Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Xeogl.

Zeitschriftenartikel zum Thema „Xeogl“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Xeogl" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Piamonteze, Cinthia, Yoav William Windsor, Sridhar R. V. Avula, Eugenie Kirk und Urs Staub. „Soft X-ray absorption of thin films detected using substrate luminescence: a performance analysis“. Journal of Synchrotron Radiation 27, Nr. 5 (24.08.2020): 1289–96. http://dx.doi.org/10.1107/s1600577520009972.

Der volle Inhalt der Quelle
Annotation:
X-ray absorption spectroscopy of thin films is central to a broad range of scientific fields, and is typically detected using indirect techniques. X-ray excited optical luminescence (XEOL) from the sample's substrate is one such detection method, in which the luminescence signal acts as an effective transmission measurement through the film. This detection method has several advantages that make it versatile compared with others, in particular for insulating samples or when a probing depth larger than 10 nm is required. In this work a systematic performance analysis of this method is presented with the aim of providing guidelines for its advantages and pitfalls, enabling a wider use of this method by the thin film community. The efficiency of XEOL is compared and quantified from a range of commonly used substrates. These measurements demonstrate the equivalence between XEOL and X-ray transmission measurements for thin films. Moreover, the applicability of XEOL to magnetic studies is shown by employing XMCD sum rules with XEOL-generated data. Lastly, it is demonstrated that above a certain thickness XEOL shows a saturation-like effect, which can be modelled and corrected for.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lin, Bi-Hsuan, Yu-Hao Wu, Xiao-Yun Li, Hsu-Cheng Hsu, Yu-Cheng Chiu, Chien-Yu Lee, Bo-Yi Chen et al. „Capabilities of time-resolved X-ray excited optical luminescence of the Taiwan Photon Source 23A X-ray nanoprobe beamline“. Journal of Synchrotron Radiation 27, Nr. 1 (01.01.2020): 217–21. http://dx.doi.org/10.1107/s1600577519013675.

Der volle Inhalt der Quelle
Annotation:
Time-resolved X-ray excited optical luminescence (TR-XEOL) was developed successfully for the 23A X-ray nanoprobe beamline located at the Taiwan Photon Source (TPS). The advantages of the TR-XEOL facility include (i) a nano-focused X-ray beam (<60 nm) with excellent spatial resolution and (ii) a streak camera that can simultaneously record the XEOL spectrum and decay time. Three time spans, including normal (30 ps to 2 ns), hybrid (30 ps to 310 ns) and single (30 ps to 1.72 µs) bunch modes, are available at the TPS, which can fulfil different experimental conditions involving samples with various lifetimes. It is anticipated that TR-XEOL at the TPS X-ray nanoprobe could provide great characterization capabilities for investigating the dynamics of photonic materials.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hill, D. A., R. F. Pettifer, S. Gardeiis, B. Hamilton, A. D. Smith und D. Teehan. „XEOL Studies of Porous Silicon“. Le Journal de Physique IV 7, Nr. C2 (April 1997): C2–553—C2–555. http://dx.doi.org/10.1051/jp4/1997094.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ma, Jinjin, Qianting Yao, John A. McLeod, Lo-Yueh Chang, Chih-Wen Pao, Jiatang Chen, Tsun-Kong Sham und Lijia Liu. „Investigating the luminescence mechanism of Mn-doped CsPb(Br/Cl)3 nanocrystals“. Nanoscale 11, Nr. 13 (2019): 6182–91. http://dx.doi.org/10.1039/c9nr00143c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Rosenberg, R. A. „Defect specific luminescence dead layers in CdS and CdSe“. Canadian Journal of Chemistry 95, Nr. 11 (November 2017): 1141–45. http://dx.doi.org/10.1139/cjc-2017-0126.

Der volle Inhalt der Quelle
Annotation:
CdS and CdSe are often used in optoelectronic devices whose effectiveness may be dictated by defects in the near surface region. Luminescence is one of the main tools for studying such defects. The energy dependence of the X-ray excited optical luminescence (XEOL) spectra of these materials enables the extraction of the depth dependence of the defect distribution. Normal and time-gated XEOL spectra were obtained from these materials in the energy range 600–1500 eV. We find that the results can best be understood in terms of a luminescence dead layer whose width depends on the position of the defect level in the band gap.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Lin, Bi-Hsuan, Shao-Chin Tseng, Xiao-Yun Li, Dai-Jie Lin, Hsu-Cheng Hsu, Yen-Ting Li, Yu-Cheng Chiu et al. „Developing the XEOL and TR-XEOL at the X-ray Nanoprobe at Taiwan Photon Source“. Microscopy and Microanalysis 24, S2 (August 2018): 200–201. http://dx.doi.org/10.1017/s143192761801334x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ko, JY Peter, Franziskus Heigl, Yun Mui Yiu, Xing-Tai Zhou, Tom Regier, Robert I. R. Blyth und Tsun-Kong Sham. „Soft X-ray excited colour-centre luminescence and XANES studies of calcium oxide“. Canadian Journal of Chemistry 85, Nr. 10 (01.10.2007): 853–58. http://dx.doi.org/10.1139/v07-109.

Der volle Inhalt der Quelle
Annotation:
In this study, we show that colour centres can be produced by irradiating calcium oxide with soft X-rays from a synchrotron radiation source. Using the X-ray excited optical luminescence (XEOL) technique, two colour centres, F-centre, and F+-centre can be identified. These colour centres emit photons at characteristic wavelengths. In addition, by performing time-resolved XEOL (TRXEOL), we are able to reveal timing and decay characteristics of the colour centres. We also present X-ray absorption near-edge structure (XANES) spectra collected across oxygen K-edge, calcium L3,2-edge, and calcium K-edge. Experimental results are compared with density functional theory (DFT) calculations.Key words: calcium oxide, colour centre, synchrotron, X-ray excited optical luminescence, X-ray absorption near-edge structure.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Rezende, Marcos V. dos S., Paulo J. R. Montes, Adriano B. Andrade, Zelia S. Macedo und Mário E. G. Valerio. „Mechanism of X-ray excited optical luminescence (XEOL) in europium doped BaAl2O4 phosphor“. Physical Chemistry Chemical Physics 18, Nr. 26 (2016): 17646–54. http://dx.doi.org/10.1039/c6cp01183g.

Der volle Inhalt der Quelle
Annotation:
This paper reports a luminescence mechanism in Eu-doped BaAl2O4 excited with monochromatic X-rays (also known as X-ray excited optical luminescence – XEOL) from synchrotron radiation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Wang, Zhiqiang, Jian Wang, Tsun-Kong Sham und Shaoguang Yang. „Origin of luminescence from ZnO/CdS core/shell nanowire arrays“. Nanoscale 6, Nr. 16 (2014): 9783–90. http://dx.doi.org/10.1039/c4nr02231a.

Der volle Inhalt der Quelle
Annotation:
Chemical imaging, electronic structure and optical properties of ZnO/CdS nano-composites have been investigated using scanning transmission X-ray microscopy (STXM), X-ray absorption near-edge structure (XANES) and X-ray excited optical luminescence (XEOL) spectroscopy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ward, M. J., J. G. Smith, T. Z. Regier und T. K. Sham. „2D XAFS-XEOL Spectroscopy – Some recent developments“. Journal of Physics: Conference Series 425, Nr. 13 (22.03.2013): 132009. http://dx.doi.org/10.1088/1742-6596/425/13/132009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Jürgensen, Astrid. „XEOL spectroscopy of lanthanides in aqueous solution“. Canadian Journal of Chemistry 95, Nr. 11 (November 2017): 1198–204. http://dx.doi.org/10.1139/cjc-2017-0038.

Der volle Inhalt der Quelle
Annotation:
As part of an ongoing study of the electronic interactions between solute and solvent molecules, a method for X-ray excited optical luminescence (XEOL) analysis of aqueous solutions was developed at the double-crystal monochromator beamline (DCM) of the Canadian Synchrotron Radiation Facility (CSRF). It was tested using a series of solutions containing lanthanide ions. The samples were contained in a sample holder for liquids with a 3 μm Mylar window separating them from the vacuum (≤3 × 10−6 torr, 1 torr = 133.3224 Pa) in the solid state absorption chamber of the DCM beamline. Terbium, samarium, and dysprosium have 4 intense and narrow luminescence peaks between 450 and 700 nm, well separated from the luminescence peak of the Mylar window between 300 and 425 nm. The intensity of the rare earth (RE3+) luminescence peaks was lower for the solutions than for solid RECl3·6H2O. In part, this was caused by the lower RE3+ concentration in the solutions than in the solid. In addition, the solvent (water) acts as a quencher. The disorder and the molecular motion in the solution increase the availability of nonradiative de-excitation pathways. A high concentration of SO42− in the solution enhanced the luminescence intensity, probably by inhibiting some nonradiative de-excitation pathways. This study has shown that it is in principle possible to investigate the luminescence of aqueous solutions with XEOL spectroscopy. Furthermore, it is possible to use this technique as a quantitative analytical tool for concentrated luminescent solutions and to study the shielding effects of anions in the solution that increase the luminescence intensity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Ivanov, S. N., V. N. Kolobanov und V. V. Mikhailin. „High‐luminosity system for XEOL spectroscopy (abstract)“. Review of Scientific Instruments 63, Nr. 1 (Januar 1992): 1469. http://dx.doi.org/10.1063/1.1143044.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Taylor, R. P., A. A. Finch, J. F. W. Mosselmans und P. D. Quinn. „The development of a XEOL and TR XEOL detection system for the I18 microfocus beamline Diamond light source“. Journal of Luminescence 134 (Februar 2013): 49–58. http://dx.doi.org/10.1016/j.jlumin.2012.09.018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Rogalev, A., und J. Goulon. „Potentialities and Limitations of the XEOL-XAFS Technique“. Le Journal de Physique IV 7, Nr. C2 (April 1997): C2–565—C2–568. http://dx.doi.org/10.1051/jp4/1997097.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Jiang, D. T., S. P. Frigo, I. Coulthard, X. H. Feng, K. H. Tan, T. K. Sham und R. A. Rosenberg. „XEOL XANES of ZnS(Cu) and porous Si“. Physica B: Condensed Matter 208-209 (März 1995): 227–28. http://dx.doi.org/10.1016/0921-4526(94)00666-j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Wang, Zhiqiang, Xiaoxuan Guo und Tsun-Kong Sham. „2D XANES-XEOL mapping: observation of enhanced band gap emission from ZnO nanowire arrays“. Nanoscale 6, Nr. 12 (2014): 6531–36. http://dx.doi.org/10.1039/c4nr01049c.

Der volle Inhalt der Quelle
Annotation:
Using two-dimensional X-ray absorption near-edge structure-X-ray excited optical luminescence (2D XANES-XEOL) spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhancedi.e.that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Imashuku, Susumu, Koichiro Ono und Kazuaki Wagatsuma. „X-Ray Excited Optical Luminescence and Portable Electron Probe Microanalyzer–Cathodoluminescence (EPMA–CL) Analyzers for On-Line and On-Site Analysis of Nonmetallic Inclusions in Steel“. Microscopy and Microanalysis 23, Nr. 6 (27.11.2017): 1143–49. http://dx.doi.org/10.1017/s1431927617012685.

Der volle Inhalt der Quelle
Annotation:
AbstractThe potential of the application of an X-ray excited optical luminescence (XEOL) analyzer and portable analyzers, composed of a cathodoluminescence (CL) spectrometer and electron probe microanalyzer (EPMA), to the on-line and on-site analysis of nonmetallic inclusions in steel is investigated as the first step leading to their practical use. MgAl2O4 spinel and Al2O3 particles were identified by capturing the luminescence as a result of irradiating X-rays in air on a model sample containing MgAl2O4 spinel and Al2O3 particles in the size range from 20 to 50 μm. We were able to identify the MgAl2O4 spinel and Al2O3 particles in the same sample using the portable CL spectrometer. In both cases, not all of the particles in the sample were identified because the luminescence intensities of the smaller Al2O3 in particular were too low to detect. These problems could be solved by using an X-ray tube with a higher power and increasing the beam current of the portable CL spectrometer. The portable EPMA distinguished between the MgAl2O4 spinel and Al2O3 particles whose luminescent colors were detected using the portable CL spectrometer. Therefore, XEOL analysis has potential for the on-line analysis of nonmetallic inclusions in steel if we have information on the luminescence colors of the nonmetallic inclusions. In addition, a portable EPMA–CL analyzer would be able to perform on-site analysis of nonmetallic inclusions in steel.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Liu, Lijia, J. Y. P. Ko, M. J. Ward, Y. M. Yiu, T. K. Sham und Y. Zhang. „XANES and XEOL investigations of SiC microcrystals and SiC nanowires“. Journal of Physics: Conference Series 190 (01.11.2009): 012134. http://dx.doi.org/10.1088/1742-6596/190/1/012134.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Rogalev, A., und J. Goulon. „Magnetic circularly polarized X-ray excited optical luminescence (MCP-XEOL)“. Radiation Effects and Defects in Solids 154, Nr. 3-4 (Oktober 2001): 377–81. http://dx.doi.org/10.1080/10420150108214081.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Belsky, A. N., A. N. Vasil’ev, V. V. Mikhailin, A. V. Gektin, N. V. Shiran, A. L. Rogalev und E. I. Zinin. „Time‐resolved XEOL spectroscopy of new scintillators based on CsI“. Review of Scientific Instruments 63, Nr. 1 (Januar 1992): 806–9. http://dx.doi.org/10.1063/1.1142614.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Pailharey, D., Y. Mathey, F. Jandard, S. Larcheri, F. Rocca, A. Kuzmin, R. Kalendarev et al. „Nanoscale x-ray absorption spectroscopy using XEOL-SNOM detection mode“. Journal of Physics: Conference Series 93 (01.12.2007): 012038. http://dx.doi.org/10.1088/1742-6596/93/1/012038.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Pettifer, R. F., A. Glanfield, S. Gardelis, B. Hamilton, P. Dawson und A. D. Smith. „X-ray excited optical luminescence (XEOL) study of porous silicon“. Physica B: Condensed Matter 208-209 (März 1995): 484–86. http://dx.doi.org/10.1016/0921-4526(94)00868-v.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Lin, Bi-Hsuan, Yu-Hao Wu, Yung-Chi Wu, Wei-Rein Liu, Chien-Yu Lee, Bo-Yi Chen, Gung-Chian Yin, Wen-Feng Hsieh und Mau-Tsu Tang. „Observation of anomalous emissions of nonpolar a-plane MgZnO and ZnO epi-films based on XEOL and time-resolved XEOL in hybrid bunch mode“. AIP Advances 10, Nr. 8 (01.08.2020): 085106. http://dx.doi.org/10.1063/5.0015244.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Ward, Matthew James, Wei-Qiang Han und Tsun-Kong Sham. „2D XAFS–XEOL Mapping of Ga1–xZnxN1–xOx Nanostructured Solid Solutions“. Journal of Physical Chemistry C 115, Nr. 42 (04.10.2011): 20507–14. http://dx.doi.org/10.1021/jp207545a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Mosselmans, J. F. W., R. P. Taylor, P. D. Quinn, A. A. Finch, G. Cibin, D. Gianolio und A. V. Sapelkin. „A time resolved microfocus XEOL facility at the Diamond Light Source“. Journal of Physics: Conference Series 425, Nr. 18 (22.03.2013): 182009. http://dx.doi.org/10.1088/1742-6596/425/18/182009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Lobacheva, Olga, Michael W. Murphy, Jun Young Peter Ko und Tsun-Kong Sham. „Morphology-dependent luminescence from ZnO nanostructures — An X-ray excited optical luminescence study at the Zn K-edge“. Canadian Journal of Chemistry 87, Nr. 9 (September 2009): 1255–60. http://dx.doi.org/10.1139/v09-115.

Der volle Inhalt der Quelle
Annotation:
ZnO nanostructures have been synthesized by thermal evaporation on Si substrates. It is found that the morphologies of the nanostructures are governed by growth conditions such as temperature, carrier-gas flow rate, and the nature of the substrate (with and without a catalyst). We report X-ray excited optical luminescence from ZnO nanostructures of distinctly different morphologies in the energy and time domain using excitation photon energies across the Zn K-edge. X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) study has clearly shown the morphology dependence of the ZnO optical properties. A correlation of luminescence with morphology, size, and crystallinity emerges.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Liu, Lijia, Jun Li und Tsun-Kong Sham. „Near-band-gap luminescence from TiO2 nanograss–nanotube hierarchical membranes“. Canadian Journal of Chemistry 93, Nr. 1 (Januar 2015): 106–12. http://dx.doi.org/10.1139/cjc-2014-0254.

Der volle Inhalt der Quelle
Annotation:
Freestanding TiO2 nanograss–nanotube hierarchical membranes are synthesized from a Ti metal foil by electrochemical anodization. It is found that the two nanostructures exhibit different luminescence properties, which are also affected by the crystal phases upon phase transformation. An unusual near-UV luminescence is observed from the amorphous nanograss, which is found to be excitation element specific. The amorphous nanotube shows no luminescence. Upon calcination, both nanograss and nanotubes are crystalized into the anatase phase with some rutile phase present, and both structures emit visible green luminescence at slightly different energies. The luminescence mechanism is explored using UV–vis spectroscopy, X-ray absorption near-edge structures (XANES), and X-ray excited optical luminescence (XEOL), and its implications are presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Sham, T. K., R. Sammynaiken, Y. J. Zhu, P. Zhang, I. Coulthard und S. J. Naftel. „X-ray excited optical luminescence (XEOL): a potential tool for OELD studies“. Thin Solid Films 363, Nr. 1-2 (März 2000): 318–21. http://dx.doi.org/10.1016/s0040-6090(99)01006-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Dalba, G., N. Daldosso, D. Diop, P. Fornasini, R. Grisenti und F. Rocca. „Local order in light emitting porous silicon studied by XEOL and TEY“. Journal of Luminescence 80, Nr. 1-4 (Dezember 1998): 103–7. http://dx.doi.org/10.1016/s0022-2313(98)00083-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Dalba, G., N. Daldosso, P. Fornasini, R. Graziola, R. Grisenti und F. Rocca. „X-ray absorption spectroscopy on light emitting porous silicon by XEOL and TEY“. Journal of Non-Crystalline Solids 232-234 (Juli 1998): 370–76. http://dx.doi.org/10.1016/s0022-3093(98)00468-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Mikhailik, V. B. „Xeol studies of impurity core-valence luminescence in mixed rubidium caesium chloride crystals“. Journal of Physical Studies 9, Nr. 2 (2005): 182–84. http://dx.doi.org/10.30970/jps.09.182.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Wilson, P. R., Z. Khatami, R. Dabkowski, K. Dunn, E. Chelomentsev, J. Wojcik und P. Mascher. „XANES and XEOL Investigation of Cerium and Terbium Co-Doped Silicon Oxide Films“. ECS Transactions 45, Nr. 5 (27.04.2012): 43–48. http://dx.doi.org/10.1149/1.3700408.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Lobacheva, Olga, Patricia L. Corcoran, Michael W. Murphy, Jun Young Peter Ko und Tsun-Kong Sham. „Cathodoluminescence, X-ray excited optical luminescence, and X-ray absorption near-edge structure studies of ZnO nanostructures“. Canadian Journal of Chemistry 90, Nr. 3 (März 2012): 298–305. http://dx.doi.org/10.1139/v2012-006.

Der volle Inhalt der Quelle
Annotation:
ZnO nanostructures of various morphologies and crystallinities were fabricated by thermal evaporation from Zn powder in a tube furnace in the presence of oxygen. It was found that the morphology of ZnO nanostructures was affected by synthesis parameters, such as growth temperature, carrier gas flow, and the presence of catalyst on the surface of the substrate. Representative ZnO nanostructures were studied by X-ray excited optical luminescence (XEOL) and cathodoluminescence (CL) methods. The luminescence from these samples exhibits a morphology dependence of the branching ratio of the near band gap (NBG) emission in the UV and defect emission in the green (GE). The appearance of the optical emission also depends on the excitation method. X-ray absorption near-edge structures (XANES) at the O K-edge and Zn L-edge are also presented and their implications discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Naftel, S. J., Y. M. Yiu, T. K. Sham und B. W. Yates. „X-ray excited optical luminescence (XEOL) studies of CaF2 at the Ca L3,2-edge“. Journal of Electron Spectroscopy and Related Phenomena 119, Nr. 2-3 (August 2001): 215–20. http://dx.doi.org/10.1016/s0368-2048(01)00295-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Roschuk, Tyler, Patrick Wilson, Jing Li, Kayne Dunn, Jacek Wojcik, Iain Crowe, Russell Gwilliam, Matthew Halsall, Andrew Knights und Peter Mascher. „Structure and Luminescence of Rare Earth-doped Silicon Oxides Studied Through XANES and XEOL“. ECS Transactions 25, Nr. 9 (17.12.2019): 213–22. http://dx.doi.org/10.1149/1.3211180.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Soderholm, L., G. K. Liu, Mark R. Antonio und F. W. Lytle. „X-ray excited optical luminescence (XEOL) detection of x-ray absorption fine structure (XAFS)“. Journal of Chemical Physics 109, Nr. 16 (22.10.1998): 6745–52. http://dx.doi.org/10.1063/1.477320.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Potts, Philip J., und Andrew G. Tindle. „Autoradiography by X-ray-excited optical luminescence (XEOL): Application to scheelite and fluorite mineralisation“. Chemical Geology 83, Nr. 1-2 (Juni 1990): 39–45. http://dx.doi.org/10.1016/0009-2541(90)90138-w.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Adriaens, Annemie, Paul Quinn, Sergey Nikitenko und Mark G. Dowsett. „Real Time Observation of X-ray-Induced Surface Modification Using Simultaneous XANES and XEOL-XANES“. Analytical Chemistry 85, Nr. 20 (30.09.2013): 9556–63. http://dx.doi.org/10.1021/ac401646q.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

King, G. E., A. A. Finch, R. A. J. Robinson, R. P. Taylor und J. F. W. Mosselmans. „The problem of dating quartz 2: Synchrotron generated X-ray excited optical luminescence (XEOL) from quartz“. Radiation Measurements 46, Nr. 10 (Oktober 2011): 1082–89. http://dx.doi.org/10.1016/j.radmeas.2011.08.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Ko, J. Y. Peter, Yongfeng Hu, Lidia Armelao und Tsun-Kong Sham. „XANES and XEOL studies of Eu-doped calcium tungstate in silica synthesized by sol-gel method“. Journal of Physics: Conference Series 190 (01.11.2009): 012078. http://dx.doi.org/10.1088/1742-6596/190/1/012078.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Ward, Matthew J., Paul A. Rupar, Michael W. Murphy, Yun-Mui Yiu, Kim M. Baines und Tsun-Kong Sham. „XAFS and XEOL of tetramesityldigermene – An electronic structure study of a heavy group 14 ethylene analogue“. Journal of Physics: Conference Series 430 (22.04.2013): 012046. http://dx.doi.org/10.1088/1742-6596/430/1/012046.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Gauthier, Christophe, Isabella Ascone, José Goulon, Robert Cortes, Jean-Michel Barbe und Roger Guilard. „First experimental evidence of circularly polarized X-ray excited optical luminescence (XEOL) from chiral Eu3+ complexes“. Chemical Physics 147, Nr. 1 (Oktober 1990): 165–72. http://dx.doi.org/10.1016/0301-0104(90)85032-r.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Kim, Pil-Sook Grace, N. O. Petersen, T. K. Sham und Y. F. Hu. „Soft X-ray excited optical luminescence (XEOL) studies of fluorescein isothiocyanate (FITC) and FITC-labeled proteins“. Chemical Physics Letters 392, Nr. 1-3 (Juli 2004): 44–49. http://dx.doi.org/10.1016/j.cplett.2004.05.048.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Li, Jun, Lijia Liu und Tsun-Kong Sham. „2D XANES–XEOL Spectroscopy Studies of Morphology-Dependent Phase Transformation and Corresponding Luminescence from Hierarchical TiO2 Nanostructures“. Chemistry of Materials 27, Nr. 8 (09.04.2015): 3021–29. http://dx.doi.org/10.1021/acs.chemmater.5b00363.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Lin, Bi-Hsuan, Yung-Chi Wu, Huang-Yeh Chen, Shao-Chin Tseng, Jian-Xing Wu, Xiao-Yun Li, Bo-Yi Chen et al. „Peculiar near-band-edge emission of polarization-dependent XEOL from a non-polar a-plane ZnO wafer“. Optics Express 26, Nr. 3 (25.01.2018): 2731. http://dx.doi.org/10.1364/oe.26.002731.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Kim, P. SG, Y. H. Tang, T. K. Sham und S. T. Lee. „Condensation of silicon nanowires from silicon monoxide by thermal evaporation — An X-ray absorption spectroscopy investigation“. Canadian Journal of Chemistry 85, Nr. 10 (01.10.2007): 695–701. http://dx.doi.org/10.1139/v07-054.

Der volle Inhalt der Quelle
Annotation:
We report a Si K-edge X-ray absorption fine structures (XAFS) study of silicon monoxide (SiO), the starting material for silicon nanowire preparation, its silicon nanowires, and the residue after the preparation of the starting material. The silicon nanowires were condensed onto three different substrates, (i) the wall of the furnace quartz tube, (ii) a porous silicon substrate, and (iii) a Si(100) silicon wafer. It was found that the Si K-edge XAFS of SiO exhibits identifiable spectral features characteristic of Si in 0 and 4 oxidation states as well as in intermediate oxidation states, while the SiO residue primarily shows features of Si(0) and Si(4). The XAFS suggest that SiO is not exactly a simple mixture of Si and SiO2. The silicon nanowires produced by the process exhibit morphology and luminescence property variations that depend on the nature of the substrate. X-ray excited optical luminescence (XEOL) at the O K-edge suggests an efficient energy transfer to the optical decay channel. The results and their implications are discussed.Key words: silicon nanowires, thermal evaporation, silicon monoxide, X-ray absorption fine structures, X-ray excited optical luminescence.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Lin, Bi-Hsuan, Yu-Hao Wu, Tai-Sing Wu, Yung-Chi Wu, Xiao-Yun Li, Wei-Rein Liu, Mau-Tsu Tang und Wen-Feng Hsieh. „Hard X-ray nanoprobe and time-resolved XEOL to observe increasing luminescence of ZnO and GaN epitaxial structures“. Applied Physics Letters 115, Nr. 17 (21.10.2019): 171903. http://dx.doi.org/10.1063/1.5123271.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Lin, Bi-Hsuan, Yung-Chi Wu, Jyh-Fu Lee, Mau-Tsu Tang und Wen-Feng Hsieh. „Polarization-dependent XEOL: Comparison of peculiar near-band-edge emission of non-polar a-plane GaN and ZnO wafers“. Applied Physics Letters 114, Nr. 9 (04.03.2019): 091102. http://dx.doi.org/10.1063/1.5066588.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Kim, Pil-Sook G., Yongfeng Hu, Marie-C. Brandys, Tara J. Burchell, Richard J. Puddephatt und Tsun K. Sham. „X-ray-Excited Optical Luminescence (XEOL) and X-ray Absorption Fine Structures (XAFS) Studies of Gold(I) Complexes with Diphosphine and Bipyridine Ligands“. Inorganic Chemistry 46, Nr. 3 (Februar 2007): 949–57. http://dx.doi.org/10.1021/ic0609352.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Hessel, Colin M., Eric J. Henderson, Joel A. Kelly, Ronald G. Cavell, Tsun-Kong Sham und Jonathan G. C. Veinot. „Origin of Luminescence from Silicon Nanocrystals: a Near Edge X-ray Absorption Fine Structure (NEXAFS) and X-ray Excited Optical Luminescence (XEOL) Study of Oxide-Embedded and Free-Standing Systems“. Journal of Physical Chemistry C 112, Nr. 37 (23.08.2008): 14247–54. http://dx.doi.org/10.1021/jp802095j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie