovalent Semiconductors: First-Principles Calculations of the Band Structure of ZnGeGa2N4, and Metalorganic Chemical Vapor Deposition of ZnGeN2 - GaN Alloys and ZnSnN2“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1619087038602758.
Der volle Inhalt der QuelleBücher zum Thema "ZnGeP2"
N, Dietz, und United States. National Aeronautics and Space Administration., Hrsg. Native defect related optical properties of ZnGeP₂. [Washington, DC: National Aeronautics and Space Administration, 1994.
Den vollen Inhalt der Quelle findenNikolaus, Dietz, und United States. National Aeronautics and Space Administration., Hrsg. Defect characterization in ZnGeP₂ by time-resolved photoluminescence. [Washington, D.C: National Aeronautics and Space Administration, 1995.
Den vollen Inhalt der Quelle findenH, Churnside James, und Wave Propagation Laboratory, Hrsg. Frequency conversion of a COb2s laser with ZnGePb2s. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Wave Propagation Laboratory, 1992.
Den vollen Inhalt der Quelle findenMason, Paul David. A detailed study of second harmonic generation of carbon dioxide laser radiation in AgGaSe[inferior 2] and ZnGeP[inferior 2]. Birmingham: University of Birmingham, 1996.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Final technical report on growth of new materials for solid state laser applications with a supplemental study on the growth of ZnGeP ́by the vertical Bridgman method, September 1, 1986 through March 31, 1991. Stanford, Calif: Board of Trustees of the Leland Stanford Junior University, Center for Materials Research, 1993.
Den vollen Inhalt der Quelle findenNational Aeronautics and Space Administration (NASA) Staff. Growth of New Materials for Solid State Laser Applications. the Growth of Zngep2 by the Vertical Bridgman Method. Independently Published, 2018.
Den vollen Inhalt der Quelle findenFrequency conversion of a CO ́laser with ZnGeP. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Wave Propagation Laboratory, 1992.
Den vollen Inhalt der Quelle findenDefect characterization in ZnGeP₂ by time-resolved photoluminescence. [Washington, D.C: National Aeronautics and Space Administration, 1995.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "ZnGeP2"
Rössler, U. „ZnGeP2: force constants“. In New Data and Updates for several Semiconductors with Chalcopyrite Structure, for several II-VI Compounds and diluted magnetic IV-VI Compounds, 77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28531-8_55.
Der volle Inhalt der QuelleKobayashi, Takayoshi. „Sellmeier Dispersion for Phase-Matched Terahertz Generation in ZnGeP2“. In Ultrashort Pulse Lasers and Ultrafast Phenomena, 235–40. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9780429196577-36.
Der volle Inhalt der QuelleApollonov, V. V. „Subtraction of the CO2 Laser Radiation Frequencies in a ZnGeP2 Crystal“. In High-Energy Molecular Lasers, 421–24. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33359-5_50.
Der volle Inhalt der QuelleChandra, Satish, Deepak Kumar, Rukmani Singh, Ritesh Kumar und Virendra Kumar. „Physical Properties Resemblance of Optical Material ZnGeN2 with GaN Under Different Higher Pressures“. In Lecture Notes in Electrical Engineering, 665–74. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0312-0_66.
Der volle Inhalt der QuelleRife, J. C. „Zinc Germanium Phosphide (ZnGeP2)“. In Handbook of Optical Constants of Solids, 637–50. Elsevier, 1997. http://dx.doi.org/10.1016/b978-012544415-6.50123-0.
Der volle Inhalt der QuelleBalčaitis, G., Z. Januškevičius und A. Sodeika. „On the Nature of Energy Levels in ZnGeP2“. In May 16, 491–94. De Gruyter, 1985. http://dx.doi.org/10.1515/9783112494646-060.
Der volle Inhalt der QuelleLevalois, M., und G. Allais. „Etude structurale, par diffraction de R-X, des liaisons dans les semiconducteurs ternaires ZnSiAs2, ZnGeAs2 et ZnSnAs 2“. In September 16, 111–18. De Gruyter, 1988. http://dx.doi.org/10.1515/9783112495643-011.
Der volle Inhalt der QuelleLevalois, M., und G. Allais. „Etude par diffraction de R-X de la densité de charge de valence dans les deux semi-conducteurs tétraédriques ZnSiAs2 et ZnGeAs2“. In 16 January, 211–22. De Gruyter, 1989. http://dx.doi.org/10.1515/9783112472866-024.
Der volle Inhalt der QuelleLevalois, M., und G. Allais. „Etude par diffraction de R-X de la densité de charge de valence dans les deux semi-conducteurs tétraédriques ZnSiAs2 et ZnGeAs2“. In January 16, 211. De Gruyter, 1989. http://dx.doi.org/10.1515/9783112495100-025.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "ZnGeP2"
Юдин, Н. Н., А. Л. Худолей, М. М. Зиновьев, А. С. Ольшуков und А. Ю. Давыдова. „ВЛИЯНИЕ МАГНИТОРИОЛОГИЧЕСКОЙ ПОЛИРОВКИ ZnGeP2 НА ШЕРОХОВАТОСТЬ ПОВЕРХНОСТИ“. In XXVIII Международный симпозиум «Оптика атмосферы и океана. Физика атмосферы». Crossref, 2022. http://dx.doi.org/10.56820/oaopa.2022.24.64.002.
Der volle Inhalt der QuelleKRIVOSHEEVA, A. V., V. L. SHAPOSHNIKOV, V. V. LYSKOUSKI, F. ARNAUD D'AVITAYA und J. L. LAZZARI. „THE EFFECT OF IMPURITY ON MAGNETIC PROPERTIES OF ZnGeP2 AND ZnGeAs2“. In Proceedings of the International Conference on Nanomeeting 2007. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770950_0013.
Der volle Inhalt der QuelleКнязькова, А. И. „ИССЛЕДОВАНИЕ СПЕКТРОВ КОМБИНАЦИОННОГО РАССЕЯНИЯ КРИСТАЛЛОВ ZnGeP2“. In XXVIII Международный симпозиум «Оптика атмосферы и океана. Физика атмосферы». Crossref, 2022. http://dx.doi.org/10.56820/oaopa.2022.85.51.002.
Der volle Inhalt der QuelleAndreev, Yu M., V. G. Voevodin, P. P. Geiko, A. I. Gribenyukov, V. V. Zuev und V. E. Zuev. „Effective Source of Coherent Radiation Based on CO2 Lasers and ZnGeP2 Frequency Converters“. In Laser and Optical Remote Sensing: Instrumentation and Techniques. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/lors.1987.wc13.
Der volle Inhalt der QuelleAllik, Toomas H., Suresh Chandra, Peter G. Schunemann, Peter A. Ketteridge, Ian Lee, Thomas M. Pollak, Evan P. Chicklis Sanders und J. Andrew Hutchinson. „3.5 pm Pumped NCPM ZnGeP2 OPO“. In Advanced Solid State Lasers. Washington, D.C.: OSA, 1998. http://dx.doi.org/10.1364/assl.1998.fc2.
Der volle Inhalt der QuelleSchunemann, P. G., P. A. Budni, L. Pomeranz, M. G. Knights, T. M. Pollak und E. P. Chicklis. „Improved ZnGeP2 for High-Power OPO’s“. In Advanced Solid State Lasers. Washington, D.C.: OSA, 1997. http://dx.doi.org/10.1364/assl.1997.pc6.
Der volle Inhalt der QuelleЗиновьев, М. М., Н. Н. Юдин, И. О. Дорофеев, С. Н. Подзывалов und Е. С. Слюнько. „ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ ОПТИЧЕСКОЙ ПРОЧНОСТИ МОНОКРИСТАЛЛА ZnGeP2“. In XXVIII Международный симпозиум «Оптика атмосферы и океана. Физика атмосферы». Crossref, 2022. http://dx.doi.org/10.56820/oaopa.2022.42.91.002.
Der volle Inhalt der QuelleLippert, E., H. Fonnum, G. Rustad und K. Stenersen. „ZnGeP2 in High Power Optical Parametric Oscillators“. In 2008 IEEE PhotonicsGlobal@Singapore (IPGC). IEEE, 2008. http://dx.doi.org/10.1109/ipgc.2008.4781502.
Der volle Inhalt der QuelleBudni, P. A., L. A. Pomeranz, M. L. Lemons, P. G. Schunemann, T. M. Pollak und E. P. Chicklis. „10W Mid-IR Holmium Pumped ZnGeP2 OPO“. In Advanced Solid State Lasers. Washington, D.C.: OSA, 1998. http://dx.doi.org/10.1364/assl.1998.fc1.
Der volle Inhalt der QuelleLee, Hyung R., Jirong Yu, Norman P. Barnes und Yingxin Bai. „High pulse energy ZnGeP2 singly resonant OPO“. In Advanced Solid-State Photonics. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/assp.2004.394.
Der volle Inhalt der Quelle