Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „YOLOv8“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "YOLOv8" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "YOLOv8"
Sharma, Pravek, Dr Rajesh Tyagi und Dr Priyanka Dubey. „Optimizing Real-Time Object Detection- A Comparison of YOLO Models“. International Journal of Innovative Research in Computer Science and Technology 12, Nr. 3 (Mai 2024): 57–74. http://dx.doi.org/10.55524/ijircst.2024.12.3.11.
Der volle Inhalt der QuelleTahir, Noor Ul Ain, Zhe Long, Zuping Zhang, Muhammad Asim und Mohammed ELAffendi. „PVswin-YOLOv8s: UAV-Based Pedestrian and Vehicle Detection for Traffic Management in Smart Cities Using Improved YOLOv8“. Drones 8, Nr. 3 (28.02.2024): 84. http://dx.doi.org/10.3390/drones8030084.
Der volle Inhalt der QuelleWulanningrum, Resty, Anik Nur Handayani und Aji Prasetya Wibawa. „Perbandingan Instance Segmentation Image Pada Yolo8“. Jurnal Teknologi Informasi dan Ilmu Komputer 11, Nr. 4 (22.08.2024): 753–60. http://dx.doi.org/10.25126/jtiik.1148288.
Der volle Inhalt der QuellePanja, Eben, Hendry Hendry und Christine Dewi. „YOLOv8 Analysis for Vehicle Classification Under Various Image Conditions“. Scientific Journal of Informatics 11, Nr. 1 (28.02.2024): 127–38. http://dx.doi.org/10.15294/sji.v11i1.49038.
Der volle Inhalt der QuellePodder, Soumyajit, Abhishek Mallick, Sudipta Das, Kartik Sau und Arijit Roy. „Accurate diagnosis of liver diseases through the application of deep convolutional neural network on biopsy images“. AIMS Biophysics 10, Nr. 4 (2023): 453–81. http://dx.doi.org/10.3934/biophy.2023026.
Der volle Inhalt der QuelleLiu, Yinzeng, Fandi Zeng, Hongwei Diao, Junke Zhu, Dong Ji, Xijie Liao und Zhihuan Zhao. „YOLOv8 Model for Weed Detection in Wheat Fields Based on a Visual Converter and Multi-Scale Feature Fusion“. Sensors 24, Nr. 13 (05.07.2024): 4379. http://dx.doi.org/10.3390/s24134379.
Der volle Inhalt der QuelleSun, Daozong, Kai Zhang, Hongsheng Zhong, Jiaxing Xie, Xiuyun Xue, Mali Yan, Weibin Wu und Jiehao Li. „Efficient Tobacco Pest Detection in Complex Environments Using an Enhanced YOLOv8 Model“. Agriculture 14, Nr. 3 (22.02.2024): 353. http://dx.doi.org/10.3390/agriculture14030353.
Der volle Inhalt der QuelleÇakmakçı, Cihan. „Dijital Hayvancılıkta Yapay Zekâ ve İnsansız Hava Araçları: Derin Öğrenme ve Bilgisayarlı Görme İle Dağlık ve Engebeli Arazide Kıl Keçisi Tespiti, Takibi ve Sayımı“. Turkish Journal of Agriculture - Food Science and Technology 12, Nr. 7 (14.07.2024): 1162–73. http://dx.doi.org/10.24925/turjaf.v12i7.1162-1173.6701.
Der volle Inhalt der QuelleArini Parhusip, Hanna, Suryasatriya Trihandaru, Denny Indrajaya und Jane Labadin. „Implementation of YOLOv8-seg on store products to speed up the scanning process at point of sales“. IAES International Journal of Artificial Intelligence (IJ-AI) 13, Nr. 3 (01.09.2024): 3291. http://dx.doi.org/10.11591/ijai.v13.i3.pp3291-3305.
Der volle Inhalt der QuelleSalma, Kartika, und Syarif Hidayat. „Deteksi Antusiasme Siswa dengan Algoritma Yolov8 pada Proses Pembelajaran Daring“. Jurnal Indonesia : Manajemen Informatika dan Komunikasi 5, Nr. 2 (10.05.2024): 1611–18. http://dx.doi.org/10.35870/jimik.v5i2.716.
Der volle Inhalt der QuelleDissertationen zum Thema "YOLOv8"
Yesudasu, Santheep. „Cοntributiοn à la manipulatiοn de cοlis sοus cοntraintes par un tοrse humanοïde : applicatiοn à la dépaléttisatiοn autοnοme dans les entrepôts lοgistiques“. Electronic Thesis or Diss., Normandie, 2024. https://theses.hal.science/tel-04874770.
Der volle Inhalt der QuelleThis PhD thesis explores the development and implementation of URNik-AI, an AI-powered automated depalletizing system designed to handle cardboard boxes of varying sizes and weights using a dual-arm humanoid torso. The primary objective is to enhance the efficiency, accuracy, and reliability of industrial depalletizing tasks through the integration of advanced robotics, computer vision, and deep learning techniques.The URNik-AI system consists of two UR10 robotic arms equipped with six-axis force/torque sensors and gripper tool sets. An ASUS Xtion RGB-D camera is mounted on Dynamixel Pro H42 pan-tilt servos to capture high-resolution images and depth data. The software framework includes ROS Noetic, ROS 2, and the MoveIt framework, enabling seamless communication and coordination of complex movements. This system ensures high precision in detecting, grasping, and handling objects in diverse industrial environments.A significant contribution of this research is the implementation of deep learning models, such as YOLOv3 and YOLOv8, to enhance object detection and pose estimation capabilities. YOLOv3, trained on a dataset of 807 images, achieved F1-scores of 0.81 and 0.90 for single and multi-face boxes, respectively. The YOLOv8 model further advanced the system's performance by providing keypoint and skeleton detection capabilities, which are essential for accurate grasping and manipulation. The integration of point cloud data for pose estimation ensured precise localization and orientation of boxes.Comprehensive testing demonstrated the system's robustness, with high precision, recall, and mean average precision (mAP) metrics confirming its effectiveness. This thesis makes several significant contributions to the field of robotics and automation, including the successful integration of advanced robotics and AI technologies, the development of innovative object detection and pose estimation techniques, and the design of a versatile and adaptable system architecture
Oškera, Jan. „Detekce dopravních značek a semaforů“. Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2020. http://www.nusl.cz/ntk/nusl-432850.
Der volle Inhalt der QuelleBorngrund, Carl. „Machine vision for automation of earth-moving machines : Transfer learning experiments with YOLOv3“. Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-75169.
Der volle Inhalt der QuelleMelcherson, Tim. „Image Augmentation to Create Lower Quality Images for Training a YOLOv4 Object Detection Model“. Thesis, Uppsala universitet, Signaler och system, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-429146.
Der volle Inhalt der QuelleNúñez-Melgar, Espinoza Erika Pamela, Oré Natali Leonor Reyes, Abad Jorge Raúl Salazar und Vela Anderson Vásquez. „YOLO“. Bachelor's thesis, Universidad Peruana de Ciencias Aplicadas (UPC), 2018. http://hdl.handle.net/10757/625370.
Der volle Inhalt der QuelleThe following research work pretends to test out the viability of the project named YOLO. This project proposes to create a virtual setting to interrelate two segments of different interests or needs: a segment that wants to sell products such as technology, clothing or accessories and another segment that wish to get those items participating in a virtual raffle at affordable prices. In a virtual survey conducted to know the interest and value of the service in the market, the results were that 72% of the people would be willing to participate in virtual games of chance and 52% has sold some new or used product by the Internet. Afterward, the proposal was validated through the raffle of a product in which the interest and participation of the users were astounding because it surpassed the expectations. For this project, it is required an investment of approximately S/141,000.00 of which the 60% corresponds to the shareholders capital and the remaining 40% will be financed by a financial institution. Finally, we present for your revision, the assessment process of project YOLO, it contains the strategic plan, the marketing plan, the operations plan, human resources, and the economic-financial plan. For that reason, in this summary more reference has been made to the financial aspect basing us in the evaluation of cash flows that create the project and which indicate that 100% of the initial outlay it is regained during the first year, all the same, happens to the shareholders who have already free disposition of cash on the first year, which grows 23% every year. Additionally, Net Present Value (NPV), for both flows, is positive and the Internal Rate of Return (IRR), for both flows, generates higher rates than the shareholder's opportunity cost of capital It concludes that the business project generates value to the stockholders, it is viable and profitable.
Trabajo de investigación
Norling, Samuel. „Tree species classification with YOLOv3 : Classification of Silver Birch (Betula pendula) and Scots Pine (Pinus sylvestris)“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-260244.
Der volle Inhalt der QuelleAutomatisering av trädslagsklassifiering vid en skogstaxering skulle potentiellt sätt kunna ge mer effektivitet och bättre resultat för skogsbolag och myndigheter som ansvarar för skogen. Denna uppsats undersöker hur väl ett toppmodernt datorseendesystem, YOLOv3, utför denna klassifieringsuppgift. Ett nytt bildbibliotek med bilder av björkar och tallar, som kallas LilljanNet, skapades för att träna YOLOv3. Efter vi tränat YOLOv3 på halva datamängden utförde vi validering mot den andra halvan. Den upptränade modellen uppnådde ett mean average precision över 0.99. Träning gjordes också med mindre mängder träningsdata och mean average precision-resultaten för dessa modeller var alltid över 0.95. Resultaten är lovande och mer forskning bör göras där man testar att implementera detta på smartphones och drönare.
Ståhl, Sebastian. „A tracking framework for a dynamic non- stationary environment“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288955.
Der volle Inhalt der QuelleAnvändandet av drönare ökar i popularitet över hela världen vilket bidrar till att dess tillämpningsområden växer. I denna avhandling undersöks möjligheten att använda en drönare för att detektera, spåra och lokalisera ett mål i en dynamisk icke- stationär miljö som havet. Målets varierande position och storlek i bilderna leda till tvetydiga uppgifter. I denna avhandlingen utvecklas ett ramverk baserat på en drönare, en monokulär kamera, en GPS- mottagare och drönares IMU sensor för att utföra detektering, spårning samt lokalisering av målet. En objektdetekteringsmodell vid namn Yolov3 tränades för att kunna detektera båtar i bilder tagna från en drönare. Denna modell valdes på grund av dess förmåga att upptäcka små mål och dess prestanda vad gäller hastighet. En modell vars förkortning är KCF används som den visuella spårningsalgoritmen. Denna algoritm valdes på grund av dess prestanda när det gäller hastighet och precision. En återinitialisering av spårningsalgoritmen i kombination med en periodisk uppdatering av den spårade avgränsningsrutan implementeras vilket förbättrar trackerens prestanda. En lokaliseringsmetod utvecklas för att kontinuerligt uppskatta GPS- koordinaterna av målet. Dessa uppskattningar kommer att användas av en flygkontrollmetod som redan utvecklats av Airpelago för att styra drönaren. De experimentella resultaten visar lovande resultat för alla modeller. På grund av opålitlig data kan inte lokaliseringsmetodens precision fastställas med säkerhet. En djupgående analys av resultaten indikerar emellertid att metodens noggrannhet är mer exakt än det genomsnittliga felet beräknat med opålitliga data, som är 19.5 meter. Därför antas det att modellen kan uppskatta GPS- koordinaterna för ett mål med ett fel som är lägre än 19.5 meter. Således dras slutsatsen att det är möjligt att upptäcka, spåra och geolocera ett mål i en dynamisk icke- stationär miljö som havet.
Ye, Fanjie. „A Method of Combining GANs to Improve the Accuracy of Object Detection on Autonomous Vehicles“. Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1752364/.
Der volle Inhalt der QuelleWang, Chen. „2D object detection and semantic segmentation in the Carla simulator“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291337.
Der volle Inhalt der QuelleÄmnet självkörande bilteknik har väckt intresse de senaste åren. Många företag, som Baidu och Tesla, har redan infört automatiska körtekniker i sina nyaste bilar när de kör i ett specifikt område. Det finns dock fortfarande många utmaningar inför fullt autonoma bilar. Detta projekt syftar till att bygga ett riktmärke för att implementera hela det självkörande bilsystemet i programvara. Det finns tre huvudkomponenter inklusive uppfattning, planering och kontroll i hela det autonoma körsystemet. Denna avhandling fokuserar på två underuppgifter 2D-objekt detektering och semantisk segmentering i uppfattningsdelen. Alla experiment kommer att testas i en simulatormiljö som heter The CAR Learning to Act (Carla), som är en öppen källkodsplattform för autonom bilforskning. Du ser bara en gång (Yolov4) och effektiva nätverk för datorvision (ESPnetv2) implementeras i detta projekt för att uppnå Funktioner för objektdetektering och semantisk segmentering. Den minimala distans medvetenhets applikationen implementeras i Carla-simulatorn för att upptäcka avståndet till de främre bilarna. Denna applikation kan användas som en grundläggande funktion för att undvika kollisionen.
Ferrer, Bustamante Claudia Mariela, Llanos Víctor Hugo Ibarra und Flores Carlos Rafael Prialé. „Plataforma virtual de Rifa Yolo“. Bachelor's thesis, Universidad Peruana de Ciencias Aplicadas (UPC), 2018. http://hdl.handle.net/10757/625450.
Der volle Inhalt der QuelleThis business project has been developed with the purpose of meeting the needs of people who are users of electronic commerce by offering an innovative way to obtain products for a minimal cost. The objective of this plan is to bring products closer to consumers who have the desire to have them but for various reasons have not been able to get them. In this proposal developed to fulfill the desire of our chosen client, we have worked on identifying their main motivations when buying online such as: saving time, convenience and searching for the best price, which was contrasted with the main problems they face when making purchases in a physical space: prolonged waiting to be attended and paid, high prices of products and poor attention. In addition, it was possible to highlight their fears regarding the experience of shopping online. The business project raises the service of raffling products of brands recognized by our client, for which raffle tickets will be sold for a set time for each draw, this will be done through an agile and reliable virtual platform where the customer can buy as many options as he wants in order to win the raffle. Our value proposition proposes sending the product free of cost, live broadcasts and notifications of all the draws that will be duly validated, variety of products, guarantee, simple means of payment, bonuses.
Trabajo de investigación
Bücher zum Thema "YOLOv8"
Jones, Sam. Yolo. New York: Simon Pulse, 2014.
Den vollen Inhalt der Quelle finden1564-1616, Shakespeare William, Hrsg. YOLO Juliet. New York: Random House, 2015.
Den vollen Inhalt der Quelle findenOxlajuuj Keej Maya' Ajtz'iib' (Group). und Centro Educativo y Cultural Maya., Hrsg. Jkemiik yoloj li uspanteko =: Gramática uspanteka. Antigua, Guatemala: OKMA, 2007.
Den vollen Inhalt der Quelle findenO, Obemeata Joseph, Ayodele Samuel O, Araromi M. A und Yoloye E. Ayotunde, Hrsg. Evaluation in Africa: In honour of Professor E.A. Yoloye. Ibadan, Nigeria: Stirling-Horden Publishers, 1999.
Den vollen Inhalt der Quelle findenAcademia de las Lenguas Mayas de Guatemala, Hrsg. Yolooj chib' jb'iijaq aj Tz'unun Kaab' =: Nombres y apellidos uspantekos. Uspantán, [Guatemala]: Academia de Lenguas Mayas de Guatemala, 2003.
Den vollen Inhalt der Quelle findenUspanteka, Comunidad Lingüística, Hrsg. Yolooj chib' jb'iijaq aj Tz'unun Kaab': Nombres y apellidos uspantekos. Uspantán, El Quiché [Guatemala]: Academia de Lenguas Mayas de Guatemala, 2003.
Den vollen Inhalt der Quelle findenStevens, James L., und Rosenberg David. Judges of Yolo County: 1850-1985. [United States]: [s.n.], 2011.
Den vollen Inhalt der Quelle findenKärimova, Häqiqät. Şäräfli ömür yolo: Vagif Abbasov-50. Bakı: Tähsil, 2002.
Den vollen Inhalt der Quelle findenCalifornia. Dept. of Water Resources. Central District., Hrsg. Historical ground water levels in Yolo County. Sacramento, CA (P.O. Box 942836, Sacramento 94236-0001): Dept. of Water Resources, Central District, 1992.
Den vollen Inhalt der Quelle findenZentner & Zentner. Cache Creek environmental restoration program, Yolo County, California. Walnut Creek, Calif: Zentner & Zentner, 1993.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "YOLOv8"
Thanh, Bui Dang, Mac Tuan Anh, Giap Dang Khanh, Trinh Cong Dong und Nguyen Thanh Huong. „SGDR-YOLOv8: Training Method for Rice Diseases Detection Using YOLOv8“. In Communications in Computer and Information Science, 170–80. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-70906-7_15.
Der volle Inhalt der QuelleTaskin, Elif Melis. „Interactive Neural Network for Object Detection in YOLOv5 and YOLOv8“. In Information Systems Engineering and Management, 382–92. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-69197-3_30.
Der volle Inhalt der QuelleAlves, Adília, José Pereira, Salik Khanal, A. Jorge Morais und Vitor Filipe. „Pest Detection in Olive Groves Using YOLOv7 and YOLOv8 Models“. In Communications in Computer and Information Science, 50–62. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53036-4_4.
Der volle Inhalt der QuelleKapil, Bhavesh, und Kamlesh Dutta. „Fabric Defects Detection Using YOLOv8“. In Lecture Notes in Networks and Systems, 405–19. Singapore: Springer Nature Singapore, 2024. https://doi.org/10.1007/978-981-97-6992-6_30.
Der volle Inhalt der QuelleXing, Zhecong, Yuan Zhu, Rui Liu, Weiqi Wang und Zhiguo Zhang. „DCM-YOLOv8: An Improved YOLOv8-Based Small Target Detection Model for UAV Images“. In Lecture Notes in Computer Science, 367–79. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-5597-4_31.
Der volle Inhalt der QuelleAbbas, Shahad Fadhil, Shaimaa Hameed Shaker und Firas A. Abdullatif. „YOLOv8-AS: Masked Face Detection and Tracking Based on YOLOv8 with Attention Mechanism Model“. In Communications in Computer and Information Science, 267–75. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-62814-6_19.
Der volle Inhalt der QuelleBharadwaja, D., G. Bhavya Sri, Abdul Azeez und K. Nikitha. „Real Time Surveillance System Using Yolov8“. In Information Systems Engineering and Management, 109–18. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-69197-3_9.
Der volle Inhalt der QuelleSalekin, Siraj Us, Md Hasib Ullah, Abdullah Al Ahad Khan, Md Shah Jalal, Huu-Hoa Nguyen und Dewan Md Farid. „Bangladeshi Native Vehicle Classification Employing YOLOv8“. In Communications in Computer and Information Science, 185–99. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-7649-2_14.
Der volle Inhalt der QuellePrakash, Immidisetty V., und M. Palanivelan. „A Study of YOLO (You Only Look Once) to YOLOv8“. In Algorithms in Advanced Artificial Intelligence, 257–66. London: CRC Press, 2024. http://dx.doi.org/10.1201/9781003529231-40.
Der volle Inhalt der QuelleSelcuk, Burcu, und Tacha Serif. „A Comparison of YOLOv5 and YOLOv8 in the Context of Mobile UI Detection“. In Mobile Web and Intelligent Information Systems, 161–74. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-39764-6_11.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "YOLOv8"
Ikmel, Ghita, und EL AMRANI EL IDRISSI Najiba. „Performance Analysis of YOLOv5, YOLOv7, YOLOv8, and YOLOv9 on Road Environment Object Detection: Comparative Study“. In 2024 International Conference on Ubiquitous Networking (UNet), 1–5. IEEE, 2024. https://doi.org/10.1109/unet62310.2024.10794724.
Der volle Inhalt der QuelleMohajeran, Seena, Hannah Ke, Jenna Ke, Michelle Li, Yu Bai und Macy Li. „Streamlined Video Object Detection with YOLOX YOLOV5 YOLOV7 and YOLOV8“. In 2024 10th International Conference on Control, Decision and Information Technologies (CoDIT), 664–69. IEEE, 2024. http://dx.doi.org/10.1109/codit62066.2024.10708395.
Der volle Inhalt der QuelleA’la, Fiddin Yusfida, Muhammad Asri Safi'ie und Andy Supriyadi. „YOLOv8 vs. YOLOv9: Safety Helmet Detection Performance“. In 2024 7th International Conference of Computer and Informatics Engineering (IC2IE), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/ic2ie63342.2024.10748076.
Der volle Inhalt der QuelleChomklin, Amonpan, Saichon Jaiyen, Niwan Wattanakitrungroj, Pornchai Mongkolnam und Suluk Chaikhan. „Packaging Defect Detection in Lean Manufacturing: A Comparative Study of YOLOv8, YOLOv9, and YOLOv10“. In 2024 28th International Computer Science and Engineering Conference (ICSEC), 1–6. IEEE, 2024. https://doi.org/10.1109/icsec62781.2024.10770712.
Der volle Inhalt der QuelleLiang, YuYing, und Xin Chen. „YOLOv8-AMCD: Improved YOLOv8 for Small Object Detection“. In 2024 6th International Conference on Robotics and Computer Vision (ICRCV), 33–37. IEEE, 2024. http://dx.doi.org/10.1109/icrcv62709.2024.10758598.
Der volle Inhalt der QuelleLi, Xiaolin, und Lishun Ma. „DED-YOLOv8:Dense pedestrian detection algorithm based on YOLOv8“. In 2024 4th International Symposium on Computer Technology and Information Science (ISCTIS), 545–48. IEEE, 2024. http://dx.doi.org/10.1109/isctis63324.2024.10699141.
Der volle Inhalt der QuelleLiu, Ruiyu, Hanlin Zhang, Zhe Liu und Dan Chen. „CAE-YOLOV8: Occlusion Object Detection Based on Improved YOLOv8“. In 2024 5th International Conference on Machine Learning and Computer Application (ICMLCA), 480–83. IEEE, 2024. http://dx.doi.org/10.1109/icmlca63499.2024.10753964.
Der volle Inhalt der QuelleLiu, Shenghu, und Musha Yasenjiang. „GGM-YOLOV8: Strawberry Disease Detection Model Based on Improved YOLOv8“. In 2024 6th International Conference on Communications, Information System and Computer Engineering (CISCE), 1153–57. IEEE, 2024. http://dx.doi.org/10.1109/cisce62493.2024.10653090.
Der volle Inhalt der QuelleYang, Guoyuan, Wei Xiong, Jiaqi Lei und Kang Yang. „Blade-YOLOv8:Improved YOLOv8 for Wind Turbine Blade Defect Detection“. In 2024 4th Power System and Green Energy Conference (PSGEC), 209–13. IEEE, 2024. http://dx.doi.org/10.1109/psgec62376.2024.10721051.
Der volle Inhalt der QuelleKich, Victor A., Muhammad A. Muttaqien, Junya Toyama, Ryutaro Miyoshi, Yosuke Ida, Akihisa Ohya und Hisashi Date. „Precision and Adaptability of YOLOv5 and YOLOv8 in Dynamic Robotic Environments“. In 2024 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE International Conference on Robotics, Automation and Mechatronics (RAM), 514–19. IEEE, 2024. http://dx.doi.org/10.1109/cis-ram61939.2024.10673292.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "YOLOv8"
Schoening, Timm. PyiFDOYOLO. GEOMAR, Dezember 2022. http://dx.doi.org/10.3289/sw_2_2022.
Der volle Inhalt der QuelleYoo, Shinjae, Yonggang Cui, Ji Hwan Park, Yuewei Lin und Yihui Ren. Development of a software tool for IAEA use of the YOLOv3 machine learning algorithm. Office of Scientific and Technical Information (OSTI), Februar 2019. http://dx.doi.org/10.2172/1494041.
Der volle Inhalt der QuelleCui, Yonggang, S. Yoo und J. Hwan Park. YOLO Test Software v1.2. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1646872.
Der volle Inhalt der QuelleMohamed, Amna. Towards Machine Learning Framework for Badminton Game Analysis Using TrackNet and YOLO Models. Ames (Iowa): Iowa State University, Mai 2023. http://dx.doi.org/10.31274/cc-20240624-1513.
Der volle Inhalt der QuelleSpeer, B. First Known Use of QECBs will Save Yolo County at Least $8.7 Million Over the Next 25 Years, Energy Analysis (Revised) (Brochure). Office of Scientific and Technical Information (OSTI), Juni 2011. http://dx.doi.org/10.2172/1008195.
Der volle Inhalt der QuelleCheng, DingXin. Development of the Roadway Pothole Management Program. Mineta Transportation Institute, Juli 2024. http://dx.doi.org/10.31979/mti.2024.2306.
Der volle Inhalt der QuelleForero Fuarez, Luis Carlos. Procesamiento de imágenes. Escuela Tecnológica Instituto Técnico Central - ETITC, 2023. http://dx.doi.org/10.55411/2023.4.
Der volle Inhalt der QuelleChemical quality of ground water in Yolo and Solano counties, California. US Geological Survey, 1985. http://dx.doi.org/10.3133/wri844244.
Der volle Inhalt der QuelleStreamflow, sediment discharge, and streambank erosion in Cache Creek, Yolo County, California, 1953-86. US Geological Survey, 1989. http://dx.doi.org/10.3133/wri884188.
Der volle Inhalt der QuelleHydrology and chemistry of floodwaters in the Yolo Bypass, Sacramento River system, California, during 2000. US Geological Survey, 2002. http://dx.doi.org/10.3133/wri024202.
Der volle Inhalt der Quelle