Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Wireless Radio Channel“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Wireless Radio Channel" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Wireless Radio Channel"
Dai, Yuan-Kao, Li-Hsing Yen und Jia-Wei Su. „Toward an Access Infrastructure for Mobile Cloud“. International Journal of Grid and High Performance Computing 5, Nr. 3 (Juli 2013): 6–19. http://dx.doi.org/10.4018/jghpc.2013070102.
Der volle Inhalt der QuelleHeider, Inaam Abbas. „Improvement of Fading Channel Modeling Performance for Wireless Channel“. International Journal of Electrical and Computer Engineering (IJECE) 8, Nr. 3 (01.06.2018): 1451. http://dx.doi.org/10.11591/ijece.v8i3.pp1451-1459.
Der volle Inhalt der QuelleNing, Zhao Long, Yu Huai Peng und Lei Guo. „Performance Comparison for Routing Protocols in Multi-Radio Multi-Channel Multi-Hop Wireless Networks“. Advanced Materials Research 433-440 (Januar 2012): 5107–12. http://dx.doi.org/10.4028/www.scientific.net/amr.433-440.5107.
Der volle Inhalt der QuelleSkvarnik, I. S., A. A. Shmakov, A. N. Shentyabin und I. V. Minin. „AUTOMATIC DEVICE FOR REAL–TIME SWITCHING TO RESERVE RADIO CHANNEL“. Issues of radio electronics, Nr. 5 (08.06.2019): 39–47. http://dx.doi.org/10.21778/2218-5453-2019-5-39-47.
Der volle Inhalt der QuelleYang, Yong, Yu Liang Li und Jing Li. „Radio Channel Research in Coal Mine Laneways“. Advanced Materials Research 605-607 (Dezember 2012): 2222–26. http://dx.doi.org/10.4028/www.scientific.net/amr.605-607.2222.
Der volle Inhalt der QuelleKim, Tae-Sung, Sok-Hyong Kim, Bo-Kyum Kim und Young-Yong Kim. „Exploiting Multiple Channels for Low Latency and Semireliable Broadcasting in Cognitive Wireless Sensor Networks“. International Journal of Distributed Sensor Networks 2015 (2015): 1–16. http://dx.doi.org/10.1155/2015/241208.
Der volle Inhalt der QuelleA. Rida, Jafaar Fahad. „Improvement for performance radio frequency in wireless communication based on impulse signal“. Indonesian Journal of Electrical Engineering and Computer Science 18, Nr. 2 (01.05.2020): 903. http://dx.doi.org/10.11591/ijeecs.v18.i2.pp903-916.
Der volle Inhalt der QuelleKhan, Mohammad Monirujjaman, Qammer H. Abbasi, Akram Alomainy und Yang Hao. „Performance of Ultrawideband Wireless Tags for On-Body Radio Channel Characterisation“. International Journal of Antennas and Propagation 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/232564.
Der volle Inhalt der QuelleWu, Chien-Min, Yen-Chun Kao und Kai-Fu Chang. „A Multichannel MAC Protocol for IoT-enabled Cognitive Radio Ad Hoc Networks“. Advances in Technology Innovation 5, Nr. 1 (01.01.2020): 45–55. http://dx.doi.org/10.46604/aiti.2020.3946.
Der volle Inhalt der QuelleBo, Ai, Thomas Kürner, César Briso Rodríguez und Hsiao-Chun Wu. „Radio Wave Propagation and Wireless Channel Modeling“. International Journal of Antennas and Propagation 2013 (2013): 1–3. http://dx.doi.org/10.1155/2013/835160.
Der volle Inhalt der QuelleDissertationen zum Thema "Wireless Radio Channel"
Hunter, Brandon Rosel. „Channel probing for an indoor wireless communications channel /“. Diss., CLICK HERE for online access, 2003. http://contentdm.lib.byu.edu/ETD/image/etd196.pdf.
Der volle Inhalt der QuelleNaveed, Anjum Computer Science & Engineering Faculty of Engineering UNSW. „Channel assignment in multi-radio multi-channel wireless mesh networks“. Awarded by:University of New South Wales. Computer Science & Engineering, 2008. http://handle.unsw.edu.au/1959.4/41500.
Der volle Inhalt der QuelleAmiri, Nehzad Maryam. „Channel assignment protocols for multi-radio multi-channel wireless mesh netwworks“. Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/104156.
Der volle Inhalt der QuelleXing, Zitong. „A dynamic radio channel allocation scheme for WLANs“. Diss., Online access via UMI:, 2005.
Den vollen Inhalt der Quelle findenSng, Sin Hie. „Radio channel modeling for mobile ad hoc wireless networks“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Jun%5FSng.pdf.
Der volle Inhalt der QuelleThesis advisor(s): Murali Tummala, Roberto Cristi. Includes bibliographical references (p. 71). Also available online.
Al-Wajeeh, Taha. „Efficient radio channel modeling for urban wireless sensors networks“. Thesis, Poitiers, 2018. http://www.theses.fr/2018POIT2314.
Der volle Inhalt der QuelleModeling the radio channel in an accurate way is a key element of any wireless systems. Deterministic models offer a good degree of precision at the cost of high computational complexity, which is prohibitive for wireless sensor network (WSN) simulators because they involve many sensor nodes in a city-wide scale. Within this context, the objective of this thesis is to propose efficient, fast, and accurate deterministic methods for modeling electromagnetic waves by finding the best time-accuracy trade-offs that guarantee accuracy under tight time constraints. The study was first subdivided into two modes according to the dominant propagation mechanism. In microcell configurations, the proposed approach is a ray-tracing model based on the visibility technique. It adopts a set of acceleration techniques to reduce the complexity with a minimal loss of precision. With the same objective, the vertical propagation was addressed to include the most significant contributions. Finally, these models were integrated into a WSN simulator to provide realistic and accurate results for smart city applications. The importance of using accurate models in WSN simulators is illustrated in terms of some network parameters
Randle, Andrew Martin. „Dynamic radio channel effects from L-band foliage scatter“. Thesis, University of York, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341630.
Der volle Inhalt der QuelleAndreu, Estellés Carlos. „UWB radio channel and diversity characterization for wireless implanted devices“. Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/111836.
Der volle Inhalt der QuelleWireless Body Area Networks allow the interconnection between independent nodes located either inside or over the body skin or further. Regarding in-body communications, establishing a proper link with a capsule endoscope or with a pacemaker are examples of technological advances achieved in the last decades. In spite of these healthcare developments, current standards for these kind of communications do not allow high data rate wireless connections, which are common in the current telecommunication services. UWB systems have emerged as a potential solution for future wireless in-body communications. Nevertheless, the main drawback of UWB for in-body applications is the high attenuation of human body tissues which increases dramatically with the increment of frequency. Hence, an accurate UWB in-body channel characterization is relevant in order validate UWB frequency band as the best candidate for future networks of implantable nodes. This thesis is devoted to test UWB technology for in-body communications from an experimental point of view. To achieve this goal, a novel spatial phantom-based measurement setup is used in several in-body propagation scenarios. Thus, the losses in the propagation medium and the channel diversity are checked in a reliable way. In order to check the values obtained in laboratory, they are compared and discussed with those obtained in an in vivo experiment. On the other hand, new UWB antenna candidates for inbody communications are designed and manufactured by using typical and new miniaturization and antenna optimization techniques for this purpose. Finally, diversity-based techniques are used to improve the performance of the propagation channel in two different in-body scenarios.
Les xarxes d'àrea corporal permeten la interconnexió de nodes independents situats, o bé dins, o bé sobre la pell, o inclús allunyats del propi cos. Pel que fa a les comunicacions intracorporals, l'establiment d'un bon enllaç amb una càpsula endoscòpica o amb un marcapassos, són exemples dels avanços tecnològics aconseguits les darreres dècades. A pesar d'aquests desenvolupaments en assistència sanitària, els estàndards actuals per a aquests tipus de comunicacions no permeten connexions sense fil d'alta velocitat de transmissió, que són habituals als serveis actuals de telecomunicacions. Els sistemes UWB han sorgit com una solució potencial per a les futures comunicacions sense fill intracorporals. No obstant, el principal obstacle de la tecnologia UWB per a les aplicacions intracorporals és l'alta atenuació dels teixits del cos humà, que augmenta dràsticament amb l'increment de freqüència. Per tant, és important una caracterització acurada del canal UWB intracorporal a l'hora de validar la banda de freqüència UWB com a la millor candidata per a les futures xarxes de nodes implantats.Aquesta tesi se centra en l'anàlisi de la tecnologia UWB per a comunicacions intracorporals des d'un punt de vista experimental. Per a aconseguir aquest objectiu s'ha emprat un sistema novedós de mesures experimentals, basat en fantomes, en diversos escenaris de propagació intracorporal. D'aquesta manera es poden comprovar les pèrdues de propagació en el medi i la diversitat del canal d'una forma fiable. Per tal d'avaluar els valors obtinguts al laboratori, s'han comparat i analitzat amb aquells obtinguts en un experiment in vivo. Per altra banda, s'han dissenyat i fabricat noves antenes UWB candidates per a comunicacions intracorporals emprant tècniques típiques i noves de miniaturització i optimització d'antenes per a aquest propòsit. Finalment s'han usat tècniques basades en diversitat per a millorar el rendiment del canal de propagació en dos escenaris intracorporals diferents.
Andreu Estellés, C. (2018). UWB radio channel and diversity characterization for wireless implanted devices [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/111836
TESIS
Yoon, Suk-Un. „Dynamic Radio Resource Allocation in Wireless Sensor and Cognitive Radio Networks“. The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1259768264.
Der volle Inhalt der QuelleSong, Liying Tugnait Jitendra K. „Channel estimation and equalization for doubly-selective channels using basis expansion models“. Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SPRING/Electrical_and_Computer_Engineering/Dissertation/Song_Liying_29.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Wireless Radio Channel"
Brown, Tim. Practical guide to the MIMO radio channel with MATLAB examples. Chichester, West Sussex, U.K: Wiley, 2012.
Den vollen Inhalt der Quelle findenP, Mariño-Espiñeira, Hrsg. Modeling the wireless propagation channel: A simulation approach with Matlab. Chichester, West Sussex, England: Wiley, 2008.
Den vollen Inhalt der Quelle findenMatthias, Pätzold. Mobile radio channels. 2. Aufl. Chichester, West Sussex, U.K: Wiley, 2012.
Den vollen Inhalt der Quelle findenRadio Channel Modeling for Mobile Ad Hoc Wireless Networks. Storming Media, 2004.
Den vollen Inhalt der Quelle findenRobert, Leese, und Hurley Stephen, Hrsg. Methods and algorithms for radio channel assignment. Oxford: Oxford University Press, 2002.
Den vollen Inhalt der Quelle findenSalous, Sana. Radio Propagation Measurement and Channel Modelling. Wiley & Sons, Incorporated, John, 2013.
Den vollen Inhalt der Quelle findenSalous, Sana. Radio Propagation Measurement and Channel Modelling. Wiley & Sons, Incorporated, John, 2013.
Den vollen Inhalt der Quelle findenRadio Propagation Measurement And Channel Modelling. John Wiley & Sons, 2013.
Den vollen Inhalt der Quelle finden(Editor), Robert Leese, und Stephen Hurley (Editor), Hrsg. Methods and Algorithms for Radio Channel Assignment (Oxford Lecture Series in Mathematics and Its Applications, 23). Oxford University Press, USA, 2002.
Den vollen Inhalt der Quelle findenMarconi and Tesla: Pioneers of Radio Communication (Inventors Who Changed the World). Myreportlinks.com, 2008.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Wireless Radio Channel"
Chen, Yingying, Wenyuan Xu, Wade Trappe und Yanyong Zhang. „Channel Surfing: Defending Wireless Networks against Radio Interference“. In Securing Emerging Wireless Systems, 1–32. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-88491-2_12.
Der volle Inhalt der QuelleLiu, Xin, Guoan Bi, Rui Lin und Yong Liang Guan. „Optimal Joint Sensing Threshold and Sub-channel Power Allocation in Multi-channel Cognitive Radio“. In Wired/Wireless Internet Communication, 251–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38401-1_20.
Der volle Inhalt der QuelleJing, Tao, Hongbin Shi, Yan Huo, Liran Ma und Zhipeng Cai. „A Novel Channel Assignment Scheme for Multi-radio Multi-channel Wireless Mesh Networks“. In Wireless Algorithms, Systems, and Applications, 261–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23490-3_24.
Der volle Inhalt der QuelleZhong, Zhang-Dui, Bo Ai, Gang Zhu, Hao Wu, Lei Xiong, Fang-Gang Wang, Lei Lei, Jian-Wen Ding, Ke Guan und Rui-Si He. „Radio Propagation and Wireless Channel for Railway Communications“. In Advances in High-speed Rail Technology, 57–123. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54860-8_3.
Der volle Inhalt der Quelleda Costa, Gustavo Wagner Oliveira, Andrea Fabio Cattoni, Preben E. Mogensen und Luiz A. da Silva. „Dynamic Channel Selection for Cognitive Femtocells“. In Cognitive Radio and Networking for Heterogeneous Wireless Networks, 151–80. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-01718-1_5.
Der volle Inhalt der QuelleShi, Weijie, Qiang-Sheng Hua, Dongxiao Yu, Yuexuan Wang und Francis C. M. Lau. „Efficient Information Exchange in Single-Hop Multi-Channel Radio Networks“. In Wireless Algorithms, Systems, and Applications, 438–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31869-6_38.
Der volle Inhalt der QuelleHorikawa, Izumi, Masahiko Hirono und Kazushige Tanaka. „Radio Channel Control for A Multi-Carrier TDMA Microcell System“. In Third Generation Wireless Information Networks, 155–62. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-4012-0_10.
Der volle Inhalt der QuelleArakawa, Kensuke, Yasushi Ichikawa und Yuko Murayama. „A Novel Internet Radio Service for Personal Communications; The Private Channel Service“. In Mobile and Wireless Communications, 79–86. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-0-387-35618-1_10.
Der volle Inhalt der QuelleZander, Jens. „Transmitter Power Control for Co-channel Interference Management in Cellular Radio Systems“. In Wireless and Mobile Communications, 161–75. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2716-9_11.
Der volle Inhalt der QuelleYekeh Yazdandoost, Kamya. „A Radio Channel Model for In-body Wireless Communications“. In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 88–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29734-2_13.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Wireless Radio Channel"
Jiao, Lei, Vicent Pla und Frank Y. Li. „Analysis on channel bonding/aggregation for multi-channel cognitive radio networks“. In 2010 European Wireless Conference (EW). IEEE, 2010. http://dx.doi.org/10.1109/ew.2010.5483492.
Der volle Inhalt der QuelleOmar, Abbas, und Ali Ramadan Ali. „Adaptive channel characterization for wireless communication“. In 2008 IEEE Radio and Wireless Symposium. IEEE, 2008. http://dx.doi.org/10.1109/rws.2008.4463549.
Der volle Inhalt der QuelleAli, A. R., A. A. Ali und A. S. Omar. „A multistage channel estimation and ICI reduction method for OFDM systems in doubly dispersive channels“. In 2006 IEEE Radio and Wireless Symposium. IEEE, 2006. http://dx.doi.org/10.1109/rws.2006.1615085.
Der volle Inhalt der QuelleLaw, K. L. Eddie, und Wing-Chung Hung. „Channel control for multi-radio multi-channel wireless mesh networks“. In the 3nd ACM workshop. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1454630.1454654.
Der volle Inhalt der QuelleMa, Liangping, und Chien-Chung Shen. „Optimal channel assignment for multi-channel multi-radio wireless networks“. In MILCOM 2008 - 2008 IEEE Military Communications Conference (MILCOM). IEEE, 2008. http://dx.doi.org/10.1109/milcom.2008.4753576.
Der volle Inhalt der QuelleMatolak, David W., Susheel Bokdia Rajendar und Qian Zhang. „Modeling wireless channel delay spread trends“. In 2009 IEEE Radio and Wireless Symposium (RWS). IEEE, 2009. http://dx.doi.org/10.1109/rws.2009.4957341.
Der volle Inhalt der QuelleHaq, Aftabul, Anjum Naveed und Salil S. Kanhere. „Securing Channel Assignment in Multi-Radio Multi-Channel Wireless Mesh Networks“. In 2007 IEEE Wireless Communications and Networking Conference. IEEE, 2007. http://dx.doi.org/10.1109/wcnc.2007.575.
Der volle Inhalt der QuelleBurstrom, Per, Sorour Falahati und Arne Simonsson. „Uplink Control Channel in E-UTRA, Radio Link and Radio Network Evaluation“. In 2008 IEEE Wireless Communications and Networking Conference. IEEE, 2008. http://dx.doi.org/10.1109/wcnc.2008.153.
Der volle Inhalt der QuelleChang-Shen Lee, Wei-Ho Chung und Ta-Sung Lee. „Distributed channel access schemes for multi-channel ALOHA cognitive radio networks“. In 2015 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2015. http://dx.doi.org/10.1109/wcnc.2015.7127627.
Der volle Inhalt der QuelleJun Xu, Chengcheng Guo und Jianfeng Yang. „Interference-aware greedy channel assignment in multi-radio multi-channel WMN“. In 2016 25th Wireless and Optical Communication Conference (WOCC). IEEE, 2016. http://dx.doi.org/10.1109/wocc.2016.7506596.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Wireless Radio Channel"
Bhandari, Vartika, und Nitin H. Vaidya. Channel and Interface Management in a Heterogeneous Multi-Channel Multi-Radio Wireless Network. Fort Belvoir, VA: Defense Technical Information Center, März 2009. http://dx.doi.org/10.21236/ada555113.
Der volle Inhalt der QuelleWu, Fan, Vijay Raman und Nitin Vaidya. A Channel Assignment Algorithm for Opportunistic Routing in Multichannel, Multi-Radio Wireless Mesh Networks. Fort Belvoir, VA: Defense Technical Information Center, November 2010. http://dx.doi.org/10.21236/ada555031.
Der volle Inhalt der Quelle