Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Xenorhabdus“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Xenorhabdus" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Xenorhabdus"
Rahoo, Ali Murad, Rehana Kanwal Rahoo, Muhammad Saeed, Muhammad Burhan und Nusrat Keerio. „MOLECULAR IDENTIFICATION AND GROWTH OF XENORHABDUS AND PHOTORHABDUS SYMBIONTS OF ENTOMOPATHOGENIC NEMATODES“. Plant Protection 6, Nr. 2 (23.08.2022): 91–100. http://dx.doi.org/10.33804/pp.006.02.4211.
Der volle Inhalt der QuelleTailliez, Patrick, Sylvie Pagès, Nadège Ginibre und Noël Boemare. „New insight into diversity in the genus Xenorhabdus, including the description of ten novel species“. International Journal of Systematic and Evolutionary Microbiology 56, Nr. 12 (01.12.2006): 2805–18. http://dx.doi.org/10.1099/ijs.0.64287-0.
Der volle Inhalt der QuelleAbd-Elgawad, Mahfouz M. M. „Xenorhabdus spp.: An Overview of the Useful Facets of Mutualistic Bacteria of Entomopathogenic Nematodes“. Life 12, Nr. 9 (31.08.2022): 1360. http://dx.doi.org/10.3390/life12091360.
Der volle Inhalt der QuelleLengyel, Katalin, Elke Lang, András Fodor, Emilia Szállás, Peter Schumann und Erko Stackebrandt. „Description of four novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus budapestensis sp. nov., Xenorhabdus ehlersii sp. nov., Xenorhabdus innexi sp. nov., and Xenorhabdus szentirmaii sp. nov.“ Systematic and Applied Microbiology 28, Nr. 2 (März 2005): 115–22. http://dx.doi.org/10.1016/j.syapm.2004.10.004.
Der volle Inhalt der QuelleKuwata, Ryusei, Li-hong Qiu, Wen Wang, Yuki Harada, Mutsuhiro Yoshida, Eizo Kondo und Toyoshi Yoshiga. „Xenorhabdus ishibashii sp. nov., isolated from the entomopathogenic nematode Steinernema aciari“. International Journal of Systematic and Evolutionary Microbiology 63, Pt_5 (01.05.2013): 1690–95. http://dx.doi.org/10.1099/ijs.0.041145-0.
Der volle Inhalt der QuelleGREWAL, P. S., M. MATSUURA und V. CONVERSE. „Mechanisms of specificity of association between the nematode Steinernema scapterisci and its symbiotic bacterium“. Parasitology 114, Nr. 5 (Mai 1997): 483–88. http://dx.doi.org/10.1017/s0031182096008669.
Der volle Inhalt der QuelleHarahap, Mardianto, und Didik Sulistyanto. „Karakteristik morfologi dan fisiologi beberapa isolat lokal bakteri simbiose nematoda entomopatogen kompleks serta uji virulensi pada larva Plutella xylostella“. Jurnal Entomologi Indonesia 1, Nr. 1 (23.02.2017): 41. http://dx.doi.org/10.5994/jei.1.1.41.
Der volle Inhalt der QuelleLengyel, Katalina, Elke Lang, Andras Fodor, Emilia Szallas, Peter Schumann und Erko Stackebrandt. „Erratum to “Description of four novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus budapestensis sp. nov., Xenorhabdus ehlersii sp. nov., Xenorhabdus innexi sp. nov., and Xenorhabdus szentirmaii sp. nov.”“. Systematic and Applied Microbiology 30, Nr. 1 (Januar 2007): 83. http://dx.doi.org/10.1016/j.syapm.2006.11.003.
Der volle Inhalt der QuelleCao, Li, Xuehong Qiu, Xiaofen Liu, Xiuling Liu und Richou Han. „Nutrient potential of various Xenorhabdus and Photorhabdus bacteria for a free-living nematode Panagrellus redivivus“. Nematology 10, Nr. 1 (2008): 79–85. http://dx.doi.org/10.1163/156854108783360104.
Der volle Inhalt der QuelleEidt, D. C., und J. G. Stewart. „EFFECT ON GROWTH AND ROOT NODULATION OF CLOVERS, TRIFOLIUM SPP., BY GALLERIA MELLONELLA (L.) (LEPIDOPTERA: PYRALIDAE) INFECTED WITH STEINERNEMA CARPOCAPSAE (WEISER) (RHABDITA: STEINERNEMATIDAE) AND ITS SYMBIONT, XENORHABDUS NEMATOPHILUS POINAR AND THOMAS“. Canadian Entomologist 129, Nr. 2 (April 1997): 205–10. http://dx.doi.org/10.4039/ent129205-2.
Der volle Inhalt der QuelleDissertationen zum Thema "Xenorhabdus"
Xu, Chuanbin. „The stability and cytotoxic properties of xenorxides and xenorhabdins, secondary metabolites of the entomopathogenic nematode symbiont, Xenorhabdus bovienii, Enterobacteriaceae“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ37671.pdf.
Der volle Inhalt der QuelleSirs, Heidi Louise. „Molecular and biological studies on nematicidal strains of Xenorhabdus species“. Thesis, University of Liverpool, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.409877.
Der volle Inhalt der QuelleBaxter, Laura April. „The identification and characterisation of insecticidal toxins from Xenorhabdus species“. Thesis, University of Liverpool, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.411586.
Der volle Inhalt der QuellePinyon, Rebecca A. „Isolation and characterisation of novel non-ribosomal peptide synthetase genes from the entomopathogenic Xenorhabdus bovienii T228“. Title page, contents and abstract only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09php659.pdf.
Der volle Inhalt der QuelleCambon, Marine. „Heterogeneity within infections : the case of the vector-borne insect pathogen, Xenorhabdus nematophila“. Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30308.
Der volle Inhalt der QuelleNumerous studies have considered infections as pairwise interactions between a single pathogen and its host, sometimes leading to an incomplete picture of infectious processes. In this work, we focused on more complex types of interactions that arise because infections are usually heterogeneous. More precisely, we have investigated two main issues: (I) how pathogen transmission is impacted by phenotypic heterogeneity which arises within the pathogen population during the infection, and (ii) how do pathogens interact with the bacterial community which is naturally associated to the host before infection? To assess these questions, we have been studying Xenorhabdus nematophila, an insect-killing bacterial pathogen which is transmitted by a nematode vector, Steinernema carpocapsae. One interesting feature of X. nematophila is that it produces different sub-populations during the course of an infection, each one having distinctive phenotypic features (e.g. one form produces antibiotics and is mobile, while the other does not produce antibiotics nor flagella). In this work, we first tried to identify the molecular mechanisms responsible for this diversification of phenotypes, and tested if phenotypic heterogeneity in X. nematophila has some adaptive value. We showed that some of these phenotypic forms were mutants, which seem to be under strong positive selection during infection. We also showed, however, that these mutants impair nematodes reproduction, which in turn reduces transmission. Therefore, the dynamics of phenotypic heterogeneity in X. nematophila seems to be determined by contradictory short-term and long-term selective pressures. A second interesting feature of X. nematophila is that it produces a lot of antimicrobial compounds which should allow it to dominate the bacterial community inside the insect it has killed. This can be key to ensure the re-association of X. nematophila with its nematode vector inside the insect cadaver. We investigated the bacterial composition of the microbial communities present in insects cadavers after infection by X. nematophila. We found that despite the numerous antibiotics it is able to secrete, X. nematophila is far from dominating microbial community after host death. It rather cohabits with microorganisms from the microbiota of both the insect host and the nematode vector. This raises numerous questions about the impact of these other microorganisms on Xenorhabdus-Steinernema interactions, and therefore on their potential influence on how this mutualistic association has evolved
Roder, Alexandra Catherine, und Alexandra Catherine Roder. „Influence of Xenorhabdus Symbionts on Gonad Development and Pheromone Production of First-Generation Adult Steinernema Nematodes (Nematoda: Steinernematidae)“. Thesis, The University of Arizona, 2017. http://hdl.handle.net/10150/626344.
Der volle Inhalt der QuelleSartori, Thaís. „Avaliação da atividade leishmanicida de metabólicos de bactérias entomopatogênicas“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/131895.
Der volle Inhalt der QuelleLeishmaniasis, a vector-borne parasitic disease caused by protozoa of the genus Leishmania, is one of the main neglected tropical diseases in the world. The drugs currently available for the treatment are unsatisfactory, mainly due to their low effectiveness, parasite resistance emergence or serious adverse reactions presented by the patients. In recent decades, there has been a renewed interest in natural products derived from microorganisms as a source for the design of new drugs. The Entomopathogenic bacteria Xenorhabdus nematophila and Photorhabdus luminescens produce a large number of secondary metabolites, many of them have specific toxic effects on eukaryotic cells. The objective of this study was to evaluate the leishmanicidal activity of these bacteria culture supernatants. In vitro tests were performed on promastigote and amastigote forms of L. amazonensis and included the cytotoxic effect of the supernatants on macrophages. Both supernatants from P. luminescens and X. nematophila cultures showed significant leishmanicidal activity against promastigotes forms of L. amazonensis (IC50 values of 7.5% and 0.63 % (v/v), respectively). The supernatant from X. nematophila was the most effective and more heat-stable. Furthermore, both culture supernatants contained small molecules that stimulated the leishmanicidal activity of macrophages by a mechanism independent of nitric oxide. These results revealed that these entomopathogenic bacteria are potential sources for the development of new drugs against leishmaniasis.
He, Hongjun. „Thermal adaptation in Xenorhabdus spp., bacterial symbionts of entomopathogenic nematodes, Steinernema spp“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0014/MQ42392.pdf.
Der volle Inhalt der QuelleLee, Ming-Min. „A Phylogenetic Hypothesis on the Evolution and Interactions of Xenorhabdus Spp. (Gamma-Proteobacteria) and Their Steinernema Hosts (Nematoda: Steinernematidae)“. Thesis, The University of Arizona, 2009. http://hdl.handle.net/10150/193414.
Der volle Inhalt der QuelleHu, Kaiji. „Nematicidal properties of Xenorhabdus spp. and Photorhabdus spp., bacterial symbionts of entomopathogenic nematodes“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0013/NQ52710.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Xenorhabdus"
Smith, Kirk A. Entomopathogenic nematode bibliography: Heterorhabditid and Steinernematid nematodes. Fayetteville, Ark: Arkansas Agricultural Experiment Station, 1992.
Den vollen Inhalt der Quelle findenXu, Jimin. Development of genetic exchange systems for Xenorhabdus. 1989, 1989.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Xenorhabdus"
Yin, Jia, Hailong Wang, Ruijuan Li, Vinothkannan Ravichandran, Xiaoying Bian, Aiying Li, Qiang Tu, A. Francis Stewart, Jun Fu und Youming Zhang. „A Practical Guide to in and Xenorhabdus“. In Current Topics in Microbiology and Immunology, 195–213. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/82_2016_57.
Der volle Inhalt der QuelleGivaudan, Alain, und Anne Lanois. „Flagellar Regulation and Virulence in the Entomopathogenic Bacteria—Xenorhabdus nematophila and Photorhabdus luminescens“. In Current Topics in Microbiology and Immunology, 39–51. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/82_2016_53.
Der volle Inhalt der QuelleXi, Lei, Ki-Woong Cho und Shiao-Chun Tu. „Xenorhabdus luminescens LUCIFERASE: CLONING, SEQUENCING, AND OVEREXPRESSION OF THE ENCODING GENES AND SUBSTRATE INHIBITION OF THE ENZYME“. In Flavins and Flavoproteins 1990, herausgegeben von B. Curti, S. Ronchi und G. Zanetti, 265–68. Berlin, Boston: De Gruyter, 1991. http://dx.doi.org/10.1515/9783110855425-051.
Der volle Inhalt der Quelle„Xenorhabdus“. In Encyclopedia of Genetics, Genomics, Proteomics and Informatics, 2113–14. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6754-9_18245.
Der volle Inhalt der QuelleNealson, Kenneth H., Thomas M. Schmidt und Bruce Bleakley. „Physiology and Biochemistry of Xenorhabdus“. In Entomopathogenic Nematodes in Biological Control, 271–84. CRC Press, 2018. http://dx.doi.org/10.1201/9781351071741-19.
Der volle Inhalt der QuelleFrackman, Susan, und Kenneth H. Nealson. „The Molecular Genetics of Xenorhabdus“. In Entomopathogenic Nematodes in Biological Control, 285–300. CRC Press, 2018. http://dx.doi.org/10.1201/9781351071741-20.
Der volle Inhalt der QuelleAkhurst, R. J., und N. E. Boemare. „Biology and Taxonomy of Xenorhabdus“. In Entomopathogenic Nematodes in Biological Control, 75–90. CRC Press, 2018. http://dx.doi.org/10.1201/9781351071741-5.
Der volle Inhalt der QuelleVicente-Díez, Ignacio, Alicia Pou und Raquel Campos-Herrera. „Xenorhabdus- and Photorhabdus-based products“. In Development and Commercialization of Biopesticides, 81–101. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-95290-3.00012-1.
Der volle Inhalt der Quelleffrench-Constant, R. H., N. Waterfield und P. Daborn. „Insecticidal Toxins from Photorhabdus and Xenorhabdus“. In Comprehensive Molecular Insect Science, 239–53. Elsevier, 2005. http://dx.doi.org/10.1016/b0-44-451924-6/00083-1.
Der volle Inhalt der Quelleffrench-Constant, Richard, Nicholas Waterfield und Phillip Daborn. „Insecticidal Toxins from Photorhabdus and Xenorhabdus ☆“. In Reference Module in Life Sciences. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-809633-8.04061-9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Xenorhabdus"
Chikezie I., Owuama. „Effect of Growth Media on Phase Variation in Xenorhabdus bovienii T228“. In Annual International Conference on Advances in Biotechnology. Global Science & Technology Forum (GSTF), 2013. http://dx.doi.org/10.5176/2251-2489_biotech13.82.
Der volle Inhalt der QuelleKapur, Arvinder K., Mayur Kajla, Susan Paskewitz, Pooja Mehta, Geeta Mehta und Manish S. Patankar. „Abstract NT-096: FABCLAVINE, A SECONDARY METABOLITE FROM XENORHABDUS BUDAPESTENSIS AS THERAPY AGAINST OVARIAN CANCER“. In Abstracts: 12th Biennial Ovarian Cancer Research Symposium; September 13-15, 2018; Seattle, Washington. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1557-3265.ovcasymp18-nt-096.
Der volle Inhalt der QuellePalma, Leopoldo, Primitivo Caballero, Colin Berry, Laureano Frizzo und Eleodoro Del Valle. „The insecticidal-toxin repertory of 14 <em>Xenorhabdus</em> strains isolated from Argentina.“ In 1st International Electronic Conference on Toxins. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/iect2021-09140.
Der volle Inhalt der Quelle