Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Wing test“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Wing test" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Wing test"
Heryawan, Yudi, Hoon Cheol Park, Nam Seo Goo, Kwang Joon Yoon und Yung Hwan Byun. „Structural Design, Manufacturing, and Wind Tunnel Test of a Small Expandable Wing“. Key Engineering Materials 306-308 (März 2006): 1157–62. http://dx.doi.org/10.4028/www.scientific.net/kem.306-308.1157.
Der volle Inhalt der QuelleSiliang, Du, und Tang Zhengfei. „The Aerodynamic Behavioral Study of Tandem Fan Wing Configuration“. International Journal of Aerospace Engineering 2018 (30.10.2018): 1–14. http://dx.doi.org/10.1155/2018/1594570.
Der volle Inhalt der QuelleTeo, Z. W., T. H. New, Shiya Li, T. Pfeiffer, B. Nagel und V. Gollnick. „Wind tunnel testing of additive manufactured aircraft components“. Rapid Prototyping Journal 24, Nr. 5 (09.07.2018): 886–93. http://dx.doi.org/10.1108/rpj-06-2016-0103.
Der volle Inhalt der QuelleTsushima, Natsuki, Kenichi Saitoh, Hitoshi Arizono und Kazuyuki Nakakita. „Structural and Aeroelastic Studies of Wing Model with Metal Additive Manufacturing for Transonic Wind Tunnel Test by NACA 0008 Example“. Aerospace 8, Nr. 8 (25.07.2021): 200. http://dx.doi.org/10.3390/aerospace8080200.
Der volle Inhalt der QuelleRogalla, Svana, Liliana D'Alba, Ann Verdoodt und Matthew D. Shawkey. „Hot wings: thermal impacts of wing coloration on surface temperature during bird flight“. Journal of The Royal Society Interface 16, Nr. 156 (Juli 2019): 20190032. http://dx.doi.org/10.1098/rsif.2019.0032.
Der volle Inhalt der QuelleZafirov, Dimo, und Hristian Panayotov. „Joined-wing test bed UAV“. CEAS Aeronautical Journal 6, Nr. 1 (07.10.2014): 137–47. http://dx.doi.org/10.1007/s13272-014-0134-z.
Der volle Inhalt der QuelleKumar, G. C. Vishnu, und M. Rahamath Juliyana. „Design and Analysis of Flapping Wing“. Applied Mechanics and Materials 110-116 (Oktober 2011): 3495–99. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.3495.
Der volle Inhalt der QuelleKhaghaninia, S., S. Mohammadi, A. Srafrazi, K. Nejad und R. Zahiri. „Geometric Morphometric Study on Geographic Dimorphism of Coding Moth Cydia Pomonella (Lepidoptera, Tortricidae) from North West of Iran“. Vestnik Zoologii 45, Nr. 5 (01.01.2011): e-20-e-28. http://dx.doi.org/10.2478/v10058-011-0028-z.
Der volle Inhalt der QuelleStreit, T., und C. Hoffrogge. „DLR transonic inverse design code, extensions and modifications to increase versatility and robustness“. Aeronautical Journal 121, Nr. 1245 (11.10.2017): 1733–57. http://dx.doi.org/10.1017/aer.2017.101.
Der volle Inhalt der QuelleZhang, Ming Lu, Yi Ren Yang und Zhi Yong Lu. „Unsteady Characteristics over Dynamic Delta Wings“. Applied Mechanics and Materials 128-129 (Oktober 2011): 350–53. http://dx.doi.org/10.4028/www.scientific.net/amm.128-129.350.
Der volle Inhalt der QuelleDissertationen zum Thema "Wing test"
Dwyer, William P. (William Patrick). „Measurement of flow boundary condition data and wing pressures in a wind tunnel test of a 45 deg swept wing“. Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/42182.
Der volle Inhalt der QuelleWestin, Michelle Fernandino. „Aeroelastic modeling and experimental analysis of a flexible wing for wind tunnel flutter test“. Instituto Tecnológico de Aeronáutica, 2010. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1121.
Der volle Inhalt der QuelleGroenewald, Stephanus. „Development of a rotary-wing test bed for autonomous flight“. Thesis, Stellenbosch : University of Stellenbosch, 2006. http://hdl.handle.net/10019.1/2814.
Der volle Inhalt der QuelleThis project developed a low-cost avionics system for a miniature helicopter to be used for research in the field of autonomous flight (UAVs). Previous work was done on a small, electrically powered helicopter with some success, but the overall conclusion was that the vehicle was underpowered. A new vehicle, the Miniature Aircraft X−Cell, was chosen for its ability to lift a larger payload, and previous work done with it by a number of other institutions. An expandable architecture was designed to allow sensors and actuators to be arbitrarily added to the system, based on the CAN standard. A CAN sensor node was developed that could digitize 12 channels at up to 16 bit resolution and do basic filtering of the data. Onboard computing was provided by a PC/104 based computer running Linux, with additional hardware added to interface with the CAN bus and assist with timing. A simulation environment for the helicopter was evaluated and shown to provide a good test bed for the control of the helicopter. Finally, the avionics was used during piloted test-flights to measure data and judge the performance of both the modified helicopter and the electronics itself.
Eger, Charles Alfred Gaitan. „Design of a Scaled Flight Test Vehicle Including Linear Aeroelastic Effects“. Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/23088.
Der volle Inhalt der QuelleMaster of Science
Smith, Todd J. „Development, Design, Manufacture and Test of Flapping Wing Micro Aerial Vehicles“. Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1484659431737526.
Der volle Inhalt der QuelleZientarski, Lauren Ann. „Wind Tunnel Testing of a Variable Camber Compliant Wing with a Unique Dual Load Cell Test Fixture“. University of Dayton / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1448893315.
Der volle Inhalt der QuelleGarnand-Royo, Jeffrey Samuel. „Design and Evaluation of Geometric Nonlinearities using Joined-Wing SensorCraft Flight Test Article“. Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/23234.
Der volle Inhalt der QuelleMaster of Science
Brooks, W. G. „The design, construction and test of a postbuckled, carbon fibre reinforced plastic wing box“. Thesis, Cranfield University, 1987. http://hdl.handle.net/1826/3292.
Der volle Inhalt der QuelleDi, Nicola Federico. „Energy harvesting from piezoelectric devices embedded in a 3D printed wing“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9705/.
Der volle Inhalt der QuelleAarons, Tyler David. „Development and Implementation of a Flight Test Program for a Geometrically Scaled Joined Wing SensorCraft Remotely Piloted Vehicle“. Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/36383.
Der volle Inhalt der QuelleMaster of Science
Bücher zum Thema "Wing test"
Goodyer, M. J. A swept wing panel in a low speed flexible walled test section. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1988.
Den vollen Inhalt der Quelle findenGoodyer, M. J. A swept wing panel in a low speed flexible walled test section. Hampton, Va: Langley Research Center, 1987.
Den vollen Inhalt der Quelle findenC, Wilson John. Wind tunnel test results of a 1/8-scale fan-in-wing model. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Den vollen Inhalt der Quelle findenPhelps, Arthur E. Description of the U.S. Army small-scale 2-meter rotor test system. Hampton, Va: Langley Research Center, 1987.
Den vollen Inhalt der Quelle findenLance, Michael B. Low-speed wind-tunnel test of an unpowered high-speed stoppable rotor concept in fixed-wing mode. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1991.
Den vollen Inhalt der Quelle findenLance, Michael B. Low-speed wind-tunnel test of an unpowered high-speed stoppable rotor concept in fixed-wing mode. Hampton, Va: Langley Research Center, 1991.
Den vollen Inhalt der Quelle findenYip, Long P. Static wind-tunnel and radio-controlled flight test investigation of a remotely piloted vehicle having a delta wing planform. Hampton, Va: Langley Research Center, 1990.
Den vollen Inhalt der Quelle findenYip, Long P. Static wind-tunnel and radio-controlled flight test investigation of a remotely piloted vehicle having a delta wing planform. Hampton, Va: Langley Research Center, 1990.
Den vollen Inhalt der Quelle findenLarson, Richard R. Flight control system development and flight test experience with the F-111 mission adaptive wing aircraft. Edwards, Calif: National Aeronautics and Space Administration, Ames Research Center, Dryden Flight Research Facility, 1986.
Den vollen Inhalt der Quelle findenMacKinnon, A. Wind tunnel tests on a variable camber wing. Cranfield, Bedford, England: College of Aeronautics, Cranfield University, 1993.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Wing test"
Liu, Jihai, Yingsong Gu, Ke Xie und Pengtao Shi. „Flutter Modeling, Analysis and Test for Blended-Wing-Body Flying Wing“. In Lecture Notes in Electrical Engineering, 979–84. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3305-7_78.
Der volle Inhalt der QuelleFu, Zhichao, und Ziqiang Liu. „Nonlinear Flutter Test of a Very Flexible Wing“. In Lecture Notes in Electrical Engineering, 2627–40. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3305-7_211.
Der volle Inhalt der QuelleHeryawan, Yudi, Hoon Cheol Park, Nam Seo Goo, Kwang Joon Yoon und Yung Hwan Byun. „Structural Design, Manufacturing, and Wind Tunnel Test of a Small Expandable Wing“. In Fracture and Strength of Solids VI, 1157–62. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-989-x.1157.
Der volle Inhalt der QuelleStreit, Thomas, Heiko Geyr von Schweppenburg, David Cruz und Rafael Sanchez. „DLR Feasibility Study of HLFC Wing Designs for S1MA Wind Tunnel Test“. In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 235–45. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79561-0_23.
Der volle Inhalt der QuelleZárate, José, und Hartmut Witte. „Design and Control of a Flapping Wing System Test Bench“. In Advances in Service and Industrial Robotics, 34–42. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19648-6_5.
Der volle Inhalt der QuelleNiu, Peixing, Yu Zheng, Xu Zeng und Xiaoguang Li. „Design and Flight Test Validation of a Rotor/Fixed-Wing UAV“. In Lecture Notes in Electrical Engineering, 1566–75. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3305-7_125.
Der volle Inhalt der QuelleRenson, L., J. P. Noël, D. A. W. Barton, S. A. Neild und G. Kerschen. „Nonlinear Phase Separation Testing of an Experimental Wing-Engine Structure“. In Rotating Machinery, Hybrid Test Methods, Vibro-Acoustics & Laser Vibrometry, Volume 8, 115–17. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54648-3_12.
Der volle Inhalt der QuelleSpivey, Natalie, Rachel Saltzman, Carol Wieseman, Kevin Napolitano und Benjamin Smith. „Passive Aeroelastic Tailored Wing Modal Test Using the Fixed Base Correction Method“. In Topics in Modal Analysis & Testing, Volume 8, 61–83. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47717-2_7.
Der volle Inhalt der QuelleKim, Nak-Hwe, und Jun-Ho Huh. „Designing 3D Propeller by Applying Bird’s Wing and Making a Test Product“. In Lecture Notes in Electrical Engineering, 811–17. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1328-8_106.
Der volle Inhalt der QuelleRuiterkamp, Richard, und Sören Sieberling. „Description and Preliminary Test Results of a Six Degrees of Freedom Rigid Wing Pumping System“. In Airborne Wind Energy, 443–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39965-7_26.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Wing test"
Scherer, Lewis B., Christopher A. Martin, Kari Appa, Jayanth N. Kudva und Mark N. West. „Smart wing wind tunnel test results“. In Smart Structures and Materials '97, herausgegeben von Janet M. Sater. SPIE, 1997. http://dx.doi.org/10.1117/12.274694.
Der volle Inhalt der QuelleReichenbach, Eric, Mark Castelluccio und Bradley Sexton. „Joined Wing Sensorcraft Aeroservoelastic Wind Tunnel Test Program“. In 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-1956.
Der volle Inhalt der QuelleBritt, Robert, Daniel Ortega, John Mc Tigue und Matthew Scott. „Wind Tunnel Test of a Very Flexible Aircraft Wing“. In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
20th AIAA/ASME/AHS Adaptive Structures Conference
14th AIAA. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-1464.
Begnini, Guilherme R., Carlos A. Bones und Cleber Spode. „Transonic Wind Tunnel Test of Wing Oscillating in Pitch“. In 2018 Applied Aerodynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-3004.
Der volle Inhalt der QuelleGoizueta, Norberto, Ariel Drachinsky, Andrew Wynn, Daniella E. Raveh und Rafael Palacios. „Flutter predictions for very flexible wing wind tunnel test“. In AIAA Scitech 2021 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2021. http://dx.doi.org/10.2514/6.2021-1711.
Der volle Inhalt der QuelleHICKS, JOHN, und BRYAN MOULTON. „Effects of maneuver dynamics on drag polars of the X-29A forward-swept-wing aircraft with automatic wing camber control“. In 4th Flight Test Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-2144.
Der volle Inhalt der QuelleYokozeki, Tomohiro, Aya Sugiura und Yoshiyasu Hirano. „Development and Wind Tunnel Test of Variable Camber Morphing Wing“. In 22nd AIAA/ASME/AHS Adaptive Structures Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-1261.
Der volle Inhalt der QuelleScherer, Lewis B., C. A. Martin, Brian P. Sanders, Mark N. West, Jennifer L. Pinkerton-Florance, Carol D. Wieseman, Alpheus W. Burner und Gary A. Fleming. „DARPA/AFRL Smart Wing Phase 2 wind tunnel test results“. In SPIE's 9th Annual International Symposium on Smart Structures and Materials, herausgegeben von Anna-Maria R. McGowan. SPIE, 2002. http://dx.doi.org/10.1117/12.475104.
Der volle Inhalt der QuelleScherer, Lewis B., Christopher A. Martin, Mark N. West, Jennifer P. Florance, Carol D. Wieseman, Alpheus W. Burner und Gary A. Fleming. „DARPA/ARFL/NASA Smart Wing second wind tunnel test results“. In 1999 Symposium on Smart Structures and Materials, herausgegeben von Jack H. Jacobs. SPIE, 1999. http://dx.doi.org/10.1117/12.351563.
Der volle Inhalt der QuelleBONNEMA, KENNETH, und STEPHEN SMITH. „AFTI/F-111 Mission Adaptive Wing flight research program“. In 4th Flight Test Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-2118.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Wing test"
Mertaugh, Lawrence J. Naval Rotary Wing Aircraft Flight Test Squadron Flight Test Approval Process. Fort Belvoir, VA: Defense Technical Information Center, Januar 1998. http://dx.doi.org/10.21236/ada350674.
Der volle Inhalt der QuelleCALS TEST NETWORK WRIGHT-PATTERSON AFB OH. Technical Raster Transfer Using: 4950th/Test Wing/AMIS' DATA MIL-R-28002A (Raster) Quick Short Test Report. Fort Belvoir, VA: Defense Technical Information Center, August 1993. http://dx.doi.org/10.21236/ada312302.
Der volle Inhalt der QuelleAlmanza, Joe, Lynn Thompson und Mary Kruck. ADST System Test Report for the Rotary Wing Aircraft Airnet Aeromodel and Weapon Model Merge with the ATAC 2 Baseline. Fort Belvoir, VA: Defense Technical Information Center, Januar 1994. http://dx.doi.org/10.21236/ada281580.
Der volle Inhalt der QuelleKIRK WINTERHOLLER. HWMA/RCRA CLOSURE PLAN FOR THE MATERIALS TEST REACTOR WING (TRA-604) LABORATORY COMPONENTS VOLUNTARY CONSENT ORDER ACTION PLAN VCO-5.8 D REVISION2. Office of Scientific and Technical Information (OSTI), Februar 2008. http://dx.doi.org/10.2172/924724.
Der volle Inhalt der QuelleGhee, Terence A., und Nigel J. Taylor. Low-Speed Wind Tunnel Tests on a Diamond Wing High Lift Configuration. Fort Belvoir, VA: Defense Technical Information Center, Juni 2000. http://dx.doi.org/10.21236/ada377908.
Der volle Inhalt der QuelleHuskey, A., und T. Forsyth. NREL Small Wind Turbine Test Project: Mariah Power's Windspire Wind Turbine Test Chronology. Office of Scientific and Technical Information (OSTI), Juni 2009. http://dx.doi.org/10.2172/957342.
Der volle Inhalt der QuelleSchroeder, John. The Great Plains Wind Power Test Facility. Office of Scientific and Technical Information (OSTI), Januar 2014. http://dx.doi.org/10.2172/1117320.
Der volle Inhalt der QuelleTuten, James Maner, Imtiaz Haque und Nikolaos Rigas. Clemson University Wind Turbine Drivetrain Test Facility. Office of Scientific and Technical Information (OSTI), März 2016. http://dx.doi.org/10.2172/1324502.
Der volle Inhalt der QuelleBollmeier, W. S. II, und D. M. Dodge. Cooperative field test program for wind systems. Office of Scientific and Technical Information (OSTI), März 1992. http://dx.doi.org/10.2172/5285410.
Der volle Inhalt der QuelleKarlson, Benjamin, Bryan Miller und Jason Biddle. Wind Turbine/Radar Interference: Offshore Test Options. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1762101.
Der volle Inhalt der Quelle