Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Word-for-word translations“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Word-for-word translations" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Word-for-word translations"
Urazayeva, Kuralay B. „Kazakh Translations of M. Lermontov: “Alien” Text and Word-for-Word Translation“. Journal of Siberian Federal University. Humanities & Social Sciences 9, Nr. 5 (Mai 2016): 1210–20. http://dx.doi.org/10.17516/1997-1370-2016-9-5-1210-1220.
Der volle Inhalt der QuelleHussein El-Omari, Abdallah. „Lexical Meaning Translation of the Root Word in the Holy Qur’an; the Word “KATABA” an Example“. World Journal of Educational Research 7, Nr. 4 (19.10.2020): p30. http://dx.doi.org/10.22158/wjer.v7n4p30.
Der volle Inhalt der QuelleZhang, Chun Xiang, Long Deng, Xue Yao Gao und Li Li Guo. „Word Sense Disambiguation for Improving the Quality of Machine Translation“. Advanced Materials Research 981 (Juli 2014): 153–56. http://dx.doi.org/10.4028/www.scientific.net/amr.981.153.
Der volle Inhalt der QuelleLeonavičienė, Aurelija. „Interpretation and Translation of Intertextual Meanings of Lithuanian Literature into French“. Respectus Philologicus 23, Nr. 28 (25.04.2013): 97–108. http://dx.doi.org/10.15388/respectus.2013.23.28.8.
Der volle Inhalt der QuelleDEGANI, TAMAR, und NATASHA TOKOWICZ. „Ambiguous words are harder to learn“. Bilingualism: Language and Cognition 13, Nr. 3 (19.01.2010): 299–314. http://dx.doi.org/10.1017/s1366728909990411.
Der volle Inhalt der QuelleUeffing, Nicola, und Hermann Ney. „Word-Level Confidence Estimation for Machine Translation“. Computational Linguistics 33, Nr. 1 (März 2007): 9–40. http://dx.doi.org/10.1162/coli.2007.33.1.9.
Der volle Inhalt der QuelleAl-Shalabi, Riyad, Ghassan Kanaan, Huda Al-Sarhan, Alaa Drabsh und Islam Al-Husban. „Evaluating Machine Translations from Arabic into English and Vice Versa“. International Research Journal of Electronics and Computer Engineering 3, Nr. 2 (24.06.2017): 1. http://dx.doi.org/10.24178/irjece.2017.3.2.01.
Der volle Inhalt der QuelleXiao, Richard. „Word clusters and reformulation markers in Chinese and English“. Languages in Contrast 11, Nr. 2 (30.09.2011): 145–71. http://dx.doi.org/10.1075/lic.11.2.01xia.
Der volle Inhalt der QuelleDegani, Tamar, Anat Prior, Chelsea M. Eddington, Ana B. Arêas da Luz Fontes und Natasha Tokowicz. „Determinants of translation ambiguity“. Linguistic Approaches to Bilingualism 6, Nr. 3 (25.01.2016): 290–307. http://dx.doi.org/10.1075/lab.14013.deg.
Der volle Inhalt der QuelleMalcolm, Matthew R. „Governing Imagery and the Translation of the Words philadelphia and anachusis in 1 Peter 1.22 and 4.4“. Bible Translator 70, Nr. 1 (April 2019): 9–15. http://dx.doi.org/10.1177/2051677018823042.
Der volle Inhalt der QuelleDissertationen zum Thema "Word-for-word translations"
Kotremagias, Dimitrios. „Das Funktionsverb leisten aus einer Übersetzungsperspektive : Eine kontrastive Studie deutsch-schwedischer Übersetzungen“. Thesis, Linnéuniversitetet, Institutionen för språk (SPR), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-105167.
Der volle Inhalt der QuelleÅkerström, Johanna. „Translating Song Lyrics : A Study of the Translation of the Three Musicals by Benny Andersson and Björn Ulvaeus“. Thesis, Södertörns högskola, Institutionen för kultur och kommunikation, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:sh:diva-4612.
Der volle Inhalt der QuelleUeffing, Nicola. „Word confidence measures for machine translation“. [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=97967669X.
Der volle Inhalt der QuelleCarpuat, Marine Jacinthe. „Word sense disambiguation for statistical machine translation /“. View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?CSED%202008%20CARPUA.
Der volle Inhalt der QuelleTOYAMA, Katsuhiko, Kazuhiro IMAI und Yasuhiro OGAWA. „APPLICATION OF WORD ALIGNMENT FOR SUPPORTING ENGLISH TRANSLATION OF JAPANESE STATUTES“. INTELLIGENT MEDIA INTEGRATION NAGOYA UNIVERSITY / COE, 2006. http://hdl.handle.net/2237/10410.
Der volle Inhalt der QuelleRudnick, Alexander James. „Cross-Lingual Word Sense Disambiguation for Low-Resource Hybrid Machine Translation“. Thesis, Indiana University, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=13422906.
Der volle Inhalt der QuelleThis thesis argues that cross-lingual word sense disambiguation (CL-WSD) can be used to improve lexical selection for machine translation when translating from a resource-rich language into an under-resourced one, especially when relatively little bitext is available. In CL-WSD, we perform word sense disambiguation, considering the senses of a word to be its possible translations into some target language, rather than using a sense inventory developed manually by lexicographers.
Using explicitly trained classifiers that make use of source-language context and of resources for the source language can help machine translation systems make better decisions when selecting target-language words. This is especially the case when the alternative is hand-written lexical selection rules developed by researchers with linguistic knowledge of the source and target languages, but also true when lexical selection would be performed by a statistical machine translation system, when there is a relatively small amount of available target-language text for training language models.
In this work, I present the Chipa system for CL-WSD and apply it to the task of translating from Spanish to Guarani and Quechua, two indigenous languages of South America. I demonstrate several extensions to the basic Chipa system, including techniques that allow us to benefit from the wealth of available unannotated Spanish text and existing text analysis tools for Spanish, as well as approaches for learning from bitext resources that pair Spanish with languages unrelated to our intended target languages. Finally, I provide proof-of-concept integrations of Chipa with existing machine translation systems, of two completely different architectures.
Goto, Isao. „Word Reordering for Statistical Machine Translation via Modeling Structural Differences between Languages“. 京都大学 (Kyoto University), 2014. http://hdl.handle.net/2433/189374.
Der volle Inhalt der QuelleKyoto University (京都大学)
0048
新制・課程博士
博士(情報学)
甲第18481号
情博第532号
新制||情||94(附属図書館)
31359
京都大学大学院情報学研究科知能情報学専攻
(主査)教授 黒橋 禎夫, 教授 田中 克己, 教授 河原 達也
学位規則第4条第1項該当
Esplà-Gomis, Miquel. „Using external sources of bilingual information for word-level quality estimation in translation technologies“. Doctoral thesis, Universidad de Alicante, 2016. http://hdl.handle.net/10045/54710.
Der volle Inhalt der QuelleTillmann, Christoph [Verfasser], und Hermann [Akademischer Betreuer] Ney. „Word re-ordering and dynamic programming based search algorithm for statistical machine translation / Christoph Tillmann ; Betreuer: Hermann Ney“. Aachen : Universitätsbibliothek der RWTH Aachen, 2001. http://d-nb.info/1129260615/34.
Der volle Inhalt der QuelleNgo, Ho Anh Khoa. „Generative Probabilistic Alignment Models for Words and Subwords : a Systematic Exploration of the Limits and Potentials of Neural Parametrizations“. Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASG014.
Der volle Inhalt der QuelleAlignment consists of establishing a mapping between units in a bitext, combining a text in a source language and its translation in a target language. Alignments can be computed at several levels: between documents, between sentences, between phrases, between words, or even between smaller units end when one of the languages is morphologically complex, which implies to align fragments of words (morphemes). Alignments can also be considered between more complex linguistic structures such as trees or graphs. This is a complex, under-specified task that humans accomplish with difficulty. Its automation is a notoriously difficult problem in natural language processing, historically associated with the first probabilistic word-based translation models. The design of new models for natural language processing, based on distributed representations computed by neural networks, allows us to question and revisit the computation of these alignments. This research project, therefore, aims to comprehensively understand the limitations of existing statistical alignment models and to design neural models that can be learned without supervision to overcome these drawbacks and to improve the state of art in terms of alignment accuracy
Bücher zum Thema "Word-for-word translations"
Schubert, Franz. Schubert's complete song texts: With international phonetic alphabet transcriptions, word for word translations and commentary. Geneseo, N.Y. (Box 384, Geneseo 14454): Leyerle Publications, 1996.
Den vollen Inhalt der Quelle findenStenhammar, Wilhelm. Thirty songs of Wilhelm Stenhammar: With International Phonetic Alphabet transcriptions, word-for-word translations and commentary. Geneseo, N.Y: Leyerle Publications, 1999.
Den vollen Inhalt der Quelle findenThey have a word for it: A lighthearted lexicon of untranslatable words and phrases. Los Angeles: J.P. Tarcher, 1988.
Den vollen Inhalt der Quelle findenA mechanical translation of the Book of Exodus: The Hebrew text literally translated word for word. College Station, TX: Virtualbookworm.com Pub., 2009.
Den vollen Inhalt der Quelle findenMoustafa, Elshafei, Hrsg. Cross-word modeling for Arabic speech recognition. New York, NY: Springer, 2012.
Den vollen Inhalt der Quelle findenIrma, Schotsman, und Kendrīya-Tibbatī-Ucca-Śikṣā-Saṃsthānam, Hrsg. Aśvaghoṣa's Buddhacarita: The life of Buddha : Sanskrit text with word-by-word translation, melodies for chanting and verses in English grammatical explanation. Saranath, Varanasi: Central Institute of Higher Tibetan Studies, 1995.
Den vollen Inhalt der Quelle findenSwami, Chinmayananda. Discourses on Muṇḍakopaniṣad: Original Upaniṣad text in Devanāgarī with transliteration in roman letters, word-for-word meaning in text order with translation and commentary. Mumbai: Central Chinmaya Mission Trust, 2012.
Den vollen Inhalt der Quelle findenDiscourses on Aṣṭāvakra Gītā: Original Upaniṣad text in Devanāgrī with transliteration in roman letters, word-for-word meaning in text order with translation and commentary. Mumbai: Central Chinmaya Mission Trust, 1997.
Den vollen Inhalt der Quelle findenSwami, Chinmayananda. Discourses on Māṇḍukya Upaniṣad with Gauḍapāda's Kārikā: Original Upaniṣad text in Devanāgarī with transliteration in roman letters, word-for-word meaning in text order with translation and commentary. Mumbai: Central Chinmaya Mission Trust, 2011.
Den vollen Inhalt der Quelle findenSankaracarya. Saundarya lahari of Śaṅkarācārya: Sanskrit text with English verse wise word to word translation and transliteration with the commentary of Lakshmi Dhara Sastry with Yantras for the individual hundred slokas with bijaksharas. Hyderabad: Sākhyāyana Vidyā Parishat, 1999.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Word-for-word translations"
Abutalipov, Alikhan, Aigerim Janaliyeva, Medet Mukushev, Antonio Cerone und Anara Sandygulova. „Handshape Classification in a Reverse Dictionary of Sign Languages for the Deaf“. In From Data to Models and Back, 217–26. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70650-0_14.
Der volle Inhalt der QuellePaul, Michael, Andrew Finch und Eiichiro Sumita. „Word Segmentation for Dialect Translation“. In Computational Linguistics and Intelligent Text Processing, 55–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19437-5_5.
Der volle Inhalt der QuelleCasteleiro, João, Gabriel Pereira Lopes und Joaquim Silva. „Bilingually Learning Word Senses for Translation“. In Computational Linguistics and Intelligent Text Processing, 283–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54903-8_24.
Der volle Inhalt der QuelleHe, Qiuxiang, Guoping Huang, Lemao Liu und Li Li. „Word Position Aware Translation Memory for Neural Machine Translation“. In Natural Language Processing and Chinese Computing, 367–79. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32233-5_29.
Der volle Inhalt der QuelleLi, Qiang, Dongdong Zhang, Mu Li, Tong Xiao und Jingbo Zhu. „Better Addressing Word Deletion for Statistical Machine Translation“. In Natural Language Understanding and Intelligent Applications, 91–102. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-50496-4_8.
Der volle Inhalt der QuelleDagan, I., K. Church und W. Gale. „Robust Bilingual Word Alignment for Machine Aided Translation“. In Text, Speech and Language Technology, 209–24. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2390-9_13.
Der volle Inhalt der QuelleJunczys-Dowmunt, Marcin, und Arkadiusz Szał. „SyMGiza++: Symmetrized Word Alignment Models for Statistical Machine Translation“. In Security and Intelligent Information Systems, 379–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25261-7_30.
Der volle Inhalt der QuelleLi, Qiang, Yaqian Han, Tong Xiao und Jingbo Zhu. „Context Sensitive Word Deletion Model for Statistical Machine Translation“. In Lecture Notes in Computer Science, 73–84. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69005-6_7.
Der volle Inhalt der QuelleYu, Hosang, Gil-Jin Jang und Minho Lee. „Hybridized Character-Word Embedding for Korean Traditional Document Translation“. In Neural Information Processing, 82–89. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04182-3_8.
Der volle Inhalt der QuelleKartbayev, Amandyk. „Learning Word Alignment Models for Kazakh-English Machine Translation“. In Lecture Notes in Computer Science, 326–35. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25135-6_31.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Word-for-word translations"
Meng, Fandong, Zhaopeng Tu, Yong Cheng, Haiyang Wu, Junjie Zhai, Yuekui Yang und Di Wang. „Neural Machine Translation with Key-Value Memory-Augmented Attention“. In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/357.
Der volle Inhalt der QuelleChen, Shizhe, Qin Jin und Jianlong Fu. „From Words to Sentences: A Progressive Learning Approach for Zero-resource Machine Translation with Visual Pivots“. In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/685.
Der volle Inhalt der QuelleShmelev, A. D. „LANGUAGE-SPECIFIC WORDS IN THE LIGHT OF TRANSLATION: THE RUSSIAN TOSKA“. In International Conference on Computational Linguistics and Intellectual Technologies "Dialogue". Russian State University for the Humanities, 2020. http://dx.doi.org/10.28995/2075-7182-2020-19-658-669.
Der volle Inhalt der QuelleZhao, Yang, Yining Wang, Jiajun Zhang und Chengqing Zong. „Phrase Table as Recommendation Memory for Neural Machine Translation“. In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/641.
Der volle Inhalt der QuelleXu, Hongfei, Josef van Genabith, Qiuhui Liu und Deyi Xiong. „Probing Word Translations in the Transformer and Trading Decoder for Encoder Layers“. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA, USA: Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.naacl-main.7.
Der volle Inhalt der QuelleIsozaki, Hideki, Natsume Kouchi und Tsutomu Hirao. „Dependency-based Automatic Enumeration of Semantically Equivalent Word Orders for Evaluating Japanese Translations“. In Proceedings of the Ninth Workshop on Statistical Machine Translation. Stroudsburg, PA, USA: Association for Computational Linguistics, 2014. http://dx.doi.org/10.3115/v1/w14-3335.
Der volle Inhalt der QuelleXing, Chao, Dong Wang, Chao Liu und Yiye Lin. „Normalized Word Embedding and Orthogonal Transform for Bilingual Word Translation“. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA, USA: Association for Computational Linguistics, 2015. http://dx.doi.org/10.3115/v1/n15-1104.
Der volle Inhalt der QuelleZens, Richard, und Hermann Ney. „Word graphs for statistical machine translation“. In the ACL Workshop. Morristown, NJ, USA: Association for Computational Linguistics, 2005. http://dx.doi.org/10.3115/1654449.1654491.
Der volle Inhalt der QuelleSchroeder, Josh, Trevor Cohn und Philipp Koehn. „Word lattices for multi-source translation“. In the 12th Conference of the European Chapter of the Association for Computational Linguistics. Morristown, NJ, USA: Association for Computational Linguistics, 2009. http://dx.doi.org/10.3115/1609067.1609147.
Der volle Inhalt der QuelleVickrey, David, Luke Biewald, Marc Teyssier und Daphne Koller. „Word-sense disambiguation for machine translation“. In the conference. Morristown, NJ, USA: Association for Computational Linguistics, 2005. http://dx.doi.org/10.3115/1220575.1220672.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Word-for-word translations"
Diab, Mona, und Steve Finch. A Statistical Word-Level Translation Model for Comparable Corpora. Fort Belvoir, VA: Defense Technical Information Center, Juni 2000. http://dx.doi.org/10.21236/ada455144.
Der volle Inhalt der QuelleYatsymirska, Mariya. KEY IMPRESSIONS OF 2020 IN JOURNALISTIC TEXTS. Ivan Franko National University of Lviv, März 2021. http://dx.doi.org/10.30970/vjo.2021.50.11107.
Der volle Inhalt der Quelle