Auswahl der wissenschaftlichen Literatur zum Thema „Xenorhabdus“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Xenorhabdus" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Xenorhabdus":

1

Rahoo, Ali Murad, Rehana Kanwal Rahoo, Muhammad Saeed, Muhammad Burhan und Nusrat Keerio. „MOLECULAR IDENTIFICATION AND GROWTH OF XENORHABDUS AND PHOTORHABDUS SYMBIONTS OF ENTOMOPATHOGENIC NEMATODES“. Plant Protection 6, Nr. 2 (23.08.2022): 91–100. http://dx.doi.org/10.33804/pp.006.02.4211.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
From the characterisation, the partial 16 S gene sequences obtained for the two bacteria were subjected to blast-bootstrap analysis to obtain the phylogenetic tree. In assessing the similarity of Xenorhabdus bovienii with five other Xenorhabdus spp., it was found to be 96% similar to X. nematophila and X. japonica with Accession Numbers D78006 and NR027194 respectively. The X. bovienii was closer to X. beddingii 95% and X. kazodoii and 97% similarity to X. poinarii. From the phylogenetic tree, the two species of bacteria were found to belong to the genera Xenorhabadus and Photorhabdus. The two bacteria were compared with Xenorhabdus japonica NR027194, X. nematophila, D78006 X. poinarii DQ211703, X. beddingii AY278675 and X. kozodoii Eu 190977. The results showed that at 20 ℃ both the bacteria X. bovienii and Photorhabdus luminescens increased to a log concentration of 7.5 after 6 h. They then increased slightly up to 15 h. At 25 ℃ X. bovienii had a concentration of 6.1 after 1 h but only increased slowly to 6.6 after 15 h. However, P. luminescens started with 5.6 after 1 h but increased smoothly to 7.5 after 15 h. X. bovienii and P. luminescens at 30 ℃ had a concentration of 6.2 after 1 h.
2

Tailliez, Patrick, Sylvie Pagès, Nadège Ginibre und Noël Boemare. „New insight into diversity in the genus Xenorhabdus, including the description of ten novel species“. International Journal of Systematic and Evolutionary Microbiology 56, Nr. 12 (01.12.2006): 2805–18. http://dx.doi.org/10.1099/ijs.0.64287-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We investigated the diversity of a collection of 76 Xenorhabdus strains, isolated from at least 27 species of Steinernema nematodes and collected in 32 countries, using three complementary approaches: 16S rRNA gene sequencing, molecular typing and phenotypic characterization. The 16S rRNA gene sequences of the Xenorhabdus strains were highly conserved (similarity coefficient >95 %), suggesting that the common ancestor of the genus probably emerged between 250 and 500 million years ago. Based on comparisons of the 16S rRNA gene sequences, we identified 13 groups and seven unique sequences. This classification was confirmed by analysis of molecular typing profiles of the strains, leading to the classification of new isolates into the Xenorhabdus species described previously and the description of ten novel Xenorhabdus species: Xenorhabdus cabanillasii sp. nov. (type strain USTX62T=CIP 109066T=DSM 17905T), Xenorhabdus doucetiae sp. nov. (type strain FRM16T=CIP 109074T=DSM 17909T), Xenorhabdus griffiniae sp. nov. (type strain ID10T=CIP 109073T=DSM 17911T), Xenorhabdus hominickii sp. nov. (type strain KE01T=CIP 109072T=DSM 17903T), Xenorhabdus koppenhoeferi sp. nov. (type strain USNJ01T=CIP 109199T=DSM 18168T), Xenorhabdus kozodoii sp. nov. (type strain SaVT=CIP 109068T=DSM 17907T), Xenorhabdus mauleonii sp. nov. (type strain VC01T=CIP 109075T=DSM 17908T), Xenorhabdus miraniensis sp. nov. (type strain Q1T=CIP 109069T=DSM 17902T), Xenorhabdus romanii sp. nov. (type strain PR06-AT=CIP 109070T=DSM 17910T) and Xenorhabdus stockiae sp. nov. (type strain TH01T=CIP 109067T=DSM 17904T). The Xenorhabdus strains studied here had very similar phenotypic patterns, but phenotypic features nonetheless differentiated the following species: X. bovienii, X. cabanillasii, X. hominickii, X. kozodoii, X. nematophila, X. poinarii and X. szentirmaii. Based on phenotypic analysis, we identified two major groups of strains. Phenotypic group GA comprised strains able to grow at temperatures of 35–42 °C, whereas phenotypic group GB comprised strains that grew at temperatures below 35 °C, suggesting that some Xenorhabdus species may be adapted to tropical or temperate regions and/or influenced by the growth and development temperature of their nematode host.
3

Abd-Elgawad, Mahfouz M. M. „Xenorhabdus spp.: An Overview of the Useful Facets of Mutualistic Bacteria of Entomopathogenic Nematodes“. Life 12, Nr. 9 (31.08.2022): 1360. http://dx.doi.org/10.3390/life12091360.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Mounting concern over the misuse of chemical pesticides has sparked broad interest for safe and effective alternatives to control plant pests and pathogens. Xenorhabdus bacteria, as pesticidal symbionts of the entomopathogenic nematodes Steinernema species, can contribute to this solution with a treasure trove of insecticidal compounds and an ability to suppress a variety of plant pathogens. As many challenges face sound exploitation of plant–phytonematode interactions, a full useful spectrum of such interactions should address nematicidal activity of Xenorhabdus. Steinernema–Xenorhabdus complex or Xenorhabdus individually should be involved in mechanisms underlying the favorable side of plant–nematode interactions in emerging cropping systems. Using Xenorhabdus bacteria should earnestly be harnessed to control not only phytonematodes, but also other plant pests and pathogens within integrated pest management plans. This review highlights the significance of fitting Xenorhabdus-obtained insecticidal, nematicidal, fungicidal, acaricidal, pharmaceutical, antimicrobial, and toxic compounds into existing, or arising, holistic strategies, for controlling many pests/pathogens. The widespread utilization of Xenorhabdus bacteria, however, has been slow-going, due to costs and some issues with their commercial processing. Yet, advances have been ongoing via further mastering of genome sequencing, discovering more of the beneficial Xenorhabdus species/strains, and their successful experimentations for pest control. Their documented pathogenicity to a broad range of arthropods and pathogens and versatility bode well for useful industrial products. The numerous beneficial traits of Xenorhabdus bacteria can facilitate their integration with other tactics for better pest/disease management programs.
4

Lengyel, Katalin, Elke Lang, András Fodor, Emilia Szállás, Peter Schumann und Erko Stackebrandt. „Description of four novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus budapestensis sp. nov., Xenorhabdus ehlersii sp. nov., Xenorhabdus innexi sp. nov., and Xenorhabdus szentirmaii sp. nov.“ Systematic and Applied Microbiology 28, Nr. 2 (März 2005): 115–22. http://dx.doi.org/10.1016/j.syapm.2004.10.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kuwata, Ryusei, Li-hong Qiu, Wen Wang, Yuki Harada, Mutsuhiro Yoshida, Eizo Kondo und Toyoshi Yoshiga. „Xenorhabdus ishibashii sp. nov., isolated from the entomopathogenic nematode Steinernema aciari“. International Journal of Systematic and Evolutionary Microbiology 63, Pt_5 (01.05.2013): 1690–95. http://dx.doi.org/10.1099/ijs.0.041145-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Gram-negative bacteria of the genus Xenorhabdus exhibit a mutualistic association with steinernematid entomopathogenic nematodes and a pathogenic relationship with insects. Here we describe two isolates of the entomopathogenic nematode Steinernema aciari collected from China and Japan. 16S rRNA gene sequence similarity and phylogenetic analysis indicated that the isolates obtained from S. aciari belonged to the genus Xenorhabdus . Multilocus sequence analysis based on five universal protein-coding gene sequences revealed that the isolates were closely related to Xenorhabdus ehlersii DSM 16337T and Xenorhabdus griffiniae ID10T but that they exhibited <97 % sequence similarity with these reference strains, which indicated that the isolates were distinct from previously described species. Based on these genetic differences and several differential phenotypic traits, we propose that the isolates represent a novel species of the genus Xenorhabdus , for which we propose the name Xenorhabdus ishibashii sp. nov. The type strain is GDh7T ( = DSM 22670T = CGMCC 1.9166T).
6

GREWAL, P. S., M. MATSUURA und V. CONVERSE. „Mechanisms of specificity of association between the nematode Steinernema scapterisci and its symbiotic bacterium“. Parasitology 114, Nr. 5 (Mai 1997): 483–88. http://dx.doi.org/10.1017/s0031182096008669.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We suggest a new mechanism for the maintenance of specificity of the association between the entomopathogenic nematode Steinernema scapterisci and its symbiotic bacteria. We evaluated the development and reproduction of infective and non-infective juvenile S. scapterisci in monoxenic combinations with its symbiotic bacteria, Xenorhabdus sp. ‘S’ and with the bacterial symbiont of Steinernema carpocapsae and Steinernema riobravis. Although development of non-infective stages occurred on all Xenorhabdus spp., the development of infective juveniles to the 4th stage (‘dauer’ recovery) was significantly delayed and reduced with X. nematophilus and Xenorhabdus sp. ‘R’, the bacterial symbionts of S. carpocapsae and S. riobravis, respectively. ‘Dauer’ recovery improved significantly when the cultures of X. nematophilus and Xenorhabdus sp. ‘R’ were supplemented with cell-free filtrates from Xenorhabdus sp. ‘S’. The infective juvenile S. scapterisci produced in all 3 cultures were virulent to Galleria mellonella larvae, confirming successful retention of Xenorhabdus from other steinernematids in their intestine. In fact, S. scapterisci infective juveniles containing X. nematophilus or Xenorhabdus sp. ‘R’ were more virulent to G. mellonella than those containing their natural symbiont, Xenorhabdus sp. ‘S’. We believe that this is the first demonstration of the symbiont-specific exit of infective juveniles from the ‘dauer’ phase which represents the finest level of specificity of bacteria–nematode association. This is also the first report of successful isolation of the natural symbiont of S. scapterisci.
7

Harahap, Mardianto, und Didik Sulistyanto. „Karakteristik morfologi dan fisiologi beberapa isolat lokal bakteri simbiose nematoda entomopatogen kompleks serta uji virulensi pada larva Plutella xylostella“. Jurnal Entomologi Indonesia 1, Nr. 1 (23.02.2017): 41. http://dx.doi.org/10.5994/jei.1.1.41.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Local isolates of entomopathogenic nematodes are symbiotically associated with bacteria of the genus Xenorhabdus or Photorhabdus. Symbiont bacteria isolated from local isolates of entomopathogenic nematode (Pujon, Cemoro Lawang and X. nematophilus) were identical with Xenorhabdus spp and isolate of Ngadas was identical with Photorhabdus luminescens. Some isolates, such as Xenorhabdus (isolate of Pujon) and P. luminescens (isolate of Ngadas) has a high virulence when the bacteria was injected into insect haemocoel. High virulence was indicated by Xenorhabdus nematophilus when it was applied orally.
8

Lengyel, Katalina, Elke Lang, Andras Fodor, Emilia Szallas, Peter Schumann und Erko Stackebrandt. „Erratum to “Description of four novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus budapestensis sp. nov., Xenorhabdus ehlersii sp. nov., Xenorhabdus innexi sp. nov., and Xenorhabdus szentirmaii sp. nov.”“. Systematic and Applied Microbiology 30, Nr. 1 (Januar 2007): 83. http://dx.doi.org/10.1016/j.syapm.2006.11.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Cao, Li, Xuehong Qiu, Xiaofen Liu, Xiuling Liu und Richou Han. „Nutrient potential of various Xenorhabdus and Photorhabdus bacteria for a free-living nematode Panagrellus redivivus“. Nematology 10, Nr. 1 (2008): 79–85. http://dx.doi.org/10.1163/156854108783360104.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract Xenorhabdus and Photorhabdus bacteria are symbionts of entomopathogenic nematodes of the genera Steinernema and Heterorhabditis, respectively. To determine the nutrient potential of these bacteria for a free-living nematode, Panagrellus redivivus, a promising food source for first-feeding fish and crustacean, sterile first-stage juveniles (J1) of P. redivivus were fed on various isolates of Xenorhabdus and Photorhabdus bacteria in liquid cultures. Most of the tested bacterial isolates did not support the growth of P. redivivus. However, four of the Xenorhabdus isolates (X. nematophila All, X. bovienii T319, X. beddingii X-7 and X. poinarii KG) provided nutrients for the production of these nematodes in a liquid medium. Two Xenorhabdus isolates (X. beddingii X-7 and X. poinarii KG) even supported mass production of the nematode in a sponge medium, with yields comparable to those with yeast strains. This is the first report that Xenorhabdus bacteria can function as a nutrient source for mass production of nematodes other than their usual symbiotic partners.
10

Eidt, D. C., und J. G. Stewart. „EFFECT ON GROWTH AND ROOT NODULATION OF CLOVERS, TRIFOLIUM SPP., BY GALLERIA MELLONELLA (L.) (LEPIDOPTERA: PYRALIDAE) INFECTED WITH STEINERNEMA CARPOCAPSAE (WEISER) (RHABDITA: STEINERNEMATIDAE) AND ITS SYMBIONT, XENORHABDUS NEMATOPHILUS POINAR AND THOMAS“. Canadian Entomologist 129, Nr. 2 (April 1997): 205–10. http://dx.doi.org/10.4039/ent129205-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
AbstractRed and white clovers, Trifolium spp., were grown in nitrogen-poor soil containing cadavers of larval Galleria mellonella (L.) that were infected with Steinernema carpocapsae (Weiser) and its symbiont Xenorhabdus nematophilus Poinar and Thomas. Growth and root nodulation were not affected by the nematode treatment, leading us to conclude that they would not be impaired through the action of antimicrobial agents produced by Xenorhabdus spp. present in soils because of Xenorhabdus-infected insect cadavers.

Dissertationen zum Thema "Xenorhabdus":

1

Xu, Chuanbin. „The stability and cytotoxic properties of xenorxides and xenorhabdins, secondary metabolites of the entomopathogenic nematode symbiont, Xenorhabdus bovienii, Enterobacteriaceae“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ37671.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Sirs, Heidi Louise. „Molecular and biological studies on nematicidal strains of Xenorhabdus species“. Thesis, University of Liverpool, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.409877.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Baxter, Laura April. „The identification and characterisation of insecticidal toxins from Xenorhabdus species“. Thesis, University of Liverpool, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.411586.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Pinyon, Rebecca A. „Isolation and characterisation of novel non-ribosomal peptide synthetase genes from the entomopathogenic Xenorhabdus bovienii T228“. Title page, contents and abstract only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09php659.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Cambon, Marine. „Heterogeneity within infections : the case of the vector-borne insect pathogen, Xenorhabdus nematophila“. Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30308.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
De nombreuses études ont jusqu'ici considéré les infections comme étant des interactions deux-à-deux, entre un hôte et un pathogène, minimisant ainsi la complexité du processus infectieux. En effet, les infections sont souvent très hétérogènes, menant à des interactions plus complexes. Au cours de ce travail, nous cherchons à répondre à deux questions: (i) La transmission d'un pathogène peut-elle être impactée lorsque de l'hétérogénéité phénotypique apparaît dans sa population au cours de l'infection ? (ii) Comment les pathogènes interagissent-ils avec la communauté bactérienne généralement associée à l'hôte avant l'infection ? Pour étudier ces questions, nous nous sommes intéressés à Xenorhabdus nematophila, une bactérie pathogène d'insectes transmise par un vecteur, le némaotde Steinernema carpocapsae. Au cours d'une infection par X. nematophila, différentes sous-populations ayant différentes caractéristiques phénotypiques sont produites. Nous avons cherché à déterminer les mécanismes moléculaires responsables de cette diversification phénotypique, ainsi que sa potentielle valeur adaptative pour X. nematophila. Nous avons montré que certaines de ces formes phénotypique sont des mutants qui semblent être sous forte sélection positive au cours de l'infection. À l'inverse, ces mutants ont un impact négatif sur la reproduction du vecteur nématode, ce qui réduit leur transmission. La dynamique d'hétérogénéité phénotypique chez X. nematophila semble donc déterminée par des pressions de sélections contraires à court terme et à long terme. La production de molécules anti-microbiennes chez X. nematophila devraient lui permettre de dominer la communauté bactérienne à l'intérieur de l'insecte et faciliter sa ré-association avec son vecteur. Nous avons donc décrit la composition de la communauté microbienne présente dans des insectes morts d'une infection par X. nematophila, et montré qu'en dépit de sa production d'antibiotiques, X. nematophila est loin de dominer la communauté microbienne après la mort de l'insecte. Elle cohabite avec des bactéries provenant à la fois du microbiote de l'hôte insecte, et de celui du vecteur nématode. Cela soulève de nombreuses questions sur le rôle d'autres microorganismes dans les interactions Xenorhabdus-Steinernema, et sur leur influence dans l'évolution de cette symbiose mututaliste
Numerous studies have considered infections as pairwise interactions between a single pathogen and its host, sometimes leading to an incomplete picture of infectious processes. In this work, we focused on more complex types of interactions that arise because infections are usually heterogeneous. More precisely, we have investigated two main issues: (I) how pathogen transmission is impacted by phenotypic heterogeneity which arises within the pathogen population during the infection, and (ii) how do pathogens interact with the bacterial community which is naturally associated to the host before infection? To assess these questions, we have been studying Xenorhabdus nematophila, an insect-killing bacterial pathogen which is transmitted by a nematode vector, Steinernema carpocapsae. One interesting feature of X. nematophila is that it produces different sub-populations during the course of an infection, each one having distinctive phenotypic features (e.g. one form produces antibiotics and is mobile, while the other does not produce antibiotics nor flagella). In this work, we first tried to identify the molecular mechanisms responsible for this diversification of phenotypes, and tested if phenotypic heterogeneity in X. nematophila has some adaptive value. We showed that some of these phenotypic forms were mutants, which seem to be under strong positive selection during infection. We also showed, however, that these mutants impair nematodes reproduction, which in turn reduces transmission. Therefore, the dynamics of phenotypic heterogeneity in X. nematophila seems to be determined by contradictory short-term and long-term selective pressures. A second interesting feature of X. nematophila is that it produces a lot of antimicrobial compounds which should allow it to dominate the bacterial community inside the insect it has killed. This can be key to ensure the re-association of X. nematophila with its nematode vector inside the insect cadaver. We investigated the bacterial composition of the microbial communities present in insects cadavers after infection by X. nematophila. We found that despite the numerous antibiotics it is able to secrete, X. nematophila is far from dominating microbial community after host death. It rather cohabits with microorganisms from the microbiota of both the insect host and the nematode vector. This raises numerous questions about the impact of these other microorganisms on Xenorhabdus-Steinernema interactions, and therefore on their potential influence on how this mutualistic association has evolved
6

Roder, Alexandra Catherine, und Alexandra Catherine Roder. „Influence of Xenorhabdus Symbionts on Gonad Development and Pheromone Production of First-Generation Adult Steinernema Nematodes (Nematoda: Steinernematidae)“. Thesis, The University of Arizona, 2017. http://hdl.handle.net/10150/626344.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Entomopathogenic Steinernema nematodes (Nematoda: Steinernematidae) have a mutualistic relationship with Xenorhabdus bacteria (Gamma-Proteobacteria Enterobacteriaceae). The two partners form an insecticidal alliance that is successful in killing a wide range of insects. A few studies have shown that Steinernema IJs have an enhanced virulence and reproductive fitness when they associate with their cognate symbionts. However, there are unanswered questions regarding the physiological interactions that govern and perpetuate the interactions between different nematode developmental stages and their bacterial partners. In this study, we evaluated gonad development and maturation time of first-generation adults of S. carpocapsae and S. feltiae adults when reared under four bacterial scenarios: a) cognate symbiotic, b) non-cognate symbiotic bacterial strain, c) non-cognate symbiotic bacterial species and d) non-symbiotic bacteria (Serratia proteamaculans). For comparative purposes, we also considered adult nematodes reared in vivo in Galleria mellonella larvae to assess nematode development under natural conditions. Furthermore, in this study we also measured production of nematode pheromones (ascarosides), which play a key role in mating and reproduction. For this purpose, we considered in vitro rearing methods (with cognate and non-cognate Xenorhabdus symbionts) to qualitatively and quantitatively characterize ascarosides produced by first-generation adults. Our data showed that for both Steinernema spp. tested, time to adult maturation and gonad development was tightly dependent on the bacterial conditions under which juveniles were reared. However, contrasting results were observed when assessing total body length and gonad size. S. feltiae males and females size (body length and width) and respective gonad length were smaller when reared with a non-cognate symbiotic species. Additionally, non-symbiotic bacteria did not sustain S. feltiae maturation to adult stages. Contrarily, S. carpocapsae juveniles developed to adults when reared with any of the bacterial conditions tested, including with non-symbiotic Serratia proteamaculans. Additionally, S. carpocapsae adults, unlike S. feltiae, did not exhibit enhanced body and gonad size when reared with their cognate symbiont. In fact, S. carpocapsae males and females had larger gonad lengths when reared with a non-cognate symbiotic strain, XnAna (X. nematophila associated with S. anatoliense). S. carpocapsae males and females had significantly underdeveloped gonads when reared with non-symbiotic bacteria. In both Steinernema spp., sex ratio was not impacted by the bacterial condition. However, sex ratio (female:male) S. carpocapsae, decreased from 2:1 to 1:1 when reared with non-symbiotic bacteria. The body and gonad sizes of Steinernema spp. reared in vitro with their cognate symbiont were significantly smaller than those grown in vivo. Ascaroside production in either Steinernema spp. was not significantly impacted by the rearing conditions. In S. carpocapsae, a significant increase in glucoside-1 was observed when the nematodes were reared with cognate or non-cognate bacteria. No detectable quantities of asc-C11 were produced by S. feltiae nematodes when reared with a non-cognate symbiotic bacterial species. We conclude that bacterial symbionts influenced maturation and development of first-generation adults’ in both Steinernema spp. tested in this study. However, response to the bacterial symbionts was species specific. Additionally, this study showed that Xenorhabdus as a food source plays an important role in the type and amount of ascarosides produced by Steinernema spp.
7

Sartori, Thaís. „Avaliação da atividade leishmanicida de metabólicos de bactérias entomopatogênicas“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/131895.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
A leishmaniose, doença parasitária vetoriada causada por protozoários do gênero Leishmania, é uma das principais doenças tropicais negligenciadas do mundo. Os medicamentos atualmente disponíveis para o tratamento das leishmanioses são insatisfatórios, principalmente devido à baixa efetividade dos mesmos, surgimento de resistência do parasito ou reações adversas graves apresentadas pelos pacientes. Nas últimas décadas, tem havido um interesse renovado em produtos naturais derivados de micro-organismos como fonte para a concepção de novas drogas. As bactérias entomopatogênicas Xenorhabdus nematophila e Photorhabdus luminescens produzem grande número de metabólitos secundários, muitos deles têm efeitos tóxicos específicos sobre as células eucarióticas. O objetivo deste trabalho foi avaliar a atividade leishmanicida de sobrenadantes de culturas destas bactérias. Os testes in vitro foram realizados sobre formas promastigotas e amastigotas de Leishmania amazonensis e incluíram o efeito citotóxico dos sobrenadantes sobre macrófagos. Ambos os sobrenadantes de culturas de P. luminescens e X. nematophila mostraram atividade leishmanicida significativa contra as formas promastigotas de L. amazonensis (valores de CI50 de 7,5 % e 0,63 % (v/v), respectivamente). O sobrenadante de cultura de X. nematophila foi o mais efetivo e o mais estável ao calor. Além disso, ambos os sobrenadantes de culturas continham pequenas moléculas que estimularam a atividade leishmanicida de macrófagos por um mecanismo independente de óxido nítrico. Estes resultados revelaram que estas bactérias entomopatogênicas são fontes potenciais para a concepção de novos medicamentos contra a leishmaniose.
Leishmaniasis, a vector-borne parasitic disease caused by protozoa of the genus Leishmania, is one of the main neglected tropical diseases in the world. The drugs currently available for the treatment are unsatisfactory, mainly due to their low effectiveness, parasite resistance emergence or serious adverse reactions presented by the patients. In recent decades, there has been a renewed interest in natural products derived from microorganisms as a source for the design of new drugs. The Entomopathogenic bacteria Xenorhabdus nematophila and Photorhabdus luminescens produce a large number of secondary metabolites, many of them have specific toxic effects on eukaryotic cells. The objective of this study was to evaluate the leishmanicidal activity of these bacteria culture supernatants. In vitro tests were performed on promastigote and amastigote forms of L. amazonensis and included the cytotoxic effect of the supernatants on macrophages. Both supernatants from P. luminescens and X. nematophila cultures showed significant leishmanicidal activity against promastigotes forms of L. amazonensis (IC50 values of 7.5% and 0.63 % (v/v), respectively). The supernatant from X. nematophila was the most effective and more heat-stable. Furthermore, both culture supernatants contained small molecules that stimulated the leishmanicidal activity of macrophages by a mechanism independent of nitric oxide. These results revealed that these entomopathogenic bacteria are potential sources for the development of new drugs against leishmaniasis.
8

He, Hongjun. „Thermal adaptation in Xenorhabdus spp., bacterial symbionts of entomopathogenic nematodes, Steinernema spp“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0014/MQ42392.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lee, Ming-Min. „A Phylogenetic Hypothesis on the Evolution and Interactions of Xenorhabdus Spp. (Gamma-Proteobacteria) and Their Steinernema Hosts (Nematoda: Steinernematidae)“. Thesis, The University of Arizona, 2009. http://hdl.handle.net/10150/193414.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Nematodes in the genus Steinernema (Nematoda: Steinernematidae) and their associated bacteria Xenorhabdus spp. (Gamma-Proteobacteria) are an emergent model of terrestrial animal-microbe symbiosis. Although interest in this association initially arose out of their potential as biocontrol agents against insect pests (Tanada and Kaya, 1993), this mutualistic partnership is currently viewed more broadly under the umbrella of basic sciences to inform ecology, evolution, biochemistry, molecular, among other disciplines (Burnell and Stock, 2000; Forst and Clarke, 2002).Despite advances in the discovery and field application of this nematode-bacterium partnership, and the growing popularity of this model system, relatively little has been published to uncover the evolutionary facets of their association. This study adds to the body of knowledge regarding nematode-bacteria symbiosis by 1) producing novel, multi-gene phylogenies for Steinernema and Xenorhabdus; 2) proposing a possible scenario for historical association in the form of a cophylogenetic hypothesis; 3) describing a newly discovered Steinernema species from France.
10

Hu, Kaiji. „Nematicidal properties of Xenorhabdus spp. and Photorhabdus spp., bacterial symbionts of entomopathogenic nematodes“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0013/NQ52710.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Xenorhabdus":

1

Smith, Kirk A. Entomopathogenic nematode bibliography: Heterorhabditid and Steinernematid nematodes. Fayetteville, Ark: Arkansas Agricultural Experiment Station, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Xu, Jimin. Development of genetic exchange systems for Xenorhabdus. 1989, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Xenorhabdus":

1

Yin, Jia, Hailong Wang, Ruijuan Li, Vinothkannan Ravichandran, Xiaoying Bian, Aiying Li, Qiang Tu, A. Francis Stewart, Jun Fu und Youming Zhang. „A Practical Guide to in and Xenorhabdus“. In Current Topics in Microbiology and Immunology, 195–213. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/82_2016_57.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Givaudan, Alain, und Anne Lanois. „Flagellar Regulation and Virulence in the Entomopathogenic Bacteria—Xenorhabdus nematophila and Photorhabdus luminescens“. In Current Topics in Microbiology and Immunology, 39–51. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/82_2016_53.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Xi, Lei, Ki-Woong Cho und Shiao-Chun Tu. „Xenorhabdus luminescens LUCIFERASE: CLONING, SEQUENCING, AND OVEREXPRESSION OF THE ENCODING GENES AND SUBSTRATE INHIBITION OF THE ENZYME“. In Flavins and Flavoproteins 1990, herausgegeben von B. Curti, S. Ronchi und G. Zanetti, 265–68. Berlin, Boston: De Gruyter, 1991. http://dx.doi.org/10.1515/9783110855425-051.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

„Xenorhabdus“. In Encyclopedia of Genetics, Genomics, Proteomics and Informatics, 2113–14. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6754-9_18245.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Nealson, Kenneth H., Thomas M. Schmidt und Bruce Bleakley. „Physiology and Biochemistry of Xenorhabdus“. In Entomopathogenic Nematodes in Biological Control, 271–84. CRC Press, 2018. http://dx.doi.org/10.1201/9781351071741-19.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Frackman, Susan, und Kenneth H. Nealson. „The Molecular Genetics of Xenorhabdus“. In Entomopathogenic Nematodes in Biological Control, 285–300. CRC Press, 2018. http://dx.doi.org/10.1201/9781351071741-20.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Akhurst, R. J., und N. E. Boemare. „Biology and Taxonomy of Xenorhabdus“. In Entomopathogenic Nematodes in Biological Control, 75–90. CRC Press, 2018. http://dx.doi.org/10.1201/9781351071741-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Vicente-Díez, Ignacio, Alicia Pou und Raquel Campos-Herrera. „Xenorhabdus- and Photorhabdus-based products“. In Development and Commercialization of Biopesticides, 81–101. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-95290-3.00012-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

ffrench-Constant, R. H., N. Waterfield und P. Daborn. „Insecticidal Toxins from Photorhabdus and Xenorhabdus“. In Comprehensive Molecular Insect Science, 239–53. Elsevier, 2005. http://dx.doi.org/10.1016/b0-44-451924-6/00083-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

ffrench-Constant, Richard, Nicholas Waterfield und Phillip Daborn. „Insecticidal Toxins from Photorhabdus and Xenorhabdus ☆“. In Reference Module in Life Sciences. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-809633-8.04061-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Xenorhabdus":

1

Chikezie I., Owuama. „Effect of Growth Media on Phase Variation in Xenorhabdus bovienii T228“. In Annual International Conference on Advances in Biotechnology. Global Science & Technology Forum (GSTF), 2013. http://dx.doi.org/10.5176/2251-2489_biotech13.82.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kapur, Arvinder K., Mayur Kajla, Susan Paskewitz, Pooja Mehta, Geeta Mehta und Manish S. Patankar. „Abstract NT-096: FABCLAVINE, A SECONDARY METABOLITE FROM XENORHABDUS BUDAPESTENSIS AS THERAPY AGAINST OVARIAN CANCER“. In Abstracts: 12th Biennial Ovarian Cancer Research Symposium; September 13-15, 2018; Seattle, Washington. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1557-3265.ovcasymp18-nt-096.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Palma, Leopoldo, Primitivo Caballero, Colin Berry, Laureano Frizzo und Eleodoro Del Valle. „The insecticidal-toxin repertory of 14 <em>Xenorhabdus</em> strains isolated from Argentina.“ In 1st International Electronic Conference on Toxins. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/iect2021-09140.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie