Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Yeast strains“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Yeast strains" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Yeast strains"
Diguță, Camelia Filofteia, Constanța Mihai, Radu Cristian Toma, Carmen Cîmpeanu und Florentina Matei. „In Vitro Assessment of Yeasts Strains with Probiotic Attributes for Aquaculture Use“. Foods 12, Nr. 1 (26.12.2022): 124. http://dx.doi.org/10.3390/foods12010124.
Der volle Inhalt der QuelleHazra, Fahrizal. „Exploration of Pectin – Utilizing Yeast From Soil of Bogor and Wleri Fruit Orchards“. Jurnal Hortikultura Indonesia 2, Nr. 1 (23.02.2012): 43. http://dx.doi.org/10.29244/jhi.2.1.43-50.
Der volle Inhalt der QuelleAlkay, Z., E. Dertli und M. Z. Durak. „Investigation of probiotic potential of yeasts isolated from sourdoughs from different regions of Turkey“. Acta Alimentaria 50, Nr. 4 (15.11.2021): 610–19. http://dx.doi.org/10.1556/066.2021.00150.
Der volle Inhalt der QuellePăucean, Man, Chiş, Mureşan, Pop, Socaci, Mureşan und Muste. „Use of Pseudocereals Preferment Made with Aromatic Yeast Strains for Enhancing Wheat Bread Quality“. Foods 8, Nr. 10 (26.09.2019): 443. http://dx.doi.org/10.3390/foods8100443.
Der volle Inhalt der QuelleChen, Pei-Hua, und Jui-Yu Chou. „Screening and Identification of Yeasts Antagonistic to Pathogenic Fungi Show a Narrow Optimal pH Range for Antagonistic Activity“. Polish Journal of Microbiology 66, Nr. 1 (30.03.2017): 101–6. http://dx.doi.org/10.5604/17331331.1234997.
Der volle Inhalt der QuelleGargouri, Boutheina, Najla Mhiri, Fatma Karray, Fathi Aloui und Sami Sayadi. „Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater“. BioMed Research International 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/929424.
Der volle Inhalt der QuelleCastrillo, David, Noemi Neira und Pilar Blanco. „Saccharomyces cerevisiae Strain Diversity Associated with Spontaneous Fermentations in Organic Wineries from Galicia (NW Spain)“. Fermentation 6, Nr. 3 (15.09.2020): 89. http://dx.doi.org/10.3390/fermentation6030089.
Der volle Inhalt der QuelleYoshinaga, Masafumi, Stephanie How, Damien Blanco, Ian Murdoch, Matteo Grudny, Samantha Powers, Nelson Molina, Barry Rosen und Aaron Welch. „Directed Evolution of Saccharomyces cerevisiae for Increased Selenium Accumulation“. Microorganisms 6, Nr. 3 (06.08.2018): 81. http://dx.doi.org/10.3390/microorganisms6030081.
Der volle Inhalt der QuelleDoan, Thi Kieu Tien, Thi Tuyet Nhung Do, Tri An Le, Hoang Hiep Tran, Thi Ngoc Mi Huynh, Ngoc Thanh Nguyen und Xuan Phong Huynh. „Isolation and selection of yeasts from soursop Annona muricata for wine fermentation“. Ministry of Science and Technology, Vietnam 63, Nr. 11 (25.11.2021): 53–57. http://dx.doi.org/10.31276/vjst.63(11).53-57.
Der volle Inhalt der QuelleCheraiti, Naoufel, St�phane Guezenec und Jean-Michel Salmon. „Redox Interactions between Saccharomyces cerevisiae and Saccharomyces uvarum in Mixed Culture under Enological Conditions“. Applied and Environmental Microbiology 71, Nr. 1 (Januar 2005): 255–60. http://dx.doi.org/10.1128/aem.71.1.255-260.2005.
Der volle Inhalt der QuelleDissertationen zum Thema "Yeast strains"
Reynolds, Nicola C. „Genetic manipulation of yeast strains“. Thesis, University of Greenwich, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.276133.
Der volle Inhalt der QuelleGovender, Patrick. „Industrial yeast strains engineered for controlled flocculation“. Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/1450.
Der volle Inhalt der QuelleIn many industrial fermentation processes, Saccharomyces cerevisiae yeast should ideally meet two partially conflicting demands. During fermentation a high suspended yeast count is of paramount importance to maintain a rapid fermentation rate, whilst efficient flocculation should ideally be initiated only on completion of the primary alcoholic fermentation, so as to enhance product clarification and recovery. Most commercial wine yeast strains are non-flocculent, probably because this trait was counter-selected to avoid fermentation problems. In this study, we assessed molecular strategies to optimise the flocculation behaviour of non-flocculent laboratory and wine yeast strains. For this purpose, the chromosomal copies of three dominant flocculation genes, FLO1, FLO5 and FLO11, of a non-flocculent S. cerevisiae laboratory strain (FY23) and two commercial wine yeast strains (BM45 and VIN13) were placed under the transcriptional control of the stationary phase-inducible promoters of the S. cerevisiae ADH2 or HSP30 genes. Under standard laboratory media and culture conditions, all six promoter-gene combinations resulted in specific flocculation behaviours in terms of timing and intensity. The data show that the strategy resulted in the expected and stable expression patterns of these genes in both laboratory and industrial wine yeast strains. Most importantly, the data confirm that inducible expression of the native FLO1 and FLO5 open reading frames, albeit to varying degrees, are responsible for a quantifiable cell-cell adhesion phenotype that can be characterized as a Flo1 flocculation phenotype. On the other hand, we found that inducible expression of the native FLO11 ORF under these conditions resulted in flor/biofilm formation and invasive growth phenotypes. However, the specific impact of the expression of individual dominant FLO genes with regard to characteristics such as flocculation efficiency, cell wall hydrophobicity, biofilm formation and substrate adhesion properties showed significant differences between the commercial strains as well as between commercial and laboratory strains. These adhesion phenotype differences may at least in part be attributed to wine yeast FLO gene open reading frames containing significantly smaller intragenic repeat regions than laboratory strains. The data show that the ADH2 regulatory sequences employed in this study were unsuitable for the purpose of driving FLO gene expression under wine-making conditions. However, HSP30p-based FLO1 and FLO5 wine yeast transformants displayed similar flocculent phenotypes under both synthetic and authentic red wine-making conditions, and the intensities of these phenotypes were closely aligned to those observed under nutrient-rich YEPD conditions. The fermentation activities of HSP30p-based transgenic yeast strains were indistinguishable from that of their parental host wine yeast strains. The chemical composition of wines obtained using transgenic yeast strains were similar to those produced by parental strains. The BM45-derived HSP30p-FLO5 transformant in particular was capable of generating compacted or ‘caked’ lees fractions, thereby providing a distinct separation of the fermented wine product and lees fractions. Furthermore, in this study we report a novel FLO11 induced flocculation phenotype that seems to exclusively develop under authentic red wine-making conditions. This strong FLO11 flocculation phenotype was not wine yeast strain dependant, possessed both Ca2+-dependant and Ca2+-independent flocculation characteristics and was insensitive to inhibition by both glucose and mannose. A distinct advantage of this unique FLO11 phenotype was highlighted in its ability to dramatically promote faster lees settling rates. Moreover, wines produced by HSP30p-FLO11 wine yeast transformants were significantly less turbid than those produced by their wild type parental strains. The benefit of this attractive property is it facilitates simpler and faster recovery of wines and also promotes greater volume recovery of the wine product.
Nayyar, Ashima. „Yeast flocculation : understanding cell surface structure-function relationships in industrial yeast strains“. Thesis, Abertay University, 2015. https://rke.abertay.ac.uk/en/studentTheses/cec13693-e667-4426-ba6c-6873e5c2b642.
Der volle Inhalt der QuelleRossouw, Debra. „Comparative 'omic' profiling of industrial wine yeast strains“. Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/1454.
Der volle Inhalt der QuelleThe main goal of this project was to elucidate the underlying genetic factors responsible for the different fermentation phenotypes and physiological adaptations of industrial wine yeast strains. To address this problem an ‘omic’ approach was pursued: Five industrial wine yeast strains, namely VIN13, EC1118, BM45, 285 and DV10, were subjected to transcriptional, proteomic and exometabolomic profiling during alcoholic fermentation in simulated wine-making conditions. The aim was to evaluate and integrate the various layers of data in order to obtain a clearer picture of the genetic regulation and metabolism of wine yeast strains under anaerobic fermentative conditions. The five strains were also characterized in terms of their adhesion/flocculation phenotypes, tolerance to various stresses and survival under conditions of nutrient starvation. Transcriptional profiles for the entire yeast genome were obtained for three crucial stages during fermentation, namely the exponential growth phase (day 2), early stationary phase (day 5) and late stationary phase (day 14). Analysis of changes in gene expression profiles during the course of fermentation provided valuable insights into the genetic changes that occur as the yeast adapt to changing conditions during fermentation. Comparison of differentially expressed transcripts between strains also enabled the identification of genetic factors responsible for differences in the metabolism of these strains, and paved the way for genetic engineering of strains with directed modifications in key areas. In particular, the integration of exo-metabolite profiles and gene expression data for the strains enabled the construction of statistical models with a strong predictive capability which was validated experimentally. Proteomic analysis enabled correlations to be made between relative transcript abundance and protein levels for approximately 450 gene and protein pairs per analysis. The alignment of transcriptome and proteome data was very accurate for interstrain comparisons. For intrastrain comparisons, there was almost no correlation between trends in protein and transcript levels, except in certain functional categories such as metabolism. The data also provide interesting insights into molecular evolutionary mechanisms that underlie the phenotypic diversity of wine yeast strains. Overall, the systems biology approach to the study of yeast metabolism during alcoholic fermentation opened up new avenues for hypothesis-driven research and targeted engineering strategies for the genetic enhancement/ modification of wine yeast for commercial applications.
Louw, Campbell (Campbell Trout). „The development of polysaccharide degrading wine yeast strains“. Thesis, Stellenbosch : University of Stellenbosch, 2004. http://hdl.handle.net/10019.1/16382.
Der volle Inhalt der QuelleENGLISH ABSTRACT: The polysaccharides that are present in wine originate from the grapes, the fungi that grow on the grapes and from other microorganisms that come into contact with the must during winemaking. The grape-derived polysaccharides of most concern in winemaking are pectin, glucan and xylan that can be enzymatically degraded by pectinases, glucanases and xylanases, respectively. These are the main structural polysaccharides of the cell wall of the grape cell. Degradation of the cell walls will result in the separation and rupture of the grape cells, and cell wall-bound compounds will be released into the must. Treating the must with pectinase and macerating enzyme preparations can result in an increase in free-flow juice, an improvement in must clarification and filtration, and an increased extraction of phenols and tannins. The tannins that are extracted polymerise with anthocyanins in red wine during ageing, resulting in increased colour intensity and stability. Wine aroma is also influenced by enzyme treatment. The degradation of the cell wall contributes to the release of glycosidically-bound terpene or alcohol precursors from the berries. The hydrolysis of these precursors during fermentation can result in an improvement in aroma. It can thus be seen that it is possible to improve wine quality and processing by supplementing the endogenous enzymes that are present in the fermentation with commercial enzyme preparations. Commercial enzymes are typically crude fungal preparations. The majority of commercial pectinase and glucanase preparations are derived from Aspergillus and Trichoderma, respectively. Since the endogenous polysaccharase activity of Saccharomyces cerevisiae is very limited, the heterologous expression of specific polysaccharase genes in an industrial yeast strain can improve the winemaking process, resulting in a higher quality wine without the addition of expensive commercial enzyme preparations. Since only the desired enzymes are secreted by the recombinant strain, there will be no undesired sideactivities, which can be detrimental to wine quality. Several pectinase-, glucanaseand xylanase-encoding genes, cloned from a variety of organisms, have been expressed successfully in laboratory strains of S. cerevisiae. Attempts have also been made to construct industrial wine yeast strains that express these polysaccharase genes and secrete the encoded enzymes. Fermentation with some of these strains resulted in a decrease in total phenolics and turbidity, an increase in juice extraction, and alterations in the colour and aromatic profile of the resulting wines. In this study, four polysaccharide-degrading, recombinant wine yeast strains were constructed. The endo-β-1,4-xylanase gene, XYN2, and the endo-β-1,4-glucanase gene, end1, were previously cloned from the soft rot fungus Trichoderma reesei and the rumen bacterium Butyrivibrio fibrisolvens, respectively. These genes were subcloned into different expression cassettes which were used to construct the four integration plasmids. The recombinant plasmids contained the following gene cassettes: TEF1P-XYN2-ADH2T (plasmid pDLG29) ADH1P- MFα1S -end1-TRP5T (plasmid pDLG30) ADH1P-MFα1S-end1-TRP5T and ADH2P-XYN2-ADH2T (plasmid pDLG33), ADH1P-MFα1S-end1-TRP5T and YG100PXYN2- ADH2T (plasmid pDLG39). These four plasmids were then separately integrated into the ILV2 locus of the commercial wine yeast strain S. cerevisiae VIN13. Wine was made with the four strains constructed in this study, a pectolytic strain, VIN13[pPPK], a glucanase- and xylanase-secreting strain, VIN13[pEX], an untransformed VIN13 strain, and an untransformed strain with the addition of the commercial enzyme preparation Rapidase EX Colour. Microvinification experiments were carried out on Pinot noir, Ruby Cabernet and Muscat d’Alexandria wines. Fermentation with the polysaccharide-degrading strains resulted in significant improvements in juice extraction, colour intensity and stability, and in alterations in the aromatic profiles of the wines produced. Subject to the approval by the regulatory authorities and eventual consumer acceptance of the use of genetically modified organisms (GMOs) in fermented foods and beverages, it might be required that the GM status of the yeast that is used appears on the label. Currently, there is no robust technique available with which the use of GM yeast can be revealed in a finished wine because the yeast cells and their DNA are removed from or denatured in the wine during filtration and processing. One way with which the undeclared use of a GM yeast in winemaking could be exposed would be to compare the chemical profile of a suspect wine with that of non-GM wine. In order to explore this concept further, a secondary aim of this study was to investigate whether Fourier Transformation Infra Red (FT-IR) spectroscopy coupled with multivariate data analysis could distinguish between wines fermented with transgenic and non-transgenic yeast strains, or between wines fermented with different transgenic strains. The results showed that this method could be used to classify wines fermented with different yeast strains if fermentation with the strain resulted in a unique chemical profile in the resulting wine. This was a preliminary study and these findings were summarised as an addendum to the thesis.
AFRIKAANSE OPSOMMING: Die polisakkariede wat in wyn teenwoordig is, is afkomstig van die druiwe, die swamme wat op die druiwe groei en vanaf ander mikroörganismes wat tydens die wynmaakproses met die mos in aanraking kom. Die belangrikste druifpolisakkariede in wynbereiding is pektien, glukaan en xilaan, wat onderskeidelik deur pektinases, glukanases en xilanases afgebreek kan word. Hierdie is die vernaamste strukturele polisakkariede van ‘n druifsel se selwand. Die afbreking van die selwande veroorsaak dat die druifselle skei en skeur, met die gevolg dat die selwandgebonde verbindings in die mos vrygelaat word. Die behandeling van die mos met pektinase en versappingsensiempreparate kan tot ʼn toename in vry-afloopsap lei, sowel as ʼn verbetering in mosverheldering en -filtrasie en ʼn verhoogde ekstraksie van fenole en tanniene. Die tanniene wat geëkstraheer word, polimeriseer in rooiwyn tydens veroudering, en dit lei tot verhoogde kleurintensiteit en -stabiliteit. Wynaroma word ook deur ensiembehandeling beïnvloed. Die afbreking van die druifselwand dra by tot die vrylating van glikosidiesgebonde terpeen- en alkoholvoorlopers uit die korrels. Die hidrolise van hierdie voorlopers tydens gisting kan lei tot ʼn verbetering van die aroma. Dit is dus duidelik dat dit moontlik is om wynkwaliteit en wynbereiding te verbeter deur die endogene ensieme wat in die gisting teenwoordig is met kommersiële ensiempreparate te supplementeer. Kommersiële ensiempreparate is tipies ongesuiwerde swampreparate. Die meerderheid kommersiële pektinase- en glukanasepreparate word onderskeidelik vanaf Aspergillus en Trichoderma verkry. Aangesien die endogene polisakkaraseaktiwiteit van Saccharomyces cerevisiae baie beperk is, kan die heteroloë uitdrukking van spesifieke polisakkarase-gene in ʼn industriële gisras die wynbereidingsproses verbeter en lei tot ʼn hoër kwaliteit wyn sonder die byvoeging van duur kommersiële ensiempreparate. Omdat die verkose ensieme deur die rekombinante ras uitgeskei word, sal daar geen ongewenste newe-effekte teenwoordig wees wat ʼn nadelige effek op wynkwaliteit kan hê nie. Verskeie mikrobiese gene wat vir pektinases, glukanases en xilanases kodeer, is reeds voorheen uit ‘n wye verskeidenheid van organismes gekloneer en suksesvol in laboratoriumrasse van S. cerevisiae uitgedruk. Pogings is ook aangewend om industriële wyngisrasse te konstrueer wat hierdie polisakkarasegene uitdruk en hul enkodeerde ensieme uitskei. Gisting met sommige van hierdie rekombinante gisrasse het gelei tot ʼn afname in totale fenoliese verbindings en troebelheid, ʼn verhoging in sapekstraksie, en veranderings in die kleur en aromatiese profiel van die gevolglike wyne. In hierdie studie is vier polisakkaried-afbrekende, rekombinante wyngisrasse gekonstrueer. Die endo-β-1,4-xilanasegeen, XYN2, en die endo-β-1,4- glukanasegeen, end1, is voorheen reeds onderskeidelik vanaf die sagte vrotswam, Trichoderma reesei, en die rumenbakterium, Butyrivibrio fibrisolvens, gekloneer. Hierdie gene is in vier integrasieplasmiede in verskillende ekspressiekassette gesubkloneer. Die plasmiede het die volgende geenkassette bevat: TEF1P-XYN2- ADH2T (plasmied pDLG29) ADH1P- MFα1S -end1-TRP5T (plasmied pDLG30) ADH1PMFα1S- end1-TRP5T and ADH2P-XYN2-ADH2T (plasmied pDLG33), ADH1P-MFα1S end1-TRP5T and YG100P-XYN2-ADH2T (plasmied pDLG39). Hierdie vier plasmiede is toe afsonderlik in die ILV2-lokus van die kommersiële wyngisras, S. cerevisiae VIN 13, geïntegreer. Wyn is met hierdie vier gekonstrueerde gisrasse gemaak, die pektolitiese gisras, VIN13[pPPK], die glukanase- en xilanase-afskeidende gisras, VIN13[pEX], die ongetransformeerde VIN13-ras, en met ʼn ongetransformeerde VIN13 gis waarby die kommersiële ensiempreparaat, Rapidase EX Colour, bygevoeg is. Mikro-wynbereidingseksperimente is op Pinot noir-, Ruby Cabernet- en Muscat D’Alexandria wyne uitgevoer. Gisting met die polisakkaried-afbrekende gisrasse het gelei tot ʼn noemenswaardige verbetering in sapekstraksie, kleurintensiteit en kleurstabiliteit, asook in veranderinge in die aromatiese profiele van die geproduseerde wyne. Indien die gebruik van geneties gemodifiseerde organismes (GMOs) in gefermenteerde voedsel en drank deur die reguleringsowerhede goedgekeur en uiteindelik deur die verbruiker aanvaar sou word, sou dit vereis kon word dat die GMstatus van die wyngisgis op die etiket van die wynbottel aangebring word. Verpligte etikettering van GM-wyn sal metodes vereis waarmee die ‘nalentskap’ van GMgisselle in die finale produk geïdentifiseer en gemoniteer kan word. Tans is daar geen robuuste tegnieke beskikbaar waarmee die gebruik van GM-giste openbaar kan word nie, aangesien die gisselle en hul DNA tydens filtrasie en prosessering verwyder word. Een wyse waarop die onverklaarde gebruik van ‘n GM-gis in wynbereiding blootgestel sou kno word, is om die chemiese profiel van die verdagte wyn met dié van ‘n nie-GM-wyn te vergelyk. Ten einde hierdie konsep verder te ondersoek was ‘n sekondêre doelwit van hierdie studie om te bepaal of FT-IR (Fourier-transformasie-infrarooi) spektroskopie tesame met meervariante dataanalise gebruik kan word om te onderskei tussen wyne wat met transgeniese en nietransgeniese gisrasse gegis is, of tussen wyne wat met verskillende transgeniese rasse gegis is. Die resultate het aangedui dat hierdie metode gebruik kan word om wyne wat met verskillende gisrasse gegis is, te klassifiseer indien die betrokke gisras ʼn unieke chemiese profiel in die uiteindelike wyn veroorsaak het. Dit was egter ʼn voorlopige ondersoek en is as ʼn byvoegsel tot die tesis geskryf.
Hemmati, Naghmeh. „Engineering yeast strains to enhance bioethanol production efficiency /“. Available to subscribers only, 2008. http://proquest.umi.com/pqdweb?did=1674956301&sid=4&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Der volle Inhalt der QuelleMocke, Bernard A. „The breeding of yeast strains for novel oenological outcomes“. Thesis, Link to the online version, 2005. http://hdl.handle.net/10019/1117.
Der volle Inhalt der QuelleZelena, L., S. Nevmyvaka und I. Hretskyi. „Effect of co-culturing yeast strains on cell density“. Thesis, Київський національний університет технологій та дизайну, 2020. https://er.knutd.edu.ua/handle/123456789/15572.
Der volle Inhalt der QuelleTrollope, Kim. „Investigation of resveratrol production by genetically engineered Saccharomyces cervisiae strains /“. Link to the online version, 2006. http://hdl.handle.net/10019/1247.
Der volle Inhalt der QuelleBoeira, Lucia Schuch. „Effects of fusariotoxins on the performance of brewing yeast strains“. Thesis, Heriot-Watt University, 2000. http://hdl.handle.net/10399/560.
Der volle Inhalt der QuelleBücher zum Thema "Yeast strains"
Faklaris, D. Effect of drying on growth and stability of brewing yeast strains. Manchester: UMIST, 1998.
Den vollen Inhalt der Quelle findenGough, Suzanne. Production of Ethanol from mollasses using the Thermotolerant Yeast Strain Kluyveromyces marxiamus IMB3. [S.l: The Author], 1998.
Den vollen Inhalt der Quelle findenBrady, Damien. Ethanol production by the thermolerant yeast strain kluyveromyces marscianus IMB3 during growth on lactose- containing media. [S.l: The Author], 1996.
Den vollen Inhalt der Quelle findenBakalinsky, Alan Togore. Conversion of wine yeast strains of Saccharomyces cerevisiae to heterothallism and determination of their chromosomal constitution. 1989.
Den vollen Inhalt der Quelle finden1949-, Panchal Chandra J., Hrsg. Yeast strain selection. New York: M. Dekker, 1990.
Den vollen Inhalt der Quelle findenPanchal, Chandra J. Yeast Strain Selection. Taylor & Francis Group, 2020.
Den vollen Inhalt der Quelle findenPanchal, Chandra J. Yeast Strain Selection. Taylor & Francis Group, 2020.
Den vollen Inhalt der Quelle findenPanchal, Chandra J. Yeast Strain Selection. Taylor & Francis Group, 2020.
Den vollen Inhalt der Quelle findenPanchal, Chandra J. Yeast Strain Selection. Taylor & Francis Group, 2020.
Den vollen Inhalt der Quelle findenPanchal. Yeast Strain Selection. Taylor & Francis Group, 2019.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Yeast strains"
Chochinov, Claire A., und Alex N. Nguyen Ba. „Bulk-Fitness Measurements Using Barcode Sequencing Analysis in Yeast“. In Methods in Molecular Biology, 399–415. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2257-5_22.
Der volle Inhalt der QuelleWhite, P. A., A. I. Kennedy und K. A. Smart. „The Osmotic Stress Response of Ale and Lager Brewing Yeast Strains“. In Brewing Yeast Fermentation Performance, 46–60. Oxford, UK: Blackwell Science, 2008. http://dx.doi.org/10.1002/9780470696040.ch5.
Der volle Inhalt der QuelleOlineka, Tammi L., Apostolos Spiropoulos, Paula A. Mara und Linda F. Bisson. „Optimization of Proteome Analysis for Wine Yeast Strains“. In Microbial Processes and Products, 345–68. Totowa, NJ: Humana Press, 2005. http://dx.doi.org/10.1385/1-59259-847-1:345.
Der volle Inhalt der QuelleSmith, David, und Vera Bussas. „Preserving the reference strains.“ In Trends in the systematics of bacteria and fungi, 55–68. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244984.0055.
Der volle Inhalt der QuelleDannenmaier, Stefan, Silke Oeljeklaus und Bettina Warscheid. „2nSILAC for Quantitative of Prototrophic Baker’s Yeast“. In Methods in Molecular Biology, 253–70. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1024-4_18.
Der volle Inhalt der QuelleYin, Junwei, Yajun Li, Shujian Li, Xiaofang Wang, Xiao Gong, Yangyang Liu, Lijing Lin und Jihua Li. „Characteristics of red pitaya wine fermented by different yeast strains“. In Advances in Materials Science, Energy Technology and Environmental Engineering, 371–74. P.O. Box 11320, 2301 EH Leiden, The Netherlands, e-mail: Pub.NL@taylorandfrancis.com , www.crcpress.com – www.taylorandfrancis.com: CRC Press/Balkema, 2016. http://dx.doi.org/10.1201/9781315227047-73.
Der volle Inhalt der QuelleShalley Sharma, Sonia Sharma, Surender Singh, Lata und Anju Arora. „Improving Yeast Strains for Pentose Hexose Co-fermentation: Successes and Hurdles“. In Springer Proceedings in Energy, 23–41. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2773-1_3.
Der volle Inhalt der QuelleGaradi Suresh, Harsha, und Mojca Mattiazzi Usaj. „Systematic High-Content Screening of Fluorescently Tagged Yeast Double Mutant Strains“. In Methods in Molecular Biology, 57–78. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1740-3_3.
Der volle Inhalt der QuelleMattiazzi Usaj, Mojca, Dara S. Lo, Ben T. Grys und Brenda J. Andrews. „High-Throughput Imaging of Arrays of Fluorescently Tagged Yeast Mutant Strains“. In Confocal Microscopy, 221–42. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1402-0_12.
Der volle Inhalt der QuelleTakagi, Hiroshi. „Construction of Baker’s Yeast Strains with Enhanced Tolerance to Baking-Associated Stresses“. In Biotechnology of Yeasts and Filamentous Fungi, 63–85. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58829-2_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Yeast strains"
de Gee, Maarten, Hilda van Mourik, Arjan de Visser und Jaap Molenaar. „Modeling competition between yeast strains“. In SYMPOSIUM ON BIOMATHEMATICS (SYMOMATH 2015). AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4945057.
Der volle Inhalt der QuelleSlanina, Valerina, und Ludmila Batir. „CONSERVATION OF YEAST STRAINS OF BIOTECHNOLOGICAL INTEREST“. In XIth International Congress of Geneticists and Breeders from the Republic of Moldova. Scientific Association of Geneticists and Breeders of the Republic of Moldova, Institute of Genetics, Physiology and Plant Protection, Moldova State University, 2021. http://dx.doi.org/10.53040/cga11.2021.134.
Der volle Inhalt der QuelleAlasmar, Reem Moath, und Samir Jaoua. „Investigation and Biological Control of Toxigenic Fungi and Mycotoxins in Dairy Cattle Feeds“. In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0065.
Der volle Inhalt der QuelleBardhan, Pritam, und Manabendra Mandal. „Rhodotorula mucilaginosa R2: A potent oleaginous yeast isolated from traditional fermented food, as a promising platform for the production of lipid-based biofuels, bioactive compounds and other value added products“. In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/qbyp3823.
Der volle Inhalt der QuelleSatwika, D., V. R. A. Permatasari und G. E. N. Cahyani. „A Potential Yeast Strains for Biological Control of Mosquitoes“. In 10th International Seminar and 12th Congress of Indonesian Society for Microbiology (ISISM 2019). Paris, France: Atlantis Press, 2021. http://dx.doi.org/10.2991/absr.k.210810.023.
Der volle Inhalt der QuelleShydlovska, Olga, und Yevhen Kharchenko. „Review of Green Methods of Synthesis of Silver Nanoparticles“. In The 9th International Conference on Advanced Materials and Systems. INCDTP - Leather and Footwear Research Institute (ICPI), Bucharest, Romania, 2022. http://dx.doi.org/10.24264/icams-2022.i.8.
Der volle Inhalt der QuelleYang, Yang, Rahul Mitchell Jairaj, Gaoyan Wang, Tzuen-Rong Tzeng, Xiangchun Xuan, Kama Huang und Pingshan Wang. „Broadband Dielectric Properties Characterization of Biological Cells“. In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18508.
Der volle Inhalt der QuelleSerba, E. M., M. B. Overchenko, N. I. Ignatova und L. V. Rimareva. „COMPARATIVE STUDIES OF SACCHAROMYCES CEREVISIAE YEAST STRAINS, PROMOSING FOR CONCENTRATED GRAIN WORT FERMENTATION“. In Current issues in the beverage industry. Author-online, 2019. http://dx.doi.org/10.21323/978-5-6043128-4-1-2019-3-201-207.
Der volle Inhalt der QuelleBhatta, H., E. M. Goldys und J. Ma. „Fluorescence and fluorescence-lifetime imaging microscopy (FLIM) to characterize yeast strains by autofluorescence“. In Biomedical Optics 2006, herausgegeben von Daniel L. Farkas, Dan V. Nicolau und Robert C. Leif. SPIE, 2006. http://dx.doi.org/10.1117/12.645354.
Der volle Inhalt der QuelleChou, Fong-In, Chia-Chin Li, Tzung-Yuang Chen und Hsiao-Wei Wen. „Microbial Occurrence in Bentonite-Based Buffer Materials of a Final Disposal Site for Low Level Radioactive Waste in Taiwan“. In ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2010. http://dx.doi.org/10.1115/icem2010-40284.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Yeast strains"
Gaugler, Randy, Itamar Glazer, Daniel Segal und Sarwar Hashmi. Molecular Approach for Improving the Stability of Insecticidal Nematodes. United States Department of Agriculture, November 2002. http://dx.doi.org/10.32747/2002.7580680.bard.
Der volle Inhalt der QuelleLichter, Amnon, Gopi K. Podila und Maria R. Davis. Identification of Genetic Determinants that Facilitate Development of B. cinerea at Low Temperature and its Postharvest Pathogenicity. United States Department of Agriculture, März 2011. http://dx.doi.org/10.32747/2011.7592641.bard.
Der volle Inhalt der QuelleDroby, Samir, Joseph W. Eckert, Shulamit Manulis und Rajesh K. Mehra. Ecology, Population Dynamics and Genetic Diversity of Epiphytic Yeast Antagonists of Postharvest Diseases of Fruits. United States Department of Agriculture, Oktober 1994. http://dx.doi.org/10.32747/1994.7568777.bard.
Der volle Inhalt der QuelleDroby, Samir, Michael Wisniewski, Ron Porat und Dumitru Macarisin. Role of Reactive Oxygen Species (ROS) in Tritrophic Interactions in Postharvest Biocontrol Systems. United States Department of Agriculture, Dezember 2012. http://dx.doi.org/10.32747/2012.7594390.bard.
Der volle Inhalt der QuelleSessa, Guido, und Gregory Martin. Role of GRAS Transcription Factors in Tomato Disease Resistance and Basal Defense. United States Department of Agriculture, 2005. http://dx.doi.org/10.32747/2005.7696520.bard.
Der volle Inhalt der QuelleXu, Jin-Rong, und Amir Sharon. Comparative studies of fungal pathogeneses in two hemibiotrophs: Magnaporthe grisea and Colletotrichum gloeosporioides. United States Department of Agriculture, Mai 2008. http://dx.doi.org/10.32747/2008.7695585.bard.
Der volle Inhalt der QuelleWeil, Clifford F., Anne B. Britt und Avraham Levy. Nonhomologous DNA End-Joining in Plants: Genes and Mechanisms. United States Department of Agriculture, Juli 2001. http://dx.doi.org/10.32747/2001.7585194.bard.
Der volle Inhalt der QuelleGranot, David, Scott Holaday und Randy D. Allen. Enhancing Cotton Fiber Elongation and Cellulose Synthesis by Manipulating Fructokinase Activity. United States Department of Agriculture, 2008. http://dx.doi.org/10.32747/2008.7613878.bard.
Der volle Inhalt der Quelle