Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Wing stress analysis“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Wing stress analysis" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Wing stress analysis"
Jemitola, P. O., J. Fielding und P. Stocking. „Joint fixity effect on structural design of a box wing aircraft“. Aeronautical Journal 116, Nr. 1178 (April 2012): 363–72. http://dx.doi.org/10.1017/s0001924000005261.
Der volle Inhalt der QuelleYu, Chun Jin, Jin Zhang, Wei Song und Ke Hong Yi. „Deformation and Stress Analysis of Flapping Wing Aerial Vehicles Based on Composites Model“. Advanced Materials Research 1006-1007 (August 2014): 7–10. http://dx.doi.org/10.4028/www.scientific.net/amr.1006-1007.7.
Der volle Inhalt der QuelleJin, Guo Dong, Li Bin Lu, Liang Xian Gu und Juan Liang. „Numerical Simulation Analysis on Repairing Hole of UAV Wing“. Advanced Materials Research 690-693 (Mai 2013): 2891–95. http://dx.doi.org/10.4028/www.scientific.net/amr.690-693.2891.
Der volle Inhalt der QuelleKalavagunta, Veeranjaneyulu, und Shaik Hussain. „Wing Rib Stress Analysis of DLR-F6 aircraft“. IOP Conference Series: Materials Science and Engineering 455 (19.12.2018): 012033. http://dx.doi.org/10.1088/1757-899x/455/1/012033.
Der volle Inhalt der QuelleRabbey, M. Fazlay, Anik Mahmood Rumi, Farhan Hasan Nuri, Hafez M. Monerujjaman und M. Mehedi Hassan. „Structural Deformation and Stress Analysis of Aircraft Wing by Finite Element Method“. Advanced Materials Research 906 (April 2014): 318–22. http://dx.doi.org/10.4028/www.scientific.net/amr.906.318.
Der volle Inhalt der QuelleEsakkiraj, E. S., S. Anish und V. Anish. „Static and Dynamic Analysis of Aluminium Composite in Wing Section Using ANSYS“. Advanced Materials Research 984-985 (Juli 2014): 367–71. http://dx.doi.org/10.4028/www.scientific.net/amr.984-985.367.
Der volle Inhalt der QuelleZhu, Wen Qing, und Yang Yong Zhu. „The Vibration Response Analysis about High-Speed Train’s Braking Wing“. Applied Mechanics and Materials 226-228 (November 2012): 102–5. http://dx.doi.org/10.4028/www.scientific.net/amm.226-228.102.
Der volle Inhalt der QuelleAlsaidi, Bashir, Woong Yeol Joe und Muhammad Akbar. „Computational Analysis of 3D Lattice Structures for Skin in Real-Scale Camber Morphing Aircraft“. Aerospace 6, Nr. 7 (07.07.2019): 79. http://dx.doi.org/10.3390/aerospace6070079.
Der volle Inhalt der QuelleSun, Ya Zhen, Xiao Xing Zhai und Jie Min Liu. „Analysis of Failure Mode and Propagation for Crack in Uniaxial Compression“. Applied Mechanics and Materials 166-169 (Mai 2012): 2929–32. http://dx.doi.org/10.4028/www.scientific.net/amm.166-169.2929.
Der volle Inhalt der QuelleNabawy, M. R. A., M. M. ElNomrossy, M. M. Abdelrahman und G. M. ElBayoumi. „Aerodynamic shape optimisation, wind tunnel measurements and CFD analysis of a MAV wing“. Aeronautical Journal 116, Nr. 1181 (Juli 2012): 685–708. http://dx.doi.org/10.1017/s000192400000717x.
Der volle Inhalt der QuelleDissertationen zum Thema "Wing stress analysis"
Chabada, Martin. „Návrh křídla letounu UAV v kategorii do 600 kg“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-442849.
Der volle Inhalt der QuelleHemmel, Radek. „Výpočet zatížení a pevnostní kontrola křídla a ocasních ploch letounu Parrot“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2008. http://www.nusl.cz/ntk/nusl-228128.
Der volle Inhalt der QuelleFreisleben, Michal. „Výpočet zatížení a pevnostní kontrola křídla kluzáku“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2009. http://www.nusl.cz/ntk/nusl-228533.
Der volle Inhalt der QuelleSvětlík, Martin. „Výpočet zatížení a pevnostní kontrola křídla a ocasních ploch letounu Mermaid“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2008. http://www.nusl.cz/ntk/nusl-228118.
Der volle Inhalt der QuelleDevaney, Louise Claire. „Breaking wave loads and stress analysis of jacket structures supporting offshore wind turbines“. Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/breaking-wave-loads-and-stress-analysis-of-jacket-structures-supporting-offshore-wind-turbines(acef8efd-eae2-4a52-9513-b2873e7a3a25).html.
Der volle Inhalt der QuelleSilva, Junior Laercio Meneses. „Stress analysis on a thin-walled composite blade of a large wind turbine“. reponame:Repositório Institucional da UFSC, 2016. https://repositorio.ufsc.br/xmlui/handle/123456789/175894.
Der volle Inhalt der QuelleMade available in DSpace on 2017-05-23T04:22:08Z (GMT). No. of bitstreams: 1 345248.pdf: 4540254 bytes, checksum: b61753d1576a6ca395e102d19e3c04e0 (MD5) Previous issue date: 2016
Abstract : Research institutes and industry have recently initiated the development of wind turbines for energy production at sites with lower wind speeds. The relatively high electric power production of this type of wind turbine is related to the growing of the swept area. Thus, in order to increase the swept area, the length of the new blades must be greater than the ones of traditional blades for horizontal axis wind turbines. The expansion of the rotors diameter of large wind turbines has some implications, such as the increase of gravity loads and new transportation logistics challenges. To overcome these challenges, advances in the blade technology have led to more efficient structural and aerodynamic design and optimized material usage. In this context, analytical models have to accurately predict aerodynamic loads acting on the blades and calculate the structural stresses developed during the turbine operation. Since composite materials have high strength/weight ratio compared to other structural materials and are flexible with respect to the fabrication process, they are more appropriate for blade applications. This dissertation presents an improvement in the aerodynamic model that takes into account an iterative procedure for determining Reynolds number instead of depending on experimental data for the process of airfoil selection along the blade span that maximize the power extracted from the wind. The multilayer shell theories and the relationship between the aerodynamic bending and torsional moments acting on the blade are presented. The in-plane normal and shear stresses on the thin-walled multilayer blade are determined by using the Shear Flow Theory. A case study is conducted on a 20 MW wind turbine developed in the Energy Research Centre of the Netherlands-ECN. The normal and shear stresses are calculated and the Tsai-Wu criterion is applied for the strength evaluation of the blade made of glass/epoxy. Results obtained with two stacking sequences are presented.
Institutos de pesquisa e a indústria iniciaram recentemente o desenvolvimento de turbinas eólicas para a produção de energia em locais com baixas velocidades de vento. A produção de energia elétrica relativamente alta deste tipo de turbina está relacionada com o crescimento da área varrida pelo rotor. Assim, de forma a aumentar a área varrida, o comprimento das novas pás deve ser maior que o das pás tradicionais de turbinas eólicas de eixo horizontal. O aumento do diâmetro dos rotores das turbinas eólicas tem algumas implicações, tais como o aumento das cargas gravitacionais e desafios no seu transporte. Para superá-los, avanços na tecnologia de pás têm levado a projetos estruturais e aerodinâmicos mais eficientes. Neste contexto, modelos analíticos têm de prever com precisão as cargas aerodinâmicas atuando sobre as pás, além de calcular as tensões estruturais desenvolvidas durante sua operação. Uma vez que materiais compostos têm uma elevada relação resistência/peso em comparação com outros materiais estruturais, além de serem flexíveis no que diz respeito ao processo de fabricação, estes materiais têm sido os mais investigados para aplicações em pás de turbina eólica. Esta dissertação apresenta uma melhoria no modelo aerodinâmico que leva em conta um processo iterativo para a determinação do número de Reynolds, em vez de depender de dados experimentais para o processo de escolha do aerofólio ao longo da envergadura da pá que maximiza a potência extraída do vento. As teorias de cascas multilaminares e a relação entre os momentos aerodinâmicos fletores e de torção que atuam sobre a pá são apresentados. As tensões normais e de cisalhamento atuantes no plano da pá multilaminar de parede fina são determinadas utilizando a Teoria do Fluxo de Cisalhamento. Um estudo de caso é conduzido em uma turbina eólica de 20 MW desenvolvida no Centro de Pesquisa em Energia dos Países Baixos (ECN). As tensões normais e de cisalhamento são calculadas e o critério de Tsai-Wu é aplicado para a avaliação da resistência da pá feita em vidro/epóxi. Os resultados obtidos com duas sequências de empilhamento de lâminas são apresentados.
Muthirevula, Neeharika. „Cross-Sectional Stiffness Properties of Complex Drone Wings“. Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/73988.
Der volle Inhalt der QuelleMaster of Science
Kumar, Nikhil. „Stress analysis of wood-framed low-rise buildings under wind loads due to tornados“. [Ames, Iowa : Iowa State University], 2008.
Den vollen Inhalt der Quelle findenFernandez, Rodriguez Emmanuel. „Analysis of floating support structures for marine and wind energy“. Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/analysis-of-floating-support-structures-for-marine-and-wind-energy(f4870ce2-b8b5-4c7e-ba7e-f91a1d3c4bc9).html.
Der volle Inhalt der QuelleKatsanis, George R. Mr. „Transient Small Wind Turbine Tower Structural Analysis with Coupled Rotor Dynamic Interaction“. DigitalCommons@CalPoly, 2013. https://digitalcommons.calpoly.edu/theses/960.
Der volle Inhalt der QuelleBücher zum Thema "Wing stress analysis"
Ko, William L. Thermal stress analysis of space shuttle orbiter wing skin panel and thermal protection system. Edwards, Calif: National Aeronautics and Space Administration, Ames Researach Center, Dryden Flight Research Facility, 1987.
Den vollen Inhalt der Quelle findenGregory, Peyton B. Thermal/structural analysis of the shaft disk region of a fan drive system. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Den vollen Inhalt der Quelle findenLarry, Sobel, und Langley Research Center, Hrsg. Novel composites for wing and fuselage applications: Speedy Nonlinear Analysis of Postbuckled Panels in Shear (SNAPPS) : under contract NAS1-18784. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Den vollen Inhalt der Quelle findenLarry, Sobel, und Langley Research Center, Hrsg. Novel composites for wing and fuselage applications: Speedy Nonlinear Analysis of Postbuckled Panels in Shear (SNAPPS) : under contract NAS1-18784. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Den vollen Inhalt der Quelle findenH, Hoffmann P., und Joint Institute for Aeronautics and Acoustics., Hrsg. A study of the factors affecting boundary layer two-dimensionality in wind tunnels. Stanford, CA: Stanford University, Dept. of Aeronautics and Astronautics, 1986.
Den vollen Inhalt der Quelle findenFrondizi, Alexandre, und Simon Porcher. Sidewalk Queens. Herausgegeben von Scott Cunningham und Manisha Shah. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780199915248.013.14.
Der volle Inhalt der QuelleD, Holland Anne, und Langley Research Center, Hrsg. Thermal/structural analysis of the shaft disk region of a fan drive system. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Den vollen Inhalt der Quelle finden(Foreword), Anne Devereaux Jordan, Ira Mark Milne (Editor) und Timothy Sisler (Editor), Hrsg. Novels for Students: Presenting Analysis, Context, and Criticism on Commonly Studies Novels (Novels for Students). Gale Cengage, 2004.
Den vollen Inhalt der Quelle findenGroup, Abbey. No. 45 province street, Boston, Massachusetts, draft and final project impact report. 1988.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Wing stress analysis"
Sondankar, Piyush, und R. R. Arakerimath. „Stress and Failure Analysis of Aircraft Wing Using Glare Composite and Aluminum 7075“. In ICRRM 2019 – System Reliability, Quality Control, Safety, Maintenance and Management, 33–39. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8507-0_6.
Der volle Inhalt der QuelleNgouani, M. M. Siewe, Yong Kang Chen, R. Day und O. David-West. „Low-Speed Aerodynamic Analysis Using Four Different Turbulent Models of Solver of a Wind Turbine Shroud“. In Springer Proceedings in Energy, 149–54. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_19.
Der volle Inhalt der QuelleKinne, Marko, Ronald Schneider und Sebastian Thöns. „Reconstructing Stress Resultants in Wind Turbine Towers Based on Strain Measurements“. In Lecture Notes in Mechanical Engineering, 224–35. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77256-7_18.
Der volle Inhalt der QuelleMa, Ke. „Stress Analysis of 3L-NPC Wind Power Converter Under Fault Condition“. In Research Topics in Wind Energy, 63–93. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21248-7_5.
Der volle Inhalt der QuelleUgwuanyi, Samson O., Opeyeolu Timothy Laseinde und Lagouge Tartibu. „Physical Approach to Stress Analysis of Horizontal Axis Wind Turbine Blade Using Finite Element Analysis“. In Advances in Intelligent Systems and Computing, 392–99. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51328-3_54.
Der volle Inhalt der QuelleLee, Myoungwoo, Seok-Gyu Yoon und Youn-Jea Kim. „Stress Analysis of Wind Turbine Tower Flange Using Fluid-Structure Interaction Method“. In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 115–23. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55594-8_12.
Der volle Inhalt der QuelleBorovsky, Joseph E., und John T. Steinberg. „The freestream turbulence effect in solar-wind/magnetosphere coupling: Analysis through the solar cycle and for various types of solar wind“. In Recurrent Magnetic Storms: Corotating Solar Wind Streams, 59–76. Washington, D. C.: American Geophysical Union, 2006. http://dx.doi.org/10.1029/167gm07.
Der volle Inhalt der QuelleCavazzini, A., M. S. Campobasso, M. Marconcini, R. Pacciani und A. Arnone. „Harmonic Balance Navier–Stokes Analysis of Tidal Stream Turbine Wave Loads“. In Recent Advances in CFD for Wind and Tidal Offshore Turbines, 37–49. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11887-7_4.
Der volle Inhalt der QuelleFiedler, Torben, Joachim Rösler, Martin Bäker, Felix Hötte, Christoph von Sethe, Dennis Daub, Matthias Haupt, Oskar J. Haidn, Burkard Esser und Ali Gülhan. „Mechanical Integrity of Thermal Barrier Coatings: Coating Development and Micromechanics“. In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 295–307. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_19.
Der volle Inhalt der QuelleYermolaev, Y. I., I. G. Lodkina, N. S. Nikolaeva und M. Y. Yermolaev. „Dynamics of Large-Scale Solar-Wind Streams Obtained by the Double Superposed Epoch Analysis: 2. Comparisons of CIRs vs. Sheaths and MCs vs. Ejecta“. In Earth-affecting Solar Transients, 607–20. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1570-4_28.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Wing stress analysis"
Alsaidi, Bashir, Muhammad Akbar, Sara La, W. Yeol Joe, Hangil You, Seongik Kim und Gunjin Yun. „Modeling and Stress Analysis of Composite Skin Structure for Camber Morphing Wing“. In 2018 Multidisciplinary Analysis and Optimization Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-2934.
Der volle Inhalt der QuelleAlsaidi, Bashir, Muhammad Akbar, Sara La, W. Yeol Joe, Hangil You, Seongik Kim und Gunjin Yun. „Correction: Modeling and Stress Analysis of Composite Skin Structure for Camber Morphing Wing“. In 2018 Multidisciplinary Analysis and Optimization Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-2934.c1.
Der volle Inhalt der QuelleMilos, F., und T. Squire. „Thermal stress analysis of X-34 wing leading edge tile TPS“. In 31st Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1821.
Der volle Inhalt der QuelleHasan, Zeaid, Hamzeh Hammoudeh und Ghassan Atmeh. „Design and Analysis of a Smart Composite Wing“. In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64802.
Der volle Inhalt der QuelleJammi, Srinivasa R., und P. Shivakumar. „Bird Strike Analysis of a Composite Aircraft Wing“. In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42818.
Der volle Inhalt der QuelleGoravi Vijaya Dev, Naveen Prakash, Anoop Kumar Koduru Satish und Doddabasappa Veerapur. „Optimization of Air Plane Wing Rib Using Finite Element Analysis“. In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62192.
Der volle Inhalt der QuelleTang, Xiang-qiong, Chun-yue Huang, Sheng-jun Zhao und Ying Liang. „Stress and strain analysis of solder joints of gull wing lead in the cooling process of reflow“. In 2019 20th International Conference on Electronic Packaging Technology(ICEPT). IEEE, 2019. http://dx.doi.org/10.1109/icept47577.2019.245834.
Der volle Inhalt der QuelleCarrera, E., A. Pagani, P. H. Cabral, A. Prado und G. Silva. „Component-Wise Models for the Accurate Dynamic and Buckling Analysis of Composite Wing Structures“. In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65645.
Der volle Inhalt der QuelleZhang, Xiaoqin, und Ling Tian. „Numerical Simulation of Micro Air Vehicles With Membrane Wings“. In 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2007. http://dx.doi.org/10.1115/mnc2007-21265.
Der volle Inhalt der QuelleRadestock, Martin, Johannes Riemenschneider, Alexander Falken und Johannes Achleitner. „Experimental Study of Flexible Skin Designs Between a Moving Wing Segment and a Fixed Wing Part on a Full Scale Demonstrator“. In ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/smasis2020-2310.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Wing stress analysis"
Brandt, Leslie A., Cait Rottler, Wendy S. Gordon, Stacey L. Clark, Lisa O'Donnell, April Rose, Annamarie Rutledge und Emily King. Vulnerability of Austin’s urban forest and natural areas: A report from the Urban Forestry Climate Change Response Framework. U.S. Department of Agriculture, Northern Forests Climate Hub, Oktober 2020. http://dx.doi.org/10.32747/2020.7204069.ch.
Der volle Inhalt der Quelle