Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Wing construction“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Wing construction" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Wing construction"
Tarnowski, Andrzej. „Morphing wing with skin discontinuity – kinematic concept“. Aircraft Engineering and Aerospace Technology 89, Nr. 4 (03.07.2017): 535–46. http://dx.doi.org/10.1108/aeat-11-2016-0208.
Der volle Inhalt der QuelleRichter, Charles, und Hod Lipson. „Untethered Hovering Flapping Flight of a 3D-Printed Mechanical Insect“. Artificial Life 17, Nr. 2 (April 2011): 73–86. http://dx.doi.org/10.1162/artl_a_00020.
Der volle Inhalt der QuelleIrwin, A. J., und P. M. Render. „The influence of simulated missile warhead fragment damage on the aerodynamic characteristics of two-dimensional wings“. Aeronautical Journal 117, Nr. 1194 (August 2013): 823–37. http://dx.doi.org/10.1017/s0001924000008472.
Der volle Inhalt der QuelleNewman, D. J. S., und R. J. Wootton. „An Approach to the Mechanics of Pleating in Dragonfly Wings“. Journal of Experimental Biology 125, Nr. 1 (01.09.1986): 361–72. http://dx.doi.org/10.1242/jeb.125.1.361.
Der volle Inhalt der QuelleBreen, John E., Michael E. Kreger, Christopher D. White und Gordon C. Clark. „Field evaluation and model test of a composite wing-girder bridge“. Canadian Journal of Civil Engineering 14, Nr. 6 (01.12.1987): 753–62. http://dx.doi.org/10.1139/l87-113.
Der volle Inhalt der QuelleYOSHIZU, Toshihiro. „DEVELOPMENT OF SCREW STEEL PIPE PILE WITH TOE WING HAVING AN INNER WING“. AIJ Journal of Technology and Design 20, Nr. 45 (2014): 467–70. http://dx.doi.org/10.3130/aijt.20.467.
Der volle Inhalt der QuelleЖданов, Дмитро, und Дмитро Зінченко. „Aerodynamic design of adaptive airplane wing of hybrid construction“. MECHANICS OF GYROSCOPIC SYSTEMS, Nr. 29 (10.07.2015): 84. http://dx.doi.org/10.20535/0203-377129201560714.
Der volle Inhalt der QuelleWIELOCH, GRZEGORZ. „Low noise with wood milling "Airface" constructions“. Annals of WULS, Forestry and Wood Technology 106 (15.01.2019): 49–56. http://dx.doi.org/10.5604/01.3001.0013.7736.
Der volle Inhalt der QuelleArokiasami, Willson Amalraj, Prahlad Vadakkepat und Abdullah Al Mamun. „Wingbeat Generation for a 15 DOF Flexible-Wing Aerial Vehicle Using Cosine Wave Functions“. Unmanned Systems 05, Nr. 02 (April 2017): 115–27. http://dx.doi.org/10.1142/s230138501750008x.
Der volle Inhalt der QuelleHorden, R. „The Wing Tower (Der "Wing Tower")“. Stahlbau 69, Nr. 6 (Juni 2000): 466–68. http://dx.doi.org/10.1002/stab.200001490.
Der volle Inhalt der QuelleDissertationen zum Thema "Wing construction"
Rahman, Selma, und Anujan Ranganathan. „Conceptual design and construction of a UAV wing structure“. Thesis, KTH, Skolan för teknikvetenskap (SCI), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-276681.
Der volle Inhalt der QuelleDenna rapport kommer att presentera en design och konstruktion av höger vinge på en drönar-modell (UAV), X8 Skywalker. CAD modellen var given och användes vid de aerodynamiska och hållfasthets simuleringarna. Syftet med projektet var att konstruera vingen utifrån dessa perspektiv för vingen i fördubblad storlek, med "grönare" teknik i åtanke. Belastningarna som verkar på drönaren beräknades med hjälp av ett program, Star CCM+, som behandlar CFD-simuleringar. Redigering av CAD modellen och FEM-analyserna utfördes med hjälp av Siemens NX. Åtta olika kombinationer av 5 olika material testades, vilket är de följande: CFRP (carbon fibre reinforced polymer), LDPE (low density polyethylene), polyeten, polypropylen och balsa. Resultaten som uppfyller kraven bäst var polypropylen som vingens ytterhölje och balsa som honeycomb-strukturen. Denna konstruktion vägde totalt 3.576 kg och hade följande von Mises spänningar: 0.671 MPa, 0.340 MPa, 1 MPa och 4 MPa för angreppsvinklarna 1, 2, 3 respektive 6 grader. En modifiering av trailing edge gjordes för att se om det gav en förbättring av lift-to-drag ratio. Då den inte gav en önskad förändring så utvecklades den inte vidare.
Skelton, Ian R. „Innovation in construction techniques for tall buildings“. Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/19637.
Der volle Inhalt der QuelleChabada, Martin. „Návrh křídla letounu UAV v kategorii do 600 kg“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-442849.
Der volle Inhalt der QuelleKao, Pi-Jen. „Efficient methods for integrated structural-aerodynamic wing optimum design“. Diss., Virginia Polytechnic Institute and State University, 1989. http://hdl.handle.net/10919/54211.
Der volle Inhalt der QuellePh. D.
Strauch, Gregory J. „Integrated multi-disciplinary design of a sailplane wing“. Thesis, Virginia Tech, 1985. http://hdl.handle.net/10919/45660.
Der volle Inhalt der QuelleThe objective of this research is to investigate the techniques and payoffs of integrated aircraft design. Lifting line theory and beam theory are used for the analysis of the aerodynamics and the structures of a composite sailplane wing. The wing is described by 33 - 34 design variables which involve the planform geometry, the twist distribution, and thicknesses of the spar caps, spar webs, and the skin at various stations along the wing. The wing design must satisfy 30 â 31 aeroelastic, structural, aerodynamic, and performance constraints.
Two design procedures are investigated. The first, referred to as the iterative, sequential procedure, involves optimizing the aerodynamic design for maximum average cross-country speed at E1 constant structural weight, and then optimizing the the structural design of the resulting wing geometry for minimum weight. This value is then used in another aerodynamic optimization, and the process continues iteratively until the weight converges. The other procedure, the integrated one, simultaneously optimizes the aerodynamic and the structural design variables for either maximum average cross-country speed or minimum weight.
The integrated procedure was able to improve the value of the objective function obtained by the iterative procedure in all cases. This shows The objective of this research is to investigate the techniques and payoffs of integrated aircraft design. Lifting line theory and beam theory are used for the analysis of the aerodynamics and the structures of a composite sailplane wing. The wing is described by 33 - 34 design variables which involve the planform geometry, the twist distribution, and thicknesses of the spar caps, spar webs, and the skin at various stations along the wing. The wing design must satisfy 30 â 31 aeroelastic, structural, aerodynamic, and performance constraints. Two design procedures are investigated. The first, referred to as the iterative, sequential procedure, involves optimizing the aerodynamic design for maximum average cross-country speed at E1 constant structural weight, and then optimizing the the structural design of the resulting wing geometry for minimum weight. This value is then used in another aerodynamic optimization, and the process continues iteratively until the weight converges. The other procedure, the integrated one, simultaneously optimizes the aerodynamic and the structural design variables for either maximum average cross-country speed or minimum weight.
The integrated procedure was able to improve the value of the objective function obtained by the iterative procedure in all cases. This shows that definite benefits can be gained from taking advantage of aerodynamic/structural interactions during the design process.
Master of Science
Polen, David M. „Integrated aerodynamic-structural design of a subsonic, forward- swept transport wing“. Thesis, Virginia Tech, 1989. http://hdl.handle.net/10919/46059.
Der volle Inhalt der QuelleThe introduction of composite materials and the ability to tailor these materials to improve aerodynamic and structural performance is having a distinct effect upon aircraft design. In order to optimize the efficiency of the design procedure, a design process which is more integrated than the traditional approach is required. Currently the utilization of such design procedures produces enormous computational costs. An ongoing effort to reduce these costs is the development of efficient methods for cross-disciplinary sensitivities and approximate optimization techniques.
The present research concentrates on investigating the integrated design optimization of a subsonic, forward-swept transport wing. A modular sensitivity approach for calculating the cross-sensitivity derivatives is employed. These derivatives are then used to guide the optimization process. The optimization process employed is an approximate technique due to the complexity of the analysis procedures. These optimization results are presented and the impact of the modular technique is discussed.
Master of Science
Dewitz, Michael B. „The effect of a fillet on a wing/body junction flow“. Thesis, Virginia Tech, 1988. http://hdl.handle.net/10919/43843.
Der volle Inhalt der QuelleBrooks, W. G. „The design, construction and test of a postbuckled, carbon fibre reinforced plastic wing box“. Thesis, Cranfield University, 1987. http://hdl.handle.net/1826/3292.
Der volle Inhalt der QuelleUnger, Eric Robert. „Computational aspects of the integrated multi-disciplinary design of a transport wing“. Thesis, Virginia Tech, 1990. http://hdl.handle.net/10919/42125.
Der volle Inhalt der QuelleMaster of Science
Rohl, Peter Jurgen. „A multilevel decomposition procedure for the preliminary wing design of a high-speed civil transport aircraft“. Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/11827.
Der volle Inhalt der QuelleBücher zum Thema "Wing construction"
Selberg, Bruce P. Aerodynamic-structural study of canard wing, dual wing and conventional wing systems for general aviation applications. Hampton, Virginia: NASA Langley Research Center, 1985.
Den vollen Inhalt der Quelle findenFighter wing: A guided tour of an Airforce Combat wing. New York: Berkley Books, 1995.
Den vollen Inhalt der Quelle findenWood, Richard M. The natural flow wing-design concept. Hampton, Va: Langley Research Center, 1992.
Den vollen Inhalt der Quelle findenClancy, Tom. Fighter wing: A guided tour of an Air Force combat wing. New York: Berkley Books, 1995.
Den vollen Inhalt der Quelle findenClancy, Tom. Fighter wing: A guided tour of an Air Force combat wing. New York: Berkley Books, 2004.
Den vollen Inhalt der Quelle findenFighter wing: A guided tour of an Air Force combat wing. London: HarperCollins, 1995.
Den vollen Inhalt der Quelle findenValasek, John. Morphing aerospace vehicles and structures. Chichester, West Sussex: John Wiley & Sons, 2012.
Den vollen Inhalt der Quelle findenAmerican Institute of Aeronautics and Astronautics, Hrsg. Morphing aerospace vehicles and structures. Chichester, West Sussex: John Wiley & Sons, 2012.
Den vollen Inhalt der Quelle findenWrong and dangerous: Ten right-wing myths about the constitution. Lanham, Md: Rowman & Littlefield, 2012.
Den vollen Inhalt der Quelle findenMerlin, Peter W. A New twist in flight research: The F-18 active aeroelastic wing project. Washington, DC: National Aeronautics and Space Administration, Aeronautics Research Mission Directorate, 2013.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Wing construction"
Moss, David. „The Construction of Judicial Accounts“. In The Politics of Left-Wing Violence in Italy, 1969–85, 165–209. London: Palgrave Macmillan UK, 1989. http://dx.doi.org/10.1007/978-1-349-20249-2_5.
Der volle Inhalt der QuelleBrooks, W. G. „The Construction of a Postbuckled Carbon Fibre Wing Box“. In Composite Structures 4, 178–90. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3455-9_13.
Der volle Inhalt der QuelleSiim, Birte, und Susi Meret. „Right-wing Populism in Denmark: People, Nation and Welfare in the Construction of the ‘Other’“. In The Rise of the Far Right in Europe, 109–36. London: Palgrave Macmillan UK, 2016. http://dx.doi.org/10.1057/978-1-137-55679-0_5.
Der volle Inhalt der QuelleBerend, Ivan T. „Is the European Union a neoliberal construction that deserves to be destroyed? A debate with left-wing attacks“. In Against European Integration, 111–21. Abingdon, Oxon; New York, NY: Routledge, 2019. | Series: Economics in the real world: Routledge, 2019. http://dx.doi.org/10.4324/9780429200458-10.
Der volle Inhalt der QuelleGill, Clare. „Reading the ‘Religion of Socialism’: Olive Schreiner, the Labour Church and the Construction of Left-wing Reading Communities in the 1890s“. In The History of Reading, Volume 2, 48–63. London: Palgrave Macmillan UK, 2011. http://dx.doi.org/10.1057/9780230316799_4.
Der volle Inhalt der QuelleQu, Yingying, und Sai On Cheung. „Logrolling “Win–Win” Settlement in Construction Dispute Mediation“. In Construction Dispute Research, 383–410. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04429-3_20.
Der volle Inhalt der QuelleHau, Erich, Jens Langenbrinck und Wolfgang Palz. „The WEGA Wind Turbines — Design and Construction“. In WEGA Large Wind Turbines, 41–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-52129-4_3.
Der volle Inhalt der QuelleBahadori, Mehdi N., Alireza Dehghani-sanij und Ali Sayigh. „Designing, Constructing, and Testing Conventional Baudgeers and New Designs“. In Wind Towers, 163–77. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05876-4_7.
Der volle Inhalt der QuelleWisser, A., und W. Nachtigall. „Biomechanical Aspects of the Wing Joints in Flies, Especially in Calliphora erythrocephala“. In Constructional Morphology and Evolution, 193–207. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76156-0_14.
Der volle Inhalt der QuelleBorri, Claudio, Paolo Biagini und Enzo Marino. „Large wind turbines in earthquake areas: structural analyses, design/construction & in-situ testing“. In Environmental Wind Engineering and Design of Wind Energy Structures, 295–350. Vienna: Springer Vienna, 2011. http://dx.doi.org/10.1007/978-3-7091-0953-3_7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Wing construction"
Thompson, Daniel, Joshuo Feys, Michael Filewich, Sharif Abdel-Magid, Dennis Dalli und Fumitaka Goto. „The Design and Construction of a Blended Wing Body UAV“. In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-841.
Der volle Inhalt der QuelleManzo, Justin E., Emily A. Leylek und Ephrahim Garcia. „Drawing Insight From Nature: A Bat Wing for Morphing Aircraft“. In ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-613.
Der volle Inhalt der QuelleOnishi, Ryoichi, Toshiya Kimura, Zhihong Guo und Toshiyuki Iwamiya. „Computational aero-structural dynamics for wing with skin-spar-rib construction“. In 18th Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-4225.
Der volle Inhalt der QuelleAndaste, Yosua Sepri, Muhammad Aldo Aditiya Nugroho, R. S. Brian Benyamin, Bambang Riyanto Trilaksono und Agoes Moelyadi. „Design and construction of flapping wing micro aerial vehicle robot platform“. In 2017 7th IEEE International Conference on System Engineering and Technology (ICSET). IEEE, 2017. http://dx.doi.org/10.1109/icsengt.2017.8123444.
Der volle Inhalt der QuelleOlejnik, A., L. Kiszkowiak, M. Jędrak, J. Milczarczyk und A. Dziubiński. „Crash Analysis of Wing of Large Airplane with a Tree“. In 17th Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments. Reston, VA: American Society of Civil Engineers, 2021. http://dx.doi.org/10.1061/9780784483381.014.
Der volle Inhalt der QuelleAguillon Balderas, Nestor Abraham, Gerardo Emanuel Cardona Sanchez, Jessica Jazmin Maldonado Ramos, Carlos Antonio Tovar Garcia und Alejandro J. Malo Tamayo. „Construction and instrumentation of a fixed wing aircraft guillow's aeronca champion 85“. In 2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS). IEEE, 2015. http://dx.doi.org/10.1109/red-uas.2015.7441031.
Der volle Inhalt der QuelleDing, Menglong, und Wieslaw Binienda. „Numerical Study of a Transport Aircraft Wing Impact with a Birch Tree“. In 17th Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments. Reston, VA: American Society of Civil Engineers, 2021. http://dx.doi.org/10.1061/9780784483381.007.
Der volle Inhalt der QuelleHenry, Jonathon, David Schwartz, Michael Soukup und Aaron Altman. „Design, Construction, and Testing of a Folding-Wing, Tube-Launched Micro Air Vehicle“. In 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-1451.
Der volle Inhalt der QuelleSalistean, Adrian, Carmen Mihai, Doina Toma und Sabina Olaru. „Theoretical and practical aspects of the design phase for a single skin textile wing“. In The 8th International Conference on Advanced Materials and Systems. INCDTP - Leather and Footwear Research Institute (ICPI), Bucharest, Romania, 2020. http://dx.doi.org/10.24264/icams-2020.iii.16.
Der volle Inhalt der QuelleAbeysinghe, Asith, Shameera Abeysiriwardena, Roshan Nanayakkarawasam, Walallawita Wimalsiri, Thilina Dulantha Lalitharatne und Salinda Tennakoon. „Development of a numerically controlled hot wire foam cutting machine for wing mould construction“. In 2016 Moratuwa Engineering Research Conference (MERCon). IEEE, 2016. http://dx.doi.org/10.1109/mercon.2016.7480116.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Wing construction"
URS CORP OAKLAND CA. Environmental Assessment of Short-Term Construction Projects at the 150th Fighter Wing, New Mexico Air National Guard, Kirtland Air Force Base, New Mexico. Fort Belvoir, VA: Defense Technical Information Center, Januar 2003. http://dx.doi.org/10.21236/ada639962.
Der volle Inhalt der QuelleWorachek, Alden, und Forest Button. Bethel Wind Energy Construction Project. Office of Scientific and Technical Information (OSTI), März 2020. http://dx.doi.org/10.2172/1607624.
Der volle Inhalt der QuelleWorachek, Alden, und Forest Button. Pitka's Point/St. Mary's Wind Energy Construction Project. Office of Scientific and Technical Information (OSTI), März 2020. http://dx.doi.org/10.2172/1607457.
Der volle Inhalt der QuelleMcMillan, Andy. Cherokee Wind Energy Development - Feasibility and Pre-Construction Studies. Office of Scientific and Technical Information (OSTI), Juni 2017. http://dx.doi.org/10.2172/1395350.
Der volle Inhalt der QuelleConnolly, Michael. Pre-construction Activities for Phase 1 of Shu'luuk Wind Project. Office of Scientific and Technical Information (OSTI), Juli 2015. http://dx.doi.org/10.2172/1208019.
Der volle Inhalt der QuelleDeRenzis, A., und V. Kochkin. High-R Walls for New Construction Structural Performance. Wind Pressure Testing. Office of Scientific and Technical Information (OSTI), Januar 2013. http://dx.doi.org/10.2172/1219901.
Der volle Inhalt der QuelleDeRenzis, A., und V. Kochkin. High-R Walls for New Construction Structural Performance: Wind Pressure Testing. Office of Scientific and Technical Information (OSTI), Januar 2013. http://dx.doi.org/10.2172/1067930.
Der volle Inhalt der QuelleMatlack, Raymond S. Wind Energy and Wildlife Pre- and Post-Construction Project at Pantex Plant. Office of Scientific and Technical Information (OSTI), Januar 2018. http://dx.doi.org/10.2172/1416956.
Der volle Inhalt der QuelleLigotke, M. W., G. W. Dennis und L. L. Bushaw. Wind tunnel tests of biodegradable fugitive dust suppressants being considered to reduce soil erosion by wind at radioactive waste construction sites. Office of Scientific and Technical Information (OSTI), Oktober 1993. http://dx.doi.org/10.2172/10190697.
Der volle Inhalt der QuelleDagher, Habib, Anthony Viselli, Andrew Goupee, Richard Kimball und Christopher Allen. The VolturnUS 1:8 Floating Wind Turbine: Design, Construction, Deployment, Testing, Retrieval, and Inspection of the First Grid-Connected Offshore Wind Turbine in US. Office of Scientific and Technical Information (OSTI), August 2017. http://dx.doi.org/10.2172/1375022.
Der volle Inhalt der Quelle