Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „X-Ray Micro-CT (Micro-Tomography)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "X-Ray Micro-CT (Micro-Tomography)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "X-Ray Micro-CT (Micro-Tomography)"
Ishii, Keizo. „Micron X-ray computed tomography based on micro-particle-induced X-ray emission“. International Journal of PIXE 25, Nr. 03n04 (Januar 2015): 187–215. http://dx.doi.org/10.1142/s0129083515500175.
Der volle Inhalt der QuelleBatranin, Andrey, Denis Ivashkov und Sergei Stuchebrov. „Performance Evaluation of Micro-CT Scanners as Visualization Systems“. Advanced Materials Research 1084 (Januar 2015): 694–97. http://dx.doi.org/10.4028/www.scientific.net/amr.1084.694.
Der volle Inhalt der QuelleObenaus, André, und Anna Smith. „Radiation dose in rodent tissues during micro-CT imaging“. Journal of X-Ray Science and Technology: Clinical Applications of Diagnosis and Therapeutics 12, Nr. 4 (Januar 2004): 241–49. http://dx.doi.org/10.3233/xst-2004-00116.
Der volle Inhalt der QuelleJones, Julian R., Georgina E. Milroy, Ruth Cameron, William Bonfield und Larry L. Hench. „Using X-Ray Micro-CT Imaging to Monitor Dissolution of Macroporous Bioactive Glass Scaffolds“. Key Engineering Materials 284-286 (April 2005): 493–96. http://dx.doi.org/10.4028/www.scientific.net/kem.284-286.493.
Der volle Inhalt der QuelleDimonie, Doina, Ionut-Cristian Radu, George Vlasceanu, Catalin Zaharia, Nicoleta Dragomir, Ovidiu Dima und Sorina Iftimie. „Estimating the 3D Printing Defects by Micro-Computed Tomography“. Proceedings 57, Nr. 1 (18.11.2020): 97. http://dx.doi.org/10.3390/proceedings2020057097.
Der volle Inhalt der QuelleLitzlbauer, Horst Detlef, Christoph Neuhaeuser, Alexander Moell, Susanne Greschus, Andreas Breithecker, Folker Ernst Franke, Wolfgang Kummer und Wigbert Stephan Rau. „Three-dimensional imaging and morphometric analysis of alveolar tissue from microfocal X-ray-computed tomography“. American Journal of Physiology-Lung Cellular and Molecular Physiology 291, Nr. 3 (September 2006): L535—L545. http://dx.doi.org/10.1152/ajplung.00088.2005.
Der volle Inhalt der QuelleZou, Shuo, Serena Best und William Bonfield. „Segementation of X-Ray Microtomography Data of Porous Scaffold“. Key Engineering Materials 330-332 (Februar 2007): 911–14. http://dx.doi.org/10.4028/www.scientific.net/kem.330-332.911.
Der volle Inhalt der QuelleBarburski, Marcin, Ilya Straumit und Stepan V. Lomov. „Internal Structure of the Sheared Textile Composite Reinforcement: Analysis Using X-Ray Tomography“. Key Engineering Materials 651-653 (Juli 2015): 325–30. http://dx.doi.org/10.4028/www.scientific.net/kem.651-653.325.
Der volle Inhalt der QuelleHeyn, René, Abraham Rozendaal, Anton Du Plessis und Carene Mouton. „Characterization of Coloured Gemstones by X-ray Micro Computed Tomography“. Minerals 11, Nr. 2 (08.02.2021): 178. http://dx.doi.org/10.3390/min11020178.
Der volle Inhalt der QuelleRashidi, Armin, Tina Olfatbakhsh, Bryn Crawford und Abbas S. Milani. „A Review of Current Challenges and Case Study toward Optimizing Micro-Computed X-Ray Tomography of Carbon Fabric Composites“. Materials 13, Nr. 16 (14.08.2020): 3606. http://dx.doi.org/10.3390/ma13163606.
Der volle Inhalt der QuelleDissertationen zum Thema "X-Ray Micro-CT (Micro-Tomography)"
Sen, Sharma Kriti. „Compressed Sensing based Micro-CT Methods and Applications“. Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/52866.
Der volle Inhalt der QuellePh. D.
PARISATTO, MATTEO. „APPLICATIONS OF X-RAY TOMOGRAPHIC TECHNIQUES TO THE STUDY OF CEMENT-BASED MATERIALS“. Doctoral thesis, Università degli studi di Padova, 2011. http://hdl.handle.net/11577/3421653.
Der volle Inhalt der QuelleLa conoscenza delle proprietà microstrutturali dei materiali cementizi gioca un ruolo fondamentale nel predire il loro comportamento macroscopico in termini di prestazioni e durabilità. Tuttavia, a causa dell’intrinseca complessità microstrutturale e chimica di tali materiali, un approccio multi disciplinare è spesso richiesto. La maggior parte delle tecniche sperimentali classiche come XRD, XRF o la porosimetria a mercurio (MIP) forniscono solamente informazioni complessive riguardo determinate proprietà (composizione mineralogica e chimica, porosità, etc.) ma non danno alcuna indicazione sulla loro reale distribuzione spaziale all’interno del campione studiato. Nel corso degli ultimi decenni, i moderni metodi sperimentali per l’analisi microstrutturale come la microscopia elettronica a scansione (SEM) hanno portato ad importanti avanzamenti delle nostre conoscenze sui complessi meccanismi che avvengono nel corso dell’idratazione del cemento. Tuttavia, l’impossibilità di accedere ad informazioni tridimensionali (3D) rappresenta la principale limitazione della tecnica SEM e degli altri metodi di imaging 2D. Inoltre, poiché la preparazione del campione è spesso piuttosto invasiva, la microstruttura del cemento può risultare completamente alterata. Per tali ragioni, si è reso necessario lo sviluppo di tecniche non distruttive per lo studio microstrutturale in 3D dei materiali. Oggigiorno, la micro-tomografia computerizzata a raggi X (X-μCT) fornisce uno strumento totalmente non invasivo per studiare in modo tridimensionale la struttura interna dei materiali, con una risoluzione spaziale che può raggiungere il livello sub-micrometrico quando vengono utilizzati i sistemi più avanzati. La X-μCT consente di ricostruire mappe in 3D delle variazioni del coefficiente di attenuazione lineare dei raggi X (μ) all’interno di un campione senza perturbarne la struttura. Lo scopo di questo progetto di ricerca è quello di verificare le potenzialità della X-μCT per lo studio microstrutturale di diversi aspetti di interesse nei materiali cementizi. Tra le principali tematiche che sono state affrontate vi sono l’evoluzione della microstruttura durante la presa e l’indurimento, gli effetti del rapporto acqua-cemento, il ruolo degli additivi superfluidificanti e le proprietà dello spazio poroso. I risultati ottenuti dalla X-μCT alla scala microscopica possono essere correlati con le corrispondenti proprietà microscopiche osservate nelle applicazioni reali. Al fine di confrontare le potenzialità delle due principali tipologie di strumenti per X-μCT, sono stati effettuati esperimenti utilizzando sia sistemi convenzionali da laboratorio sia sistemi da sincrotrone. Uno studio al sincrotrone sull’evoluzione del cemento nel corso degli stadi iniziali dell’idratazione è stato portato a termine con successo, ponendo l’attenzione sull’effetto dei superfluidificanti (cap. 4). L’elevata risoluzione spaziale ottenibile ha consentito di seguire l’evoluzione della porosità e della frazione di cemento anidro in funzione del tempo di idratazione. Nel capitolo 5, la X-μCT convenzionale da laboratorio è stata applicata allo studio di campioni di paste di cemento preparati a diverso rapporto acqua-cemento al fine di ottenere indicazioni sui parametri microstrutturali che determinano le variazioni delle resistenze meccaniche in campioni macroscopici al variare del contenuto d’acqua. Inoltre, le potenzialità di una tecnica sperimentale recentemente sviluppata (diffraction tomography, XRD-CT) sono state testate per la prima volta su campioni cementizi (cap. 6). La tecnica della XRD-CT, combinando i principi della micro-diffrazione a raggi X con quelli della ricostruzione tomografica, consente di mappare la distribuzione di determinate fasi cristalline o amorfe all’interno di un campione in una maniera del tutto non invasiva. In questo modo, una delle principali limitazioni della X-μCT legata alla scarsa sensibilità nei confronti di ridotte variazioni di assorbimento tra diverse fasi può essere superata. Nonostante l’analisi dei dati non sia semplice e richieda ulteriori sviluppi, i risultati preliminari presentati in questa tesi mostrano che alcune fasi, sia cristalline sia amorfe, che si sviluppano nel corso dell’idratazione del cemento (come ad esempio l’ettringite o il C-S-H), possono essere mappate con successo senza perturbare il sistema. Nell’ultima parte del lavoro è riportato un esempio pratico di applicazione della X-μCT. La tecnica tomografica è stata utilizzata per caratterizzare la porosità e la microstruttura di materiali cementizi granulari prodotti dal processo di solidificazione e stabilizzazione (S/S) di suoli contaminati da metalli pesanti. I risultati delle analisi di X-μCT sono stati poi combinati con quelli ottenuti usando altri metodi sperimentali classici (ad esempio MIP, test fisico-meccanici e di cessione) al fine di valutare le prestazioni e la compatibilità ambientale di un metodo innovativo di bonifica dei terreni inquinati.
Baumann, Michael. „Performance of a Micro-CT System : Characterisation of Hamamatsu X-ray source L10951-04 and flat panel C7942CA-22“. Thesis, KTH, Skolan för teknik och hälsa (STH), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-155454.
Der volle Inhalt der QuelleWeber, Loriane. „Iterative tomographic X-Ray phase reconstruction“. Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI085/document.
Der volle Inhalt der QuellePhase contrast imaging has been of growing interest in the biomedical field, since it provides an enhanced contrast compared to attenuation-based imaging. Actually, the phase shift of the incoming X-ray beam induced by an object can be up to three orders of magnitude higher than its attenuation, particularly for soft tissues in the imaging energy range. Phase contrast can be, among others existing techniques, achieved by letting a coherent X-ray beam freely propagate after the sample. In this case, the obtained and recorded signals can be modeled as Fresnel diffraction patterns. The challenge of quantitative phase imaging is to retrieve, from these diffraction patterns, both the attenuation and the phase information of the imaged object, quantities that are non-linearly entangled in the recorded signal. In this work we consider developments and applications of X-ray phase micro and nano-CT. First, we investigated the reconstruction of seeded bone scaffolds using sed multiple distance phase acquisitions. Phase retrieval is here performed using the mixed approach, based on a linearization of the contrast model, and followed by filtered-back projection. We implemented an automatic version of the phase reconstruction process, to allow for the reconstruction of large sets of samples. The method was applied to bone scaffold data in order to study the influence of different bone cells cultures on bone formation. Then, human bone samples were imaged using phase nano-CT, and the potential of phase nano-imaging to analyze the morphology of the lacuno-canalicular network is shown. We applied existing tools to further characterize the mineralization and the collagen orientation of these samples. Phase retrieval, however, is an ill-posed inverse problem. A general reconstruction method does not exist. Existing methods are either sensitive to low frequency noise, or put stringent requirements on the imaged object. Therefore, we considered the joint inverse problem of combining both phase retrieval and tomographic reconstruction. We proposed an innovative algorithm for this problem, which combines phase retrieval and tomographic reconstruction into a single iterative regularized loop, where a linear phase contrast model is coupled with an algebraic tomographic reconstruction algorithm. This algorithm is applied to numerical simulated data
Sencu, Razvan. „Multiscale stochastic fracture mechanics of composites informed by in-situ X-ray CT tests“. Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/multiscale-stochastic-fracture-mechanics-of-composites-informed-by-insitu-xray-ct-tests(85a0be40-9e7a-4df3-a366-69ac6ce02e35).html.
Der volle Inhalt der QuelleGhous, Abid Petroleum Engineering Faculty of Engineering UNSW. „3D imaging and modeling of carbonate core at multiple scales“. Awarded By:University of New South Wales. Petroleum Engineering, 2010. http://handle.unsw.edu.au/1959.4/44606.
Der volle Inhalt der QuellePapajová, Gabriela. „Obrazové detektory rentgenového záření pro aplikace v microCT systémech“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-316801.
Der volle Inhalt der QuelleKizhakke, Puliyakote Abhilash Srikumar. „Comprehensive assessment and characterization of pulmonary acinar morphometry using multi-resolution micro x-ray computed tomography“. Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/3120.
Der volle Inhalt der QuelleHuang, Yan. „Structural Mapping of Paper Towels: Comparison of Twin Laser Profilometry and Synchrotron X-ray Micro-computed Tomography“. Miami University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=miami1281751951.
Der volle Inhalt der QuelleSidlipura, Ravi Kumar Sujith Kumar. „Multi-modal and multiscale image analysis work flows for characterizing through-thickness impregnation of fiber reinforced composites manufactured by simplified CRTM process“. Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Lille Douai, 2024. http://www.theses.fr/2024MTLD0010.
Der volle Inhalt der QuelleThis thesis presents an experimental study to advance thermoplastic Compression Resin Transfer Molding (CRTM), focusing on industrial efficiency, sustainability, and recyclability goals aligned with the Sustainable Development Goals for Industry, Innovation, and Climate Action. By addressing multi-scale resin flow complexity in CRTM, this research investigates transverse flow and process-induced porosity at the meso scale of glass fiber bundles to improve impregnation uniformity and compaction control, bridging theoretical frameworks with scalable applications. The study focuses on a thermoplastic polypropylene matrix reinforced with six layers of bidirectional UD woven glass fibers ([0/90]3) consolidated on a CRTM setup. The “Simplified CRTM” method is developed on an industrial press, using displacement-controlled compaction ratios. This method omits active resin injection, relying on a uniformly distributed viscous polymer pool beneath the unsaturated preform to drive resin flow uniformly with a unidirectional flow path. Controlled displacement and pressure optimize resin paths, manage fiber volume fraction, and reduce porosity. Three multi-step compaction configurations are evaluated: Configuration 1 (Reference): Uses force compaction as a baseline for comparing resin distribution and fiber structure. Configuration 2 (simplified CRTM): Displacement-controlled compaction enhances resin infiltration but faces challenges like edge race-tracking and fiber volume fraction (Vf) variability, affecting impregnation. Configuration 3 (simplified CRTM with Edge Sealing): Introduces high-temperature sealant tape at mold edges, limiting resin escape, maintaining transverse flow, and reducing porosity and race-tracking. Configuration 3 edge-sealing technique establishes a reproducible process for high quality CRTM composites. An advanced 2D multi-modal imaging protocol, tailored for partially impregnated samples produced via simplified CRTM with unfilled spaces and fragile microstructures, includes polarized light microscopy, fluorescence microscopy, and scanning electron microscopy for qualitative and quantitative characterization. An original two-step polishing process preserves surface integrity, and image post-processing workflows quantify impregnation quality and void distribution. The study is completed with a fine evaluation of the impregnation mechanisms using X-ray micro computed tomography technique (micro-CT) relying on helicoidal inspection method. Results demonstrate that compaction parameters directly impact impregnation level, reaching an impregnation limit. This thesis establishes a scalable, data-driven CRTM framework bridging laboratory experimentation with industrial requirements for high-performance thermoplastic composites. It offers insights into streamlined protocols and microstructure-based analysis, enhancing understanding of the interplay between impregnation and permeability in CRTM. These findings align with precision demands in sectors like automotive and aerospace, where CRTM composites are crucial for structural applications
Buchteile zum Thema "X-Ray Micro-CT (Micro-Tomography)"
Molteni, Roberto. „X-Ray Imaging: Fundamentals of X-Ray“. In Micro-computed Tomography (micro-CT) in Medicine and Engineering, 7–25. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16641-0_2.
Der volle Inhalt der QuelleErdem, Savaş, und Serap Hanbay. „X-Ray Computed Tomography Technique in Civil Engineering“. In Micro-computed Tomography (micro-CT) in Medicine and Engineering, 277–88. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16641-0_17.
Der volle Inhalt der QuelleÇubukçu, H. Evren. „Application of X-Ray Microtomography in Pyroclastic Rocks“. In Micro-computed Tomography (micro-CT) in Medicine and Engineering, 289–302. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16641-0_18.
Der volle Inhalt der QuelleSalmon, Phil. „Application of Bone Morphometry and Densitometry by X-Ray Micro-CT to Bone Disease Models and Phenotypes“. In Micro-computed Tomography (micro-CT) in Medicine and Engineering, 49–75. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16641-0_5.
Der volle Inhalt der QuelleYang, Xiaoliang, Xuequan Wang, Zhe Pan, Jie Liu und Jiandong Luo. „Preliminary Application of CT Technology in Non-destructive Testing of Nuclear Fuel Elements“. In Springer Proceedings in Physics, 98–106. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1023-6_10.
Der volle Inhalt der QuelleFukuda, D., Y. Nara, D. Mori und K. Kaneko. „Sealing Behavior of Fracture in Cementitious Material with Micro-Focus X-Ray CT“. In Advances in Computed Tomography for Geomaterials, 148–55. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118557723.ch18.
Der volle Inhalt der QuelleNazhat Yahya und Airey David. „Applications of high speed photography and X-ray computerised tomography (Micro CT) in dynamic compaction tests“. In Deformation Characteristics of Geomaterials. IOS Press, 2011. https://doi.org/10.3233/978-1-60750-822-9-421.
Der volle Inhalt der QuelleFrost, Jovyn K. T., und Roswitha Schröder. „Atomic Force Microscopy (AFM) and X-Ray Micro-Computed Tomography (Micro-CT): Applications in Cell Wall Imaging of Softening Fruit“. In Encyclopedia of Food Chemistry, 8–14. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-08-100596-5.21680-6.
Der volle Inhalt der QuelleKikkawa N., Pender M.J., Orense R.P. und Matsushita E. „Behaviour of pumice sand during hydrostatic and K“. In Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering. IOS Press, 2009. https://doi.org/10.3233/978-1-60750-031-5-812.
Der volle Inhalt der QuelleRamaraj, Kottaimalai, Pallikonda Rajasekaran Murugan, Gautam Amiya, Vishnuvarthanan Govindaraj, Muneeswaran Vasudevan, Thirumurugan, Yu-Dong Zhang, Sheik Abdullah und Arunprasath Thiyagarajan. „Blockchain Associated Machine Learning Approach for Earlier Prognosis and Preclusion of Osteoporosis in Elderly“. In Advances in Computing Communications and Informatics, 1–24. BENTHAM SCIENCE PUBLISHERS, 2024. http://dx.doi.org/10.2174/9789815165432124070003.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "X-Ray Micro-CT (Micro-Tomography)"
Allan, Harry, Oriol Roche i Morgó, Carlos Navarrete-Leon, Yunpeng Jia und Marco Endrizzi. „Sub-second dynamic x-ray micro-CT and fast phase-sensitive multi-contrast micro-CT with a laboratory source“. In Developments in X-Ray Tomography XV, herausgegeben von Bert Müller und Ge Wang, 22. SPIE, 2024. http://dx.doi.org/10.1117/12.3028059.
Der volle Inhalt der QuelleHildebrand, Torben, Gerard B. Lemonche, Håvard J. Haugen, Goran Petrovski und Liebert P. Nogueira. „Contrast-enhanced micro-CT for visualization of cell distribution in hydrated human cornea“. In Developments in X-Ray Tomography XV, herausgegeben von Bert Müller und Ge Wang, 72. SPIE, 2024. http://dx.doi.org/10.1117/12.3026984.
Der volle Inhalt der QuelleRoche i Morgo, Oriol, Yunpeng Jia, Harry Allan, Adam Doherty, Carlos Navarrete-León, Alberto Astolfo, Licai Jiang, Joseph D. Ferrara und Marco Endrizzi. „A new user facility with flexible multi-scale, multi-contrast micro-CT capabilities“. In Developments in X-Ray Tomography XV, herausgegeben von Bert Müller und Ge Wang, 7. SPIE, 2024. http://dx.doi.org/10.1117/12.3028029.
Der volle Inhalt der QuelleHildebrand, Torben, Qianli Ma, Catherine Anne Heyward, Håvard J. Haugen und Liebert P. Nogueira. „Advanced soft tissue visualization in conjunction with bone structures using contrast-enhanced micro-CT“. In Developments in X-Ray Tomography XV, herausgegeben von Bert Müller und Ge Wang, 17. SPIE, 2024. http://dx.doi.org/10.1117/12.3027063.
Der volle Inhalt der QuelleZhang, Yibing, Yile Fang, Vigjna Abbaraju, Jeffrey N. Anker, Wenxiang Cong, Ge Wang und Changqing Li. „Oxygenation imaging of deep targets at high resolution with an x-ray luminescence micro-CT system“. In Developments in X-Ray Tomography XV, herausgegeben von Bert Müller und Ge Wang, 43. SPIE, 2024. http://dx.doi.org/10.1117/12.3027929.
Der volle Inhalt der QuelleSaites, F., G. Wang, R. Guo, K. Mannhardt und A. Kantzas. „Coalbed Characterization Studies With X-Ray Computerized Tomography (CT) and Micro CT Techniques“. In Canadian International Petroleum Conference. Petroleum Society of Canada, 2006. http://dx.doi.org/10.2118/2006-027.
Der volle Inhalt der QuelleSayama, Toshihiko, Hiroyuki Tsuritani, Kentaro Uesugi, Akira Tsuchiyama, Tsukasa Nakano, Hideyuki Yasuda, Takeshi Takayanagi und Takao Mori. „Nondestructive Evaluation of Thermal Phase Growth in Solder Ball Micro-Joints by Synchrotron Radiation X-Ray Micro-Tomography“. In ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/ipack2005-73083.
Der volle Inhalt der QuelleOrlov, Maksim Sergeevich, Pavel Valeriyevich Roschin, Ivan Aleksandrovich Struchkov und Vladimir Tarasovich Litvin. „The Application of X-ray Micro Computed Tomography (Micro-CT) of Core Sample for Estimation of Physicochemical Treatment Efficiency“. In SPE Russian Petroleum Technology Conference. Society of Petroleum Engineers, 2015. http://dx.doi.org/10.2118/176600-ms.
Der volle Inhalt der QuelleKarim, Azharul, M. M. Rahman, M. M. Billah und M. I. H. Khan. „Microstructural characterization of apple tissue during drying using X-Ray microtomography“. In 21st International Drying Symposium. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/ids2018.2018.8351.
Der volle Inhalt der QuelleTsuritani, Hiroyuki, Toshihiko Sayama, Yoshiyuki Okamoto, Takeshi Takayanagi, Kentaro Uesugi und Takso Mori. „Application of Synchrotron Radiation X-Ray Micro-Tomography to Nondestructive Evaluation of Thermal Fatigue Damage in Flip Chip Interconnects“. In ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ipack2007-33170.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "X-Ray Micro-CT (Micro-Tomography)"
Young, Steven. Imaging APO-BMI with Micro X-ray Computed Tomography (CT). Office of Scientific and Technical Information (OSTI), März 2021. http://dx.doi.org/10.2172/1772371.
Der volle Inhalt der QuelleAarle, Wim van, und Wolfgang Ludwig. X-Ray Diffraction Contrast Tomography in micro-CT Lab Source Systems. Fort Belvoir, VA: Defense Technical Information Center, Mai 2014. http://dx.doi.org/10.21236/ada604806.
Der volle Inhalt der Quelle