Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Zn-ion batteries“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Zn-ion batteries" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Zn-ion batteries"
Mackereth, Matthew, Rong Kou und Sohail Anwar. „Zinc-Ion Battery Research and Development: A Brief Overview“. European Journal of Engineering and Technology Research 8, Nr. 5 (20.10.2023): 70–73. http://dx.doi.org/10.24018/ejeng.2023.8.5.2983.
Der volle Inhalt der QuelleIslam, Shakirul M., Ryan J. Malone, Wenlong Yang, Stephen P. George, Rajendra P. Gautam, Wesley A. Chalifoux und Christopher J. Barile. „Nanographene Cathode Materials for Nonaqueous Zn-Ion Batteries“. Journal of The Electrochemical Society 169, Nr. 11 (01.11.2022): 110517. http://dx.doi.org/10.1149/1945-7111/ac9f72.
Der volle Inhalt der QuelleWang, Xuyang, Alina V. Kirianova, Xieyu Xu, Yanguang Liu, Olesya O. Kapitanova und Marat O. Gallyamov. „Novel electrolyte additive of graphene oxide for prolonging the lifespan of zinc-ion batteries“. Nanotechnology 33, Nr. 12 (24.12.2021): 125401. http://dx.doi.org/10.1088/1361-6528/ac40bf.
Der volle Inhalt der QuelleSong, Ming, Hua Tan, Dongliang Chao und Hong Jin Fan. „Recent Advances in Zn-Ion Batteries“. Advanced Functional Materials 28, Nr. 41 (05.08.2018): 1802564. http://dx.doi.org/10.1002/adfm.201802564.
Der volle Inhalt der QuelleAl‐Abbasi, Malek, Yanrui Zhao, Honggang He, Hui Liu, Huarong Xia, Tianxue Zhu, Kexuan Wang et al. „Challenges and protective strategies on zinc anode toward practical aqueous zinc‐ion batteries“. Carbon Neutralization 3, Nr. 1 (Januar 2024): 108–41. http://dx.doi.org/10.1002/cnl2.109.
Der volle Inhalt der QuelleShelni Rofika, Rida Nurul, Mardiyati Mardiyati und Rahmat Hidayat. „Characteristics of Ni-Zn Rechargeable Batteries with Zn Anode Prepared by Using Nano-Cellulose as its Binder Agent“. Materials Science Forum 1028 (April 2021): 105–10. http://dx.doi.org/10.4028/www.scientific.net/msf.1028.105.
Der volle Inhalt der QuellePang, Qiang, Xiangyu Yu, Shijing Zhang, Wei He, Siyu Yang, Yao Fu, Ying Tian, Mingming Xing und Xixian Luo. „High-Capacity and Long-Lifespan Aqueous LiV3O8/Zn Battery Using Zn/Li Hybrid Electrolyte“. Nanomaterials 11, Nr. 6 (28.05.2021): 1429. http://dx.doi.org/10.3390/nano11061429.
Der volle Inhalt der QuelleHoang Huy, Vo Pham, Luong Trung Hieu und Jaehyun Hur. „Zn Metal Anodes for Zn-Ion Batteries in Mild Aqueous Electrolytes: Challenges and Strategies“. Nanomaterials 11, Nr. 10 (17.10.2021): 2746. http://dx.doi.org/10.3390/nano11102746.
Der volle Inhalt der QuellePark, Sodam, Imanuel Kristanto, Gwan Yeong Jung, David B. Ahn, Kihun Jeong, Sang Kyu Kwak und Sang-Young Lee. „A single-ion conducting covalent organic framework for aqueous rechargeable Zn-ion batteries“. Chemical Science 11, Nr. 43 (2020): 11692–98. http://dx.doi.org/10.1039/d0sc02785e.
Der volle Inhalt der QuelleSharma, Mamta, und Rahul Sharma. „Zn-ion batteries: ZnMn2O4 as cathode material“. Materials Today: Proceedings 26 (2020): 3378–85. http://dx.doi.org/10.1016/j.matpr.2019.10.152.
Der volle Inhalt der QuelleDissertationen zum Thema "Zn-ion batteries"
Aguilar, Ivette. „Batteries aqueuses Zn-MnO2 : études mécanistiques et pistes de développement pour des dispositifs réversibles à haute énergie“. Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS506.
Der volle Inhalt der QuelleLi-ion batteries are prominent in the portable electronics market due to their high energy density and long lifetime. However, their durability still needs to be improved. In this respect, there is a growing interest in aqueous batteries. For example, considerable efforts are being devoted to make alkaline Zn-MnO2 batteries rechargeable. This is proving to be a daunting task due to the complex chemistry of the Zn-MnO2 system, which, despite decades of research, is not yet fully rationalised, resulting in a delay in its practical deployment. In this work, we will re-examine these devices by analytical techniques such as transmission electron microscopy, Raman spectroscopy, quartz crystal microbalance and optical reflectometry, while considering fundamental aspects of solution chemistry. By assembling cells with different positive electrode compositions, we confirm the key role of the electrolyte and the inseparable link between its pH and the electrochemical response of the system. Furthermore, during discharge and charge, we provide experimental evidence for the formation of soluble zinc hydroxides near the cathode-electrolyte interface, responsible for the chemical precipitation of the Zn4(OH)6 SO4.xH2O phase. We also show the importance of these equilibria for the functioning of the system. Inspired by the work presented by Yamamoto in 1986, we also carried out an optimisation study that allowed us to develop cells with high gravimetric capacity and high capacity retention. The set of findings presented provide new perspectives for the development of low cost, high performance rechargeable aqueous batteries
Balachandran, Geethu [Verfasser], Horst [Akademischer Betreuer] Hahn und Helmut [Akademischer Betreuer] Ehrenberg. „Investigation of MFe2O4 (M = Fe, Co, Ni, Cu, Zn) Spinels as Conversion Type Model Systems for Rechargeable Lithium-Ion Batteries / Geethu Balachandran ; Horst Hahn, Helmut Ehrenberg“. Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2019. http://d-nb.info/1186258519/34.
Der volle Inhalt der QuelleWang, Chun-Yu, und 王鈞右. „Preparation and characterization of Zn-doped Li2FeSiO4 cathode material for lithium ion batteries“. Thesis, 2013. http://ndltd.ncl.edu.tw/handle/09178892205454712559.
Der volle Inhalt der Quelle大同大學
材料工程學系(所)
101
In this study, Li2Fe1-xZnxSiO4 (0 ≤ x ≤ 0.07) cathode materials are synthesized by a sol-gel method. The crystal structure, carbon contents, and morphologies of as-prepared powders are investigated with XRD, EA, and SEM, respectively. The electrochemical properties of Li2Fe1-xZnxSiO4 (0 ≤ x ≤ 0.07) cathode materials are examined by assembling these materials into coin-type cells with home-made battery tester by cycling it between 1.5 and 4.6 V (vs. Li/Li+) at 0.1, 0.2, 0.5, and 1C-rates. The XRD results reveal that monoclinic (or orthorhombic) Li2FeSiO4 is exclusively detected in the prepared Li2Fe1-xZnxSiO4 (0 ≤ x ≤ 0.07) powders, used the XRD pattern, Zn doped in structure of Li2FeSiO4 rather than forming impurities, and Rietveld refinements out for all sample and obtained lattice parameters, the refinements result with observed, calculated and difference profiles of the Zn doped sample. Zn is not involved in charge/discharge, the substitution of Fe with Zn decreases the contents, when the Zn amount is more than trivial. Moreover, it is also found that Zn doping shows significant improvement on the electrochemical properties, such as discharge capacity and reversibility, of intrinsic Li2FeSiO4. Therefore, the amount of Zn doping are discussed in this study.
Sitindaon, Rina Se, und 瑟琳娜. „Zn-MnO2 Nanomaterials on Nickel Foam as Cathode Electrode in Zinc Ion Batteries (ZIBs)“. Thesis, 2019. http://ndltd.ncl.edu.tw/handle/m89v3n.
Der volle Inhalt der Quelle國立中興大學
化學系所
107
This thesis discuss the MnO2 nanomaterials composited zinc ion on nickel foam as cathode electrode in Zinc Ion Battery. The materials fabricated by electrodechemical deposition from aqueouse 1 M Na2SO4 solution and 0.01 M MnSO4 solution as soure of MnO2 and ZnSO4 solution as source of zinc ion on nickel foam substrate. The electrodeposited MnO2 composite zinc (Zn-MnO2) result MnO2 gamma plane. The Zn-MnO2 electrochemical properties has been characterize by using cyclic votammetry and galvanostic charge/discharge analysis on coin cell 2032 type with potential range 1.0-1.8 V. The cyclic voltammograms shows of Zn-MnO2 is higher than pristine MnO2 as cathode on Zinc ion battery. Galvanostatic charge shows specific capacity of Zn-MnO2 ( 77.59 mAh/g) almost three times higher than pristine MnO2 (28.34 mAh/g) at current density 0.05 mA/cm2. The zinc composite improving the electrochemical activity of MnO2 conduce the specific capacity in Zinc Ion Battery. The Zn-MnO2 is a promissing cathode material for used in Zinc ion batteries.
Balachandran, Geethu. „Investigation of MFe2O4 (M = Fe, Co, Ni, Cu, Zn) Spinels as Conversion Type Model Systems for Rechargeable Lithium-Ion Batteries“. Phd thesis, 2019. http://tuprints.ulb.tu-darmstadt.de/8553/1/14032019_Geethu%20Balachandran_PHD%20Thesis.pdf.
Der volle Inhalt der QuelleBuchteile zum Thema "Zn-ion batteries"
Assad, Humira, Ishrat Fatma und Ashish Kumar. „Recent Advancement in Zn-Ion Batteries“. In Handbook of Energy Materials, 1–27. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-4480-1_5-1.
Der volle Inhalt der QuelleDong, Haobo, Guanjie He und Ivan P. Parkin. „Flexible Batteries Based on Zn-Ion“. In Smart and Flexible Energy Devices, 375–95. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003186755-21.
Der volle Inhalt der QuelleMargarette, S. J., N. Murali, S. Sirisharani, V. Veeraiah und M. Indira Devi. „Structural and Electrical Conductivity Studies of Ce and Zn Substituted LiMn2O4 Cathode Material for Lithium-Ion Batteries“. In Lecture Notes on Multidisciplinary Industrial Engineering, 773–90. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7643-6_62.
Der volle Inhalt der QuelleHoogendoorn, Billy W., Xiong Xiao, Veerababu Polisetti, Fritjof Nilsson, Kåre Tjus, Kerstin Forsberg und Richard T. Olsson. „Formation of Different Zinc Oxide Crystal Morphologies Using Cellulose as Nucleation Agent in the Waste Valorization and Recycling of Zn-Ion Batteries“. In The Minerals, Metals & Materials Series, 199–208. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-22761-5_20.
Der volle Inhalt der Quelle„Aqueous and Non-aqueous Electrolytes for Zn-ion Batteries“. In Rechargeable Battery Electrolytes, 113–39. Royal Society of Chemistry, 2024. http://dx.doi.org/10.1039/9781839167577-00113.
Der volle Inhalt der QuelleZampardi, Giorgia, und Fabio La Mantia. „Open Challenges and Good Experimental Practices in the Research Field of Aqueous Zn-ion Batteries“. In Aqueous Zinc Batteries, 68–78. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811278327_0003.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Zn-ion batteries"
Kolesnichenko, Igor, David Arnot, Matthew Lim, Gautam Yadav, Michael Nyce, Jinchao Huang, Sanjoy Banerjee und Timothy Lambert. „Ion-Selective Polysulfone Separators for Alkaline Zn-MnO2 Batteries.“ In Proposed for presentation at the Sandia National Laboratories 14th Annual Postdoctoral Technical Showcase held December 9-10, 2020 in Virtual, Virtual, Virtual. US DOE, 2020. http://dx.doi.org/10.2172/1835221.
Der volle Inhalt der QuelleChamran, Fardad, Yuting Yeh, Bruce Dunn und Chang-Jin Kim. „3-Dimensional Electrodes for Microbatteries“. In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61925.
Der volle Inhalt der QuelleKornyushchenko, Anna, Victoria Natalich, Stanislav Shevchenko und Vyacheslav Perekrestov. „Formation of Zn/ZnO and Zn/ZnO/NiO Multilayer Porous Nanosystems for Potential Application as Electrodes in Li-ion Batteries“. In 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2020. http://dx.doi.org/10.1109/nap51477.2020.9309614.
Der volle Inhalt der QuellePriyono, B., M. F. Fitratama, W. C. Prameswari, A. Z. Syahrial und A. Subhan. „Effect of Zn concentration on synthesis of Li4Ti5O12/Zn - graphite with solid state method as material for lithium-ion batteries“. In PROCEEDINGS OF THE 3RD INTERNATIONAL SEMINAR ON METALLURGY AND MATERIALS (ISMM2019): Exploring New Innovation in Metallurgy and Materials. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0001706.
Der volle Inhalt der QuelleCho, Jungsang, Damon Turney, Gautam Yadav, Michael Nyce, Timothy Lambert und Sanjoy Banerjee. „Understanding of Ion Diffusion for Non-Spillable Zn|MnO2 Rechargeable Batteries Allowing for the 2nd Electron MnO2 Cycling in Hydrogel Electrolytes.“ In Proposed for presentation at the 2022 AIChE Annual Meeting November 13-18, 2022 held November 13-18, 2022 in Phoenix, AZ US. US DOE, 2022. http://dx.doi.org/10.2172/2005870.
Der volle Inhalt der Quelle