Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Yeast chromosome“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Yeast chromosome" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Yeast chromosome"
Ross, L. O., D. Treco, A. Nicolas, J. W. Szostak und D. Dawson. „Meiotic recombination on artificial chromosomes in yeast.“ Genetics 131, Nr. 3 (01.07.1992): 541–50. http://dx.doi.org/10.1093/genetics/131.3.541.
Der volle Inhalt der QuelleBystricky, Kerstin, Thierry Laroche, Griet van Houwe, Marek Blaszczyk und Susan M. Gasser. „Chromosome looping in yeast“. Journal of Cell Biology 168, Nr. 3 (31.01.2005): 375–87. http://dx.doi.org/10.1083/jcb.200409091.
Der volle Inhalt der QuelleChen, Rey-Huei. „Chromosome detachment from the nuclear envelope is required for genomic stability in closed mitosis“. Molecular Biology of the Cell 30, Nr. 13 (15.06.2019): 1578–86. http://dx.doi.org/10.1091/mbc.e19-02-0098.
Der volle Inhalt der QuelleGuacci, V., und D. B. Kaback. „Distributive disjunction of authentic chromosomes in Saccharomyces cerevisiae.“ Genetics 127, Nr. 3 (01.03.1991): 475–88. http://dx.doi.org/10.1093/genetics/127.3.475.
Der volle Inhalt der QuelleAlbert, Benjamin, Julien Mathon, Ashutosh Shukla, Hicham Saad, Christophe Normand, Isabelle Léger-Silvestre, David Villa et al. „Systematic characterization of the conformation and dynamics of budding yeast chromosome XII“. Journal of Cell Biology 202, Nr. 2 (22.07.2013): 201–10. http://dx.doi.org/10.1083/jcb.201208186.
Der volle Inhalt der QuelleFuchs, Jörg, Alexander Lorenz und Josef Loidl. „Chromosome associations in budding yeast caused by integrated tandemly repeated transgenes“. Journal of Cell Science 115, Nr. 6 (15.03.2002): 1213–20. http://dx.doi.org/10.1242/jcs.115.6.1213.
Der volle Inhalt der QuelleSpell, R. M., und C. Holm. „Nature and distribution of chromosomal intertwinings in Saccharomyces cerevisiae“. Molecular and Cellular Biology 14, Nr. 2 (Februar 1994): 1465–76. http://dx.doi.org/10.1128/mcb.14.2.1465-1476.1994.
Der volle Inhalt der QuelleSpell, R. M., und C. Holm. „Nature and distribution of chromosomal intertwinings in Saccharomyces cerevisiae.“ Molecular and Cellular Biology 14, Nr. 2 (Februar 1994): 1465–76. http://dx.doi.org/10.1128/mcb.14.2.1465.
Der volle Inhalt der QuelleMcManus, J., P. Perry, A. T. Sumner, D. M. Wright, E. J. Thomson, R. C. Allshire, N. D. Hastie und W. A. Bickmore. „Unusual chromosome structure of fission yeast DNA in mouse cells“. Journal of Cell Science 107, Nr. 3 (01.03.1994): 469–86. http://dx.doi.org/10.1242/jcs.107.3.469.
Der volle Inhalt der QuelleHollingsworth, N. M., und B. Byers. „HOP1: a yeast meiotic pairing gene.“ Genetics 121, Nr. 3 (01.03.1989): 445–62. http://dx.doi.org/10.1093/genetics/121.3.445.
Der volle Inhalt der QuelleDissertationen zum Thema "Yeast chromosome"
Morroll, Shaun Michael. „Mapping of yeast artificial chromosomes from Arabidopsis chromosome 5“. Thesis, University of Nottingham, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308922.
Der volle Inhalt der QuelleBhuiyan, Hasanuzzaman. „Chromosome synapsis and recombination in yeast meiosis /“. Stockholm : Institutionen för molekylärbiologi och funktionsgenomik, Univ, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-225.
Der volle Inhalt der QuelleAlmeida, Hugo Ricardo Noronha de. „Measuring chromosome-end fusions in fission yeast“. Doctoral thesis, Universidade Nova de Lisboa. Instituto de Tecnologia Química e Biológica, 2013. http://hdl.handle.net/10362/10629.
Der volle Inhalt der QuelleThe ends of eukaryotic chromosomes are protected from illegitimate repair by structures called telomeres. These are comprised of specific DNA repeats bound by a specialized protein complex. When telomere function is compromised, chromosome ends fuse, generating chromosomal abnormalities and genomic instability.(...)
Yang, Hui. „Chromosome dynamics and chromosomal proteins in relation to apoptotic cell death in yeast“. Laramie, Wyo. : University of Wyoming, 2008. http://proquest.umi.com/pqdweb?did=1594496261&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.
Der volle Inhalt der QuelleSmith, Victoria. „A molecular genetic analysis of yeast chromosome IX“. Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239206.
Der volle Inhalt der QuellePriya, Vattem Padma. „Genomic distribution of histone H1 in budding yeast (Saccharomyces cerevisiae) : yeast chromosome III“. Master's thesis, University of Cape Town, 2002. http://hdl.handle.net/11427/4324.
Der volle Inhalt der QuelleThe linker histone HI binds to the nucleosome and is essential for the organization of nucleosomes into the 30-nm filament of the chromatin. This compaction of DNA has a well-characterized effect on DNA function. In Saccharomyces cerevisiae, HHO 1 encodes a putative linker histone with very significant homology to histone HI. In vitro chromatin assembly experiments with recombinant Hho 1 p have shown that it is able to complex with the dinucleosomes in a similar manner to histone HI. It has also been reported that disruption of HHOl has little affect on RNA levels. A longstanding issue concerns the location of Hho 1 p in the chromatin and studies have shown using immunoprecipitation technique with anti-HA antibody, that Hho 1 p shows a preferential binding to rDNA sequences. In this project we have tried to confirm the above results in wild type cells, using immunopurifi ed anti rHho 1 p antibody.
Brand, A. H. „Characterisation of a yeast silencer sequence“. Thesis, University of Cambridge, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377249.
Der volle Inhalt der QuelleLu, Wenqing. „Phenotypic impact of inversions in yeast genome“. Electronic Thesis or Diss., Sorbonne université, 2021. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2021SORUS514.pdf.
Der volle Inhalt der QuelleGenomes are highly dynamic structures and large-scale Structural Variations (SVs) of chromosomes such as inversions contribute to genome evolution and species adaptation. Understanding the functional impact of inversion on phenotypic diversity is essential because there are growing evidence that inversions play an important role in phenotypic variation. For the purpose of explaining the phenotypic impact of inversions, we choose yeast as single cell eukaryotic model in our work. Based on a catalogue of 104 inversion events characterized among a panel of 142 complete genome assemblies, we focused on a special 32kb inversion on chromosome XIV that is recurrently found in various strains of Saccharomyces cerevisiae and S. paradoxus. CRISPR/Cas9 methodology of genome editing is applied to generate strain libraries in S. cerevisiae containing this region in both orientations through the introduction of DNA double-strand breaks (DSBs) at the inversion boundaries. We constructed such inversion models in 3 different host strains with different genetic background, S288C, YPS128 and Y12. In order to test the relationships between this type of genetic variation and phenotypic traits, we investigated the functional impact of the inversions during both sexual and asexual cell cycles, including growth ratio in different culture conditions, sporulation efficiency, mating efficiency and spore viability. This work allows us to determine the contribution of inversions to phenotypic variations and their adaptive role during evolution
Collins, Kimberly A. „Characterization of the budding yeast centromeric histone H3 variant, Cse4 /“. Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/5011.
Der volle Inhalt der QuelleHassock, Sheila Ruth. „Physical and transcriptional mapping in the distal Xq28 region of the human X chromosome“. Thesis, King's College London (University of London), 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312021.
Der volle Inhalt der QuelleBücher zum Thema "Yeast chromosome"
James, Louise Anne. Physical mapping on human chromosome 3 using yeast artificial chromosomes. Manchester: University of Manchester, 1994.
Den vollen Inhalt der Quelle findenScherer, Stephen W. Physical mapping of human chromosome 7 with yeast artificial chromosome (YAC) vectors. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1991.
Den vollen Inhalt der Quelle finden1956-, Nelson David L., und Brownstein Bernard H, Hrsg. YAC libraries: A user's guide. New York: W.H. Freeman and Co., 1994.
Den vollen Inhalt der Quelle findenTracey, S. M. The effects of yeast artificial chromosomes of the yeast genome. Manchester: UMIST, 1995.
Den vollen Inhalt der Quelle findenHeale, S. M. Factors effecting the utility of yeast artificial chromosomes as cloning vectors. Manchester: UMIST, 1993.
Den vollen Inhalt der Quelle finden1944-, Adolph Kenneth W., Hrsg. Microbial gene techniques. San Diego: Academic Press, 1995.
Den vollen Inhalt der Quelle findenAlasdair, MacKenzie, Hrsg. YAC protocols. 2. Aufl. Totowa, N.J: Humana Press, 2006.
Den vollen Inhalt der Quelle findenScherer, Stephen W. Physical mapping of human chromosome 7 with yeast artificial chromosomes. 1995.
Den vollen Inhalt der Quelle finden(Editor), David L. Nelson, und Bernard Brownstein (Editor), Hrsg. YAC Libraries: A User's Guide (Uwbc Biotechnical Resource). Oxford University Press, USA, 1993.
Den vollen Inhalt der Quelle findenCreeper, Leslie Ann. Functional analysis of a mammalian chromosomal origin in yeast. 1985.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Yeast chromosome"
Fabb, Stewart A., und Jiannis Ragoussis. „Yeast artificial chromosome vectors“. In Molecular and Cell Biology of Human Gene Therapeutics, 104–24. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0547-7_6.
Der volle Inhalt der QuelleGrunstein, Michael, Min Han, Ung-Jin Kim, Tillman Schuster und Paul Kayne. „Histone and Nucleosome Function in Yeast“. In Molecular Biology of Chromosome Function, 347–65. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-3652-8_16.
Der volle Inhalt der QuelleSolomon, F., S. Guenette, D. Kirkpatrick, V. Praitis, B. Weinstein und J. Archer. „A Genetic Analysis of Microtubule Assembly and Function in Yeast“. In Chromosome Segregation and Aneuploidy, 199–209. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84938-1_17.
Der volle Inhalt der QuelleDiffley, John F. X. „Global regulators of chromosome function in yeast“. In Molecular Biology of Saccharomyces, 25–33. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2504-8_3.
Der volle Inhalt der QuelleMartin, Gregory B. „Construction of plant yeast artificial chromosome libraries“. In Plant Molecular Biology Manual, 383–99. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0511-8_25.
Der volle Inhalt der QuelleScherthan, Harry. „Yeast Chromosome Dynamics Revealed by Immuno FISH“. In Springer Protocols Handbooks, 495–510. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-52959-1_50.
Der volle Inhalt der QuelleDuffy, Supipi, und Philip Hieter. „The Chromosome Transmission Fidelity Assay for Measuring Chromosome Loss in Yeast“. In Methods in Molecular Biology, 11–19. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7306-4_2.
Der volle Inhalt der QuelleJoseph, Fraulin, So Jung Lee, Eric Edward Bryant und Rodney Rothstein. „Measuring Chromosome Pairing During Homologous Recombination in Yeast“. In Homologous Recombination, 253–65. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0644-5_18.
Der volle Inhalt der QuelleIba, Koh, Sue Gibson, Sue Hugly, Mitsuo Nishimura und Chris Somerville. „Chromosome Walking in the Region of Arabidopsis fadD Locus Using Yeast Artificial Chromosomes“. In Research in Photosynthesis, 55–58. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-009-0383-8_11.
Der volle Inhalt der QuelleScherthan, Harry, und Caroline Adelfalk. „Live Cell Imaging of Meiotic Chromosome Dynamics in Yeast“. In Methods in Molecular Biology, 537–48. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-129-1_31.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Yeast chromosome"
Hieter, Philip, Melanie Bailey, Nigel O'Neil, Derek van Pel und Peter Stirling. „Abstract IA7: Chromosome instability and synthetic lethality in yeast and cancer“. In Abstracts: AACR Precision Medicine Series: Synthetic Lethal Approaches to Cancer Vulnerabilities - May 17-20, 2013; Bellevue, WA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1535-7163.pms-ia7.
Der volle Inhalt der QuelleTerao, Kyohei, Hiroyuki Kabata, Hodehiro Oana und Masao Washizu. „Manipulation of yeast chromosomal DNA using optically driven microstructures“. In SPIE Optics + Photonics, herausgegeben von Kishan Dholakia und Gabriel C. Spalding. SPIE, 2006. http://dx.doi.org/10.1117/12.680190.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Yeast chromosome"
Antonarakis, S. E. Human chromosome 21: Linkage mapping and cloning in yeast artificial chromosomes. Office of Scientific and Technical Information (OSTI), Januar 1991. http://dx.doi.org/10.2172/6278130.
Der volle Inhalt der QuelleWeier, Heinz-Ulrich G., Karin M. Greulich-Bode, Jenny Wu und Thomas Duell. Delineating Rearrangements in Single Yeast Artificial Chromosomes by Quantitative DNA Fiber Mapping. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/982923.
Der volle Inhalt der Quelle