Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Yeast fungi“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Yeast fungi" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Yeast fungi"
Bhattacharya, Somanon, Tejas Bouklas und Bettina C. Fries. „Replicative Aging in Pathogenic Fungi“. Journal of Fungi 7, Nr. 1 (25.12.2020): 6. http://dx.doi.org/10.3390/jof7010006.
Der volle Inhalt der QuelleSastrahidayat, Ika Rochdjatun, Chintya Ivana Situmorang und Anton Muhibuddin. „Fungi in Rice Straw, Cane Straw, Maize Straw and Their Potential as Decomposer“. SAINTEKBU 10, Nr. 1 (30.01.2018): 39–54. http://dx.doi.org/10.32764/saintekbu.v10i1.161.
Der volle Inhalt der QuelleBuck, James W., Marc-André Lachance und James A. Traquair. „Mycoflora of peach bark: population dynamics and composition“. Canadian Journal of Botany 76, Nr. 2 (01.02.1998): 345–54. http://dx.doi.org/10.1139/b98-009.
Der volle Inhalt der QuellePayne, C., A. Bruce und H. Staines. „Yeast and Bacteria as Biological Control Agents Against Fungal Discolouration of Pinus sylvestris Blocks in Laboratory-Based Tests and the Role of Antifungal Volatiles“. Holzforschung 54, Nr. 6 (25.10.2000): 563–69. http://dx.doi.org/10.1515/hf.2000.096.
Der volle Inhalt der QuelleHutchison, Leonard J., und G. L. Barron. „Parasitism of yeasts by lignicolous Basidiomycota and other fungi“. Canadian Journal of Botany 74, Nr. 5 (01.05.1996): 735–42. http://dx.doi.org/10.1139/b96-092.
Der volle Inhalt der QuelleSzepietowski, Jacek C., Jolanta Węgłowska, Adam Reich und Bronisława Walow. „Enhanced Enzymatic Activity of Yeast-like Fungi Responsible for Onychomycosis in Renal Transplant Recipients“. International Journal of Biomedical Science 2, Nr. 1 (15.03.2006): 30–34. http://dx.doi.org/10.59566/ijbs.2006.2030.
Der volle Inhalt der QuelleSorenson, W. G., J. Simpson und J. Dutkiewicz. „Yeasts and yeast-like fungi in stored timber“. International Biodeterioration 27, Nr. 4 (Januar 1991): 373–82. http://dx.doi.org/10.1016/0265-3036(91)90064-x.
Der volle Inhalt der QuelleTsuji, Masaharu, und Sakae Kudoh. „Soil Yeasts in the Vicinity of Syowa Station, East Antarctica: Their Diversity and Extracellular Enzymes, Cold Adaptation Strategies, and Secondary Metabolites“. Sustainability 12, Nr. 11 (02.06.2020): 4518. http://dx.doi.org/10.3390/su12114518.
Der volle Inhalt der QuelleMendes, B., P. Urbano, C. Alves, J. Morais, N. Lapa und J. S. Oliveira. „Fungi as environmental microbiological indicators“. Water Science and Technology 38, Nr. 12 (01.12.1998): 155–62. http://dx.doi.org/10.2166/wst.1998.0529.
Der volle Inhalt der QuelleAronova, N. V., N. V. Pavlovich, M. V. Tsymbalistova, M. V. Poleeva, A. S. Anisimova, S. O. Vodopyanov und A. K. Noskov. „Species Diversity And Resistance Markers of <i>Candida</i> Yeasts In COVID Positive and COVID Negative Patients With Community-Acquired Pneumonia“. Antibiotics and Chemotherapy 66, Nr. 7-8 (21.10.2021): 38–44. http://dx.doi.org/10.37489/0235-2990-2021-66-7-8-38-44.
Der volle Inhalt der QuelleDissertationen zum Thema "Yeast fungi"
Swiegers, Jan Hendrik. „Carnitine in yeast and filamentous fungi“. Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/49753.
Der volle Inhalt der QuelleENGLISH ABSTRACT: In the yeast Saccharomyces cerevtstee, two biochemical pathways ensure that activated cytoplasmic or peroxisomal acetyl-groups are made available for mitochondrial energy production when the cells utilise non-fermentable carbon sources. The first pathway is the glyoxylate cycle, where two activated acetyl-groups are incorporated into each cycle, which releases a C4 intermediate. This intermediate is then transported to the mitochondria where it can enter the tricarboxylic acid cycle. The second pathway is the carnitine shuttle. Activated acetyl-groups react with carnitine to form acetylcarnitine, which is then transported to the mitochondria where the acetyl group is transferred. In this study it was shown that the deletion of the glyoxylate cycle specific citrate synthase, encoded by CIT2, results in a strain that is dependent on carnitine for growth on non-fermentable carbon sources. Using a /::"cit2 strain, mutants affected in carnitine-dependent metabolic activities were generated. Complementation of the mutants with a genomic library resulted in the identification of four genes involved in the carnitine shuttle. These include: (i) the mitochondrial and peroxisomal carnitine acetyltransferase, encoded by CAT2; (ii) the outer-mitochondrial carnitine acetyltransferase, encoded by YA T1; (iii) the mitochondrial carnitine translocase, encoded by CRC1; and (iv) a newly identified carnitine acetyltransferase, encoded by YAT2. All three carnitine acetyltransferases are essential in a carnitine-dependent strain. The dependence on exogenous carnitine of the /::"cit2 strain when grown on nonfermentable carbon sources suggested that S. cerevisiae does not biosynthesise carnitine. Measurements using electrospray mass spectrometry confirmed this hypothesis. As a result an investigation was initiated into carnitine biosynthesis in order to genetically engineer a S. cerevisiae strain that could endogenously biosynthesise carnitine. The filamentous fungus, Neurospora crassa, was one of the first organisms used in the seventies to identify the precursor and intermediates of carnitine biosynthesis. However, it was only about twenty years later that the first genes encoding these enzymes where characterised. Carnitine biosynthesis is a four-step process, which starts with trimethyllysine as precursor. Trimethyllysine is converted to hydroxytrimethyllysine by the enzyme trimethyllysine hydroxylase (TMLH). Hydroxytrimethyllysine is cleaved to trimethylamino-butyraldehyde by the hydroxytrimethyllysine aldolase (HTMLA) releasing glycine. Trimethylaminobutyraldehyde is dehydrogenated to trimethylamino-butyrate (y-butyrobetaine) by trimethylamino-butyraldehyde dehydrogenase (TMABA-DH). In the last step, ybutyrobetaine is converted to t-carnltine by y-butyrobetaine hydroxylase (BBH). The N. crassa TMLH homologue was identified in the genome database based on the protein sequence homology of the human TMLH. Due to the high amount of introns predicted for this gene, the cDNA was cloned and subjected to sequencing, which then revealed that the gene indeed had seven introns. Functional expression of the gene in S. cerevisiae and subsequent enzymatic analysis revealed that the gene coded for a TMLH. It was therefore named cbs-1 for "carnitine biosynthesis gene no. 1JJ. Most of the kinetic parameters were similar to that of the human TMLH enzyme. Following this, a genomic copy of the N. crassa BBH homologue was cloned and functionally expressed in S. cerevisiae. Biochemical analysis revealed that the BBH enzyme could biosynthesise L-carnitine from y-butyrobetaine and the gene was named cbs-2. In addition, the gene could rescue the growth defect of the carnitinedependent Scii? strain on non-fermentable carbon sources when y-butyrobetaine was present. This is the first report of an endogenously carnitine biosynthesising strain of S. cerevisiae. The cloning of the remaining two biosynthesis genes presents particular challenges. To date, the HTMLA has not been characterised on the molecular level making the homology-based identification of this protein in N. crassa impossible. Although the TMABA-DH has been characterised molecularly, the protein sequence is conserved for its function as a dehydrogenase and not conserved for its function in carnitine biosynthesis, as in the case of TMLH and BBH. The reason for this is probably due to the fact that the enzyme is involved in other metabolic processes. The use of N. crassa carnitine biosynthesis mutants would probably be one way in which to overcome these obstacles. The !1cit2 mutant proved useful in studying carnitine related metabolism. We therefore searched for suppressors of !1cit2, which resulted in the cloning of RAS2. In S. cerevisiae, two genes encode Ras proteins, RAS1 and RAS2. GTP-bound Ras proteins activate adenylate cyclase, Cyr1 p, which results in elevated cAMP levels. The cAMP molecules bind to the regulatory subunit of the cAMP-dependent kinase (PKA), Bcy1 p, thereby releasing the catalytic subunits Tpk1 p, Tpk2p and Tpk3p. The catalytic subunits phosphorylate a variety of regulators and enzymes involved in metabolism. Overexpression of RAS2 could suppress the growth defect of the Sclt? mutant on glycerol. In general, overexpression of RAS2 enhanced the proliferation of wild-type cells grown on glycerol. However, the enhancement of proliferation was much better for the !1cit2 strain grown on glycerol. In this respect, the retrograde response may play a role. Overexpression of RAS2 resulted in elevated levels of intracellular citrate and citrate synthase activity. It therefore appears that the suppression of !1cit2 by RAS2 overexpression is a result of the general upregulation of the respiratory capacity and possible leakage of citrate and/or citrate synthase from the mitochondria. The phenotype of RAS2 overexpression contrasts with the hyperactive RAS2val19 allele, which causes a growth defect on glycerol. However, both RAS2 overexpression and RAS2val19activate the cAMP/PKA pathway, but the RAS2val19dependent activation is more severe. Finally, this study implicated the Ras/cAMP/PKA pathway in the proliferation effect on glycerol by showing that in a Mpk1 strain, the growth effect is blocked. However, the enhanced proliferation was still observed in the Mpk2 and Mpk3 strains when RAS2 was overexpressed. Therefore, it seems that Tpk1 p plays an important role in growth on non-fermentable carbon sources, a notion that is supported by the literature.
AFRIKAANSE OPSOMMING: In die gis Saccharomyces cerevtstee, is daar twee metaboliese weë waarmee geaktiveerde asetielgroepe na die mitochondrium vervoer kan word wanneer die sel op nie-fermenteerbare koolstofbronne groei. Die een weg is die glioksilaatsiklus, waar die geaktiveerde asetielgroepe geïnkorporeer word in die siklus en dan vrygestel word as Ca-intermediêre. Hierdie intermediêre word dan na die mitochondrium vervoer waar dit in die trikarboksielsuursiklus geïnkorporeer word. Die ander weg is die karnitiensiklus, waar geaktiveerde asetielgroepe met karnitien reageer om asetielkarnitien te vorm wat dan na die mitochondrium vervoer word waar dit die asetielgroep weer vrygestel. Hierdie studie het getoon dat die delesie van die glioksilaatsiklus spesifieke sitraatsintetase, gekodeer deur CIT2, die gisras afhanklik maak van karnitien vir groei op nie-fermenteerbare koolstofbronne. Deur gebruik te maak van 'n ócit2 gisras, kon mutante, wat geaffekteer is in karnitien-verwante metaboliese aktiwiteite, gegenereer word. Komplementering van die mutante met 'n genomiese biblioteek het gelei tot die identifisering van vier gene betrokke by die karnitiensiklus. Hierdie gene sluit in: (i) die mitochondriale en die peroksisomale karnitienasetieltransferase, gekodeer deur CAT2; (ii) die buite-mitochondriale karnitienasetieltransferase, gekodeer deur YAT1; (iii) die mitochondriale karnitientranslokase, gekodeer deur CRC1; en (iv) 'n nuutgeïdentifiseerde karnitienasetieltransferase, gekodeer deur YAT2. Daar benewens, is ook gewys dat al drie karnitienasetieltransferases noodsaaklik is in 'n karriltienafhanklike gisras. Die afhanklikheid van eksogene karnitien van die ócit2 gisras, wanneer dit gegroei word op nie-fermenteerbare koolstofbronne, was aanduidend dat S. cerevisiae nie karnitien kan biosintetiseer nie. Metings deur middel van elektronsproeimassaspektrometrie het hierdie veronderstelling bevestig. Gevolglik is 'n ondersoek deur ons geïnisieer in die veld van karnitienbiosintese om 'n S. cerevisiae gisras geneties te manipuleer om karnitien sodoende endogenies te biosintetiseer. Die filamentagtige fungus, Neurospora crassa, was een van die eerste organismes wat in die sewentiger jare gebruik is om die voorloper en intermediêre van karnitienbiosintese te identifiseer. Dit was egter eers sowat twintig jaar later dat die eerste gene wat vir hierdie ensieme kodeer, gekarakteriseer is. Karnitienbiosintese is 'n vierstap-proses wat met trirnetlellisten as voorloper begin. Trimetiellisien word omgeskakel na hidroksi-trimetiellisien deur die ensiem trimetiellisienhidroksilase (TMLH). Hidroksietrimetlelllsien word dan gesplits om trimetielaminobuteraldehied te vorm deur die werking van die hidroksitrimetiellisienaldolase (HTMLA) met die gevolglike vrystelling van glisien. Trimetielaminobuteraldehied word dan na trimetielaminobuteraat (y-butirobeteïen) deur trimetielaminobuteraldehied dehidrogenase (TMABA-DH) gedehidrogeneer. In die laaste stap word y-butirobeteïen deur middel van die y-butirobeteïen hidroksilase (BBH) na L-karnitien omgeskakel. Op grond van die proteïenvolgordehomologie in die genoomdatabasis tussen die menslike TMLH en N. crassa se TMLH is laasgenoemde geïdentifiseer. As gevolg van die groot getal introns wat vir hierdie geen voorspel is, is die cDNA-weergawe daarvan gekloneer en aan volgordebepaling onderwerp. Dit het getoon dat die geen inderdaad sewe introns bevat. Funksionele uitdrukking van die geen in S. cerevisiae en ensiematiese analise het getoon dat die geen vir 'n TMLH kodeer en is gevolglik cbs-1 genoem; dit staan vir "karnitien biosintese geen no. 1tt. Meeste van die kinetiese parameters was ook soortgelyk aan die van die menslike TMLH-ensiem. Hierna is 'n genomiese kopie van N. crassa se BBH-homoloog gekloneer en funksioneel in S. cerevisiae uitgedruk. Biochemiese analise het getoon dat die uitgedrukte BBH-ensiem L-karnitien vanaf y-butirobeteïen kan biosintetiseer en die geen is cbs-2 genoem. Daar benewens kon die geen die groeidefek van die karnitien-afhanklike tlcit2-gisras ophef wanneer dit op nie-fermenteerbare koolstofbronne in die teenwoordigheid van y-butirobeteïen aangekweek is. Hierdie is die eerste verslag oor 'n endogeniese karnitien-biosintetiserende ras van S. cerevisiae. Die klonering van die oorblywende twee karnitienbiosintetiserende gene het sekere uitdagings. Tot op datum, is die HTMLA nog nie tot op genetiese vlak gekarakteriseer nie, wat dan die homologie-gebaseerde identifikasie van hierdie proteïen in N. crassa onmoontlik maak. Alhoewel die TMABA-DH geneties gekarakteriseer is, is die proteïenvolgorde ten opsigte van sy funksie as 'n dehidrogenase gekonserveer, maar nie vir sy funksie in karnitienbiosintese soos in die geval van TMLH en BBH nie. Die rede hiervoor is moontlik omdat die ensiem ook in ander metaboliese prosesse betrokke is. Die gebruik van N. crassa karnitienmutante sal moontlik een manier wees om hierdie probleme te oorkom. Die tlcit2-mutant het handig te pas gekom vir die bestudering van karnitienverwante metabolisme. Dus is daar vir onderdrukkers van die tlcit2-mutant gesoek wat gelei het tot die klonering van die RAS2-geen. In S. cere visiae , kodeer twee gene vir Ras-proteïene, RAS1 en RAS2. GTP-gebonde Ras-proteïene aktiveer adenilaatsiklase, Cyr1 p, wat verhoogde intrasellulêre cAMP-vlakke tot gevolg het. Die cAMP bind aan die regulatoriese subeenheid van die cAMP-proteïenkinase (PKA), Bcy1 p, en daardeur word die katalitiese subeenhede, Tpk1 p, Tpk2p en Tpk3p, vrygestel. Die katalitiese subeenheid fosforileer 'n verskeidenheid van reguleerders en ensieme betrokke by metabolisme. Ooruitdrukking van RAS2 het die groeidefek van die tlcit2-mutant op gliserolonderdruk. Oor die algemeen, verbeter die ooruitdrukking van RAS2 die proliferasie van die wildetipe op gliserol bevattende media. Alhoewel, die verbetering van proliferasie was baie meer opmerklik in die tlcit2-gisras. In hierdie verband, speel die gedegenereerde response dalk 'n rol. Ooruitdrukking van RAS2 het verhoogde intrasellulêre vlakke van sitraat- en sitraatsintetase-aktiwiteit tot gevolg gehad. Dit wou dus voorkom asof die onderdrukking van die ócit2-groeidefek deur RAS2 se ooruitdrukking die gevolg was van algemene opreguiering van respiratoriese kapasiteit en die lekkasie van sitraat en/of sitraatsintetase uit die mitochondria. Die fenotipe van RAS2 ooruitdrukking kontrasteer die hiperaktiewe RAS2va / 19 alleel, wat 'n groeidefek op gliserol media veroorsaak. Alhoewel beide RAS2-00ruitdrukking en RAS2va / 19 die cAMP/PKA-weg aktiveer, is gevind dat die RAS2va/19-afhanklike aktivering strenger is. Ten slotte, die cAMP/PKA-weg is in die proliferasie effek op gliserol media geïmpliseer deur te wys dat in 'n Mpk1-gisras, die groeieffek geblokkeer is. Alhoewel, die verbeterde proliferasie is steeds waargeneem in die Mpk2-en Mpk3-gisrasse toe die RAS2-geen ooruitgedruk is. Dus, dit wil voorkom asof Tpk1 p 'n belangrike rol in die groei van gisselle op nie-fermenteerbare koolstofbronne speel; 'n veronderstelling wat deur die literatuur ondersteun word.
Cao, Juxiang Locy Robert D. „Functional genomics of GABA metabolism in yeast thermotolerance“. Auburn, Ala, 2008. http://repo.lib.auburn.edu/2007%20Fall%20Dissertations/Cao_Juxiang_41.pdf.
Der volle Inhalt der QuelleRome, Jacqueline Louise de. „Biosorption of heavy metals by fungi and yeast“. Thesis, University of Dundee, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338281.
Der volle Inhalt der QuelleBrady, Dean. „Bioaccumulation of metal cations by yeast and yeast cell components“. Thesis, Rhodes University, 1993. http://hdl.handle.net/10962/d1004107.
Der volle Inhalt der QuelleBeh, Ai Lin Chemical Sciences & Engineering Faculty of Engineering UNSW. „Investigation of yeasts and yeast-like fungi associated with Australian wine grapes using cultural and molecular methods“. Awarded by:University of New South Wales. Chemical Sciences & Engineering, 2007. http://handle.unsw.edu.au/1959.4/40683.
Der volle Inhalt der QuelleHa, Seon-Ah. „The role of the INP53 protein in membrane trafficking in yeast /“. free to MU campus, to others for purchase, 2002. http://wwwlib.umi.com/cr/mo/fullcit?p3060102.
Der volle Inhalt der QuelleYip, Hopi. „Genetic manipulation of baker's yeast for improved maltose utilisation /“. [Richmond, N.S.W.] : Centre for Biostructural and Biomolecular Resarch, Faculty of Science and Technolocy, University of Western Sydney, Hawkesbury, 1999. http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20030625.100807/index.html.
Der volle Inhalt der QuelleSoerensen, Tine Kring. „Cloning and characterisation of a gpt gene from Aspergillus niger“. Thesis, University of Nottingham, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364397.
Der volle Inhalt der QuelleBuchan, Arlene. „The roles of calcium and calmodulin in the regulation of dimorphism and pathogenicity of Candida albicans“. Thesis, University of Aberdeen, 1995. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU083184.
Der volle Inhalt der QuelleBeckhouse, Anthony Gordon Biotechnology & Biomolecular Sciences Faculty of Science UNSW. „The transcriptional and physiological alterations in brewers yeast when shifted from anaerobic to aerobic growth conditions“. Awarded by:University of New South Wales. School of Biotechnology and Biomolecular Sciences, 2006. http://handle.unsw.edu.au/1959.4/24201.
Der volle Inhalt der QuelleBücher zum Thema "Yeast fungi"
Burke, Dan, und Smith Jeffrey S. Yeast genetics: Methods and protocols. New York: Humana Press, 2014.
Den vollen Inhalt der Quelle findenT, Spencer J. F., und Spencer Dorothy M, Hrsg. Yeasts in natural and artificial habitats. Berlin: Springer, 1997.
Den vollen Inhalt der Quelle findenSpencer, John F. T. Yeasts in natural and artificial habitats. Berlin: Springer, 1997.
Den vollen Inhalt der Quelle findenCetus-UCLA Symposium on Yeast Cell Biology (1985 Keystone, Colo.). Yeast cell biology: Proceedings of a Cetus-UCLA Symposium on Yeast Cell Biology held in Keystone, Colorado, April 9-15, 1985. Herausgegeben von Hicks James B. New York: A.R. Liss, 1986.
Den vollen Inhalt der Quelle finden1949-, Panchal Chandra J., Hrsg. Yeast strain selection. New York: M. Dekker, 1990.
Den vollen Inhalt der Quelle findende, Hoog G. S., Smith M. Th, Weijman A. C. M und Koninklijke Nederlandse Akademie van Wetenschappen. Centraalbureau voor Schimmelcultures., Hrsg. The Expanding realm of yeast-like fungi: Proceedings of an international symposium on the perspectives of taxonomy, ecology, and phylogeny of yeasts and yeast-like fungi, Amersfoort, the Netherlands, 3-7 August 1987. Baarn [Netherlands]: Centraalbureau voor Schimmelcultures, 1987.
Den vollen Inhalt der Quelle finden1944-, Wolf K., Breunig Karin 1962- und Barth Gerold, Hrsg. Non-conventional yeasts in genetics, biochemistry and, biotechnology: Practical protocols. Berlin: Springer, 2003.
Den vollen Inhalt der Quelle findenF, Walton E., und Yarranton G. T, Hrsg. Molecular and cell biology of yeasts. Glasgow: Blackie, 1989.
Den vollen Inhalt der Quelle findenDagmar, Vraná, und Kocková-Kratochvílová Anna, Hrsg. Kvasinky ve výzkumu a praxi. Praha: Academia, 1986.
Den vollen Inhalt der Quelle findenP, Kurtzman C., und Fell Jack W, Hrsg. The yeasts: A taxonomic study. 4. Aufl. Amsterdam: Elsevier, 2000.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Yeast fungi"
Van Bogaert, Inge N. A., Sofie L. De Maeseneire und Erick J. Vandamme. „Extracellular Polysaccharides Produced by Yeasts and Yeast-Like Fungi“. In Yeast Biotechnology: Diversity and Applications, 651–71. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-8292-4_29.
Der volle Inhalt der QuellePalková, Zdena, und Libuse Váchová. „Communication and Differentiation in the Development of Yeast Colonies“. In Biocommunication of Fungi, 141–54. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4264-2_9.
Der volle Inhalt der QuelleBharatula, Vasudha, und James R. Broach. „The Nutrient Stress Response in Yeast“. In Stress Response Mechanisms in Fungi, 131–59. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00683-9_4.
Der volle Inhalt der QuelleHaber, James E. „Decisions, Decisions: Donor Preference during Budding Yeast Mating-Type Switching“. In Sex in Fungi, 159–70. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555815837.ch9.
Der volle Inhalt der QuelleValdivieso, M. Henar, Angel Durán und César Roncero. „Chitin synthases in yeast and fungi“. In Chitin and Chitinases, 55–69. Basel: Birkhäuser Basel, 1999. http://dx.doi.org/10.1007/978-3-0348-8757-1_4.
Der volle Inhalt der QuelleKrzyczkowska, Jolanta, Hanh Phan-Thi und Yves Waché. „Lactone Formation in Yeast and Fungi“. In Fungal Metabolites, 461–98. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-25001-4_13.
Der volle Inhalt der QuelleDolderer, Benedikt, Hans-Jürgen Hartmann und Ulrich Weser. „4. Metallothioneins in Yeast and Fungi“. In Metallothioneins and Related Chelators, 83–105. Cambridge: Royal Society of Chemistry, 2009. http://dx.doi.org/10.1039/9781847559531-00083.
Der volle Inhalt der QuelleKrzyczkowska, Jolanta, Hanh Phan-Thi und Yves Waché. „Lactone Formation in Yeast and Fungi“. In Fungal Metabolites, 1–39. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19456-1_13-1.
Der volle Inhalt der QuelleScheckhuber, Christian Q., Andrea Hamann, Diana Brust und Heinz D. Osiewacz. „Cellular Homeostasis in Fungi: Impact on the Aging Process“. In Aging Research in Yeast, 233–50. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2561-4_11.
Der volle Inhalt der QuelleZeyl, Clifford. „Ploidy and the Sexual Yeast Genome in Theory, Nature, and Experiment“. In Sex in Fungi, 507–25. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555815837.ch31.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Yeast fungi"
Alasmar, Reem Moath, und Samir Jaoua. „Investigation and Biological Control of Toxigenic Fungi and Mycotoxins in Dairy Cattle Feeds“. In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0065.
Der volle Inhalt der QuellePaulitsch-Fuchs, Astrid, Fritz Treiber, Erik Grasser, Walter Buzina und Christian Rosker. „New staining methods for yeast like fungi under special consideration of human pathogenic fungi“. In Laser Applications in Life Sciences 2010, herausgegeben von Matti Kinnunen und Risto Myllylä. SPIE, 2010. http://dx.doi.org/10.1117/12.871057.
Der volle Inhalt der QuellePaplhám, Jakub, Vojtěch Franc und Daniela Lžičařová. „Detection of Microscopic Fungi and Yeast in Clinical Samples Using Fluorescence Microscopy and Deep Learning“. In 18th International Conference on Computer Vision Theory and Applications. SCITEPRESS - Science and Technology Publications, 2023. http://dx.doi.org/10.5220/0011616100003417.
Der volle Inhalt der QuelleAudina, Anggi, Kiki Nurtjahja und Albert Pasaribu. „The Potential Methanolic Extract of Coffee Leaves (Coffea canephora L.) in Inhibiting Storage Fungi and Yeast“. In The International MIPAnet Conference on Science and Mathematics (IMC-SciMath). SCITEPRESS - Science and Technology Publications, 2019. http://dx.doi.org/10.5220/0010612500002775.
Der volle Inhalt der QuelleJOVAIŠIENĖ, Jurgita, Bronius BAKUTIS, Violeta BALIUKONIENĖ, Audrius KAČERGIUS, Algimantas PAŠKEVIČIUS und Gediminas GERULIS. „HYGIENIC SANITARY ESTIMATION OF MAIZE SILAGE IN DAIRY FARMS IN LITHUANIA“. In Rural Development 2015. Aleksandras Stulginskis University, 2015. http://dx.doi.org/10.15544/rd.2015.023.
Der volle Inhalt der QuelleZou, Yuchun, Shanshan Luo und Wenkui Li. „Effects of glucose and yeast cream content on the Pelletization Behavior of Fungi-Chlorella Sp. Symbiosis System“. In 2015 4th International Conference on Sustainable Energy and Environmental Engineering. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icseee-15.2016.199.
Der volle Inhalt der QuelleKhrapova, A., S. Luzhnova, V. Duyko und O. Soprunova. „Safety audit of epiphytic yeast of higher fungi growing in the Astrakhan region perspective to produce protein foodstuff“. In ACTUAL PROBLEMS OF ORGANIC CHEMISTRY AND BIOTECHNOLOGY (OCBT2020): Proceedings of the International Scientific Conference. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0069058.
Der volle Inhalt der QuelleWard, Devon. „Mycography and Biodesign Pedagogy: Concepts and Methods for Creating Living Posters“. In 15th International Conference on Applied Human Factors and Ergonomics (AHFE 2024). AHFE International, 2024. http://dx.doi.org/10.54941/ahfe1005116.
Der volle Inhalt der QuelleAhmed MAHMOOD, Abeer. „ISOLATION AND IDENTIFICATION OF AIR BORNE FUNGI IN HOUSE 'S ROOMS OF MOSUL CITY AND RELATION OF SENSITIVITY DISEASES“. In VI.International Scientific Congress of Pure,Applied and Technological Sciences. Rimar Academy, 2022. http://dx.doi.org/10.47832/minarcongress6-50.
Der volle Inhalt der QuelleChou, Fong-In, Chia-Chin Li, Tzung-Yuang Chen und Hsiao-Wei Wen. „Microbial Occurrence in Bentonite-Based Buffer Materials of a Final Disposal Site for Low Level Radioactive Waste in Taiwan“. In ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2010. http://dx.doi.org/10.1115/icem2010-40284.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Yeast fungi"
Droby, Samir, Joseph W. Eckert, Shulamit Manulis und Rajesh K. Mehra. Ecology, Population Dynamics and Genetic Diversity of Epiphytic Yeast Antagonists of Postharvest Diseases of Fruits. United States Department of Agriculture, Oktober 1994. http://dx.doi.org/10.32747/1994.7568777.bard.
Der volle Inhalt der QuelleNelson, Nathan, und Randy Schekman. Functional Biogenesis of V-ATPase in the Vacuolar System of Plants and Fungi. United States Department of Agriculture, September 1996. http://dx.doi.org/10.32747/1996.7574342.bard.
Der volle Inhalt der QuelleBuckley, Merry. The Fungal Kingdom: diverse and essential roles in earth's ecosystem. American Society for Microbiology, 2008. http://dx.doi.org/10.1128/aamcol.2nov.2007.
Der volle Inhalt der QuelleChalutz, Edo, Charles Wilson, Samir Droby, Victor Gaba, Clauzell Stevens, Robert Fluhr und Y. Lu. Induction of Resistance to Postharvest Diseases and Extension of Shelf-Life of Fruits and Vegetables by Ultra-Violet Light. United States Department of Agriculture, Februar 1994. http://dx.doi.org/10.32747/1994.7568093.bard.
Der volle Inhalt der QuelleHe, Dan, Hongmei Wu, Yujie Han, Min Liu und Mao Lu. A meta-analysis of topical antifungal drugs to treat atopic dermatitis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, Dezember 2021. http://dx.doi.org/10.37766/inplasy2021.12.0062.
Der volle Inhalt der QuelleXu, Jin-Rong, und Amir Sharon. Comparative studies of fungal pathogeneses in two hemibiotrophs: Magnaporthe grisea and Colletotrichum gloeosporioides. United States Department of Agriculture, Mai 2008. http://dx.doi.org/10.32747/2008.7695585.bard.
Der volle Inhalt der QuelleFAQ: Microbes Make the Cheese. American Society for Microbiology, 2013. http://dx.doi.org/10.1128/aamcol.june.2014.
Der volle Inhalt der Quelle