Auswahl der wissenschaftlichen Literatur zum Thema „Wind band gap Semiconductors“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Wind band gap Semiconductors" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Wind band gap Semiconductors"

1

Rome, Grace, Fry Intia, Talysa Klein, Zebulon Schicht, Adele Tamboli, Emily L. Warren und Ann L. Greenaway. „Utilizing a Transparent Conductive Encapsulant to Protect Photoelectrodes during Solar Fuel Formation“. ECS Meeting Abstracts MA2023-01, Nr. 55 (28.08.2023): 2705. http://dx.doi.org/10.1149/ma2023-01552705mtgabs.

Der volle Inhalt der Quelle
Annotation:
Carbon-neutral electricity is rapidly becoming available worldwide as solar and wind technologies advance, but storing energy in chemical bonds will remain a critical need for the transportation sector, as planes and other energy intensive processes will still require liquid fuels. Solar fuels, utilizing sunlight to directly convert CO2 into useful chemicals, are a renewable and net carbon-neutral way to produce needed liquid fuels. However, a common problem with photoelectrochemical solar fuel production is semiconductor degradation from submersion in aqueous environments. An ideal protective layer should 1) prevent solution from reaching the semiconductor, 2) maintain charge transfer to and from the solution, and 3) be transparent to light above the semiconductor band gap. While there presently are protective layer options that meet all three requirements, such as leaky TiO2 and MoS2, they are not easily adaptable to new semiconductor surfaces and/or to new electrochemical reactions. This can make protection difficult for newly developed photoabsorbers and catalytic reaction pairings. In this work, we demonstrate the use of transparent conductive encapsulants (TCEs) to meet these three requirements while also allowing for photoelectrode- and catalysis-agnostic adaptability. TCEs are composed of an ethyl vinyl acetate (EVA) matrix with embedded conductive metal-coated poly(methyl methacrylate) (PMMA) microspheres that can be attached to substrates through a lamination process. First, we characterize the electrochemical behavior of TCE-coated electrodes using the reduction of methyl viologen, demonstrating electrical conduction through the TCE layer. Results from a pinhole detection apparatus suggest the TCE is initially defect free and thus able to prevent solution from reaching the substrate. Then, we perform photoelectrochemical measurements of TCE-covered semiconductors to demonstrate the flexibility of this protection scheme for multiple materials. We also show the results of long-term photoelectrochemical measurements designed to probe the efficacy of TCEs as protective layers. These findings demonstrate that TCEs are an effective protective layer for a variety of photoelectrochemical applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Woods-Robinson, Rachel, Yanbing Han, Hanyu Zhang, Tursun Ablekim, Imran Khan, Kristin A. Persson und Andriy Zakutayev. „Wide Band Gap Chalcogenide Semiconductors“. Chemical Reviews 120, Nr. 9 (06.04.2020): 4007–55. http://dx.doi.org/10.1021/acs.chemrev.9b00600.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Medvid, Arthur, Igor Dmitruk, Pavels Onufrijevs und Iryna Pundyk. „Properties of Nanostructure Formed on SiO2/Si Interface by Laser Radiation“. Solid State Phenomena 131-133 (Oktober 2007): 559–62. http://dx.doi.org/10.4028/www.scientific.net/ssp.131-133.559.

Der volle Inhalt der Quelle
Annotation:
The aim of this work is to study optical properties of Si nanohills formed on the SiO2/Si interface by the pulsed Nd:YAG laser radiation. Nanohills which are self-organized on the surface of Si, are characterized by strong photoluminescence in the visible range of spectra with long wing in the red part of spectra. This peculiarity is explained by Quantum confinement effect in nanohillsnanowires with graded diameter. We have found a new method for graded band gap semiconductor formation using an elementary semiconductor. Graded change of band gap arises due to Quantum confinement effect.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

LI, KEYAN, YANJU LI und DONGFENG XUE. „BAND GAP PREDICTION OF ALLOYED SEMICONDUCTORS“. Functional Materials Letters 04, Nr. 03 (September 2011): 217–19. http://dx.doi.org/10.1142/s179360471100210x.

Der volle Inhalt der Quelle
Annotation:
We have proposed an efficient method to quantitatively calculate the band gap values of ternary A x B 1-x C and AB x C 1-x alloyed semiconductors in terms of the dopant concentration x and some fundamental atom parameters such as electronegativity. The calculated band gap values of some typical alloyed semiconductors can agree well with the available experimental data. Taking Mg x Zn 1-x O and Cd x Zn 1-x O as examples, the composition dependent band gap values of alloys with both wurtzite and rocksalt structures were quantitatively predicted. This work provides a guideline in compositionally tuning the band gap of alloyed semiconductors, which will greatly facilitate the band gap engineering of semiconductors.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Nag, B. R. „Direct band-gap energy of semiconductors“. Infrared Physics & Technology 36, Nr. 5 (August 1995): 831–35. http://dx.doi.org/10.1016/1350-4495(95)00023-r.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Keßler, P., K. Lorenz und R. Vianden. „Implanted Impurities in Wide Band Gap Semiconductors“. Defect and Diffusion Forum 311 (März 2011): 167–79. http://dx.doi.org/10.4028/www.scientific.net/ddf.311.167.

Der volle Inhalt der Quelle
Annotation:
Wide band gap semiconductors, mainly GaN, have experienced much attention due to their application in photonic devices and high-power or high-temperature electronic devices. Especially the synthesis of InxGa1-xN alloys has been studied extensively because of their use in LEDs and laser diodes. Here, In is added during the growth process and devices are already very successful on a commercial scale. Indium in nitride ternary and quaternary alloys plays a special role; however, the mechanisms leading to more efficient light emission in In-containing nitrides are still under debate. Therefore, the behaviour of In in GaN and AlN, the nitride semiconductor with the largest bandgap is an important field of study. In is also an important impurity in another wide band gap semiconductor – the II-VI compound ZnO where it acts as an n-type dopant. In this context the perturbed angular correlation technique using implantation of the probe111In is a unique tool to study the immediate lattice environment of In in the wurtzite lattice of these wide band gap semiconductors. For the production of GaN and ZnO based electronic circuits one would normally apply the ion implantation technique, which is the most widely used method for selective area doping of semiconductors like Si and GaAs. However, this technique suffers from the fact that it invariably produces severe lattice damage in the implanted region, which in nitride semiconductors has been found to be very difficult to recover by annealing. The perturbed angular correlation technique is employed to monitor the damage recovery around implanted atoms and the properties of hitherto known impurity – defect complexes will be described and compared to proposed structure models.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Jin, Haiwei, Li Qin, Lan Zhang, Xinlin Zeng und Rui Yang. „Review of wide band-gap semiconductors technology“. MATEC Web of Conferences 40 (2016): 01006. http://dx.doi.org/10.1051/matecconf/20164001006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Woods-Robinson, Rachel, Yanbing Han, Hanyu Zhang, Tursun Ablekim, Imran Khan, Kristin A. Persson und Andriy Zakutayev. „Correction to Wide Band Gap Chalcogenide Semiconductors“. Chemical Reviews 120, Nr. 15 (03.08.2020): 8035. http://dx.doi.org/10.1021/acs.chemrev.0c00643.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Cam, Hoang Ngoc, Nguyen Van Hieu und Nguyen Ai Viet. „Excitons in direct band gap cubic semiconductors“. Annals of Physics 164, Nr. 1 (Oktober 1985): 172–88. http://dx.doi.org/10.1016/0003-4916(85)90007-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Salvatori, S. „Wide-band gap semiconductors for noncontact thermometry“. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 19, Nr. 1 (2001): 219. http://dx.doi.org/10.1116/1.1342007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Wind band gap Semiconductors"

1

Dorji, Chencho. „Etude des propriétés des isolants liquides pour l’encapsulation des substrats d’électronique de puissance“. Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALT022.

Der volle Inhalt der Quelle
Annotation:
Les modules de puissance basés sur un semi-conducteur à large bande interdite ont le potentiel de résister à des températures élevées (température de jonction >> 200°C) et à des tensions élevées (tension de blocage de 10 kV) contrairement aux modules de puissance à base de silicium. Cependant, le gel de silicone, le matériau d'encapsulation le plus couramment utilisé dans les modules d'alimentation, ne peut pas fonctionner au-dessus de 200°C. De plus, les pannes électriques et les décharges partielles entraînent des dommages permanents au module d'alimentation. Dans ce travail, nous proposons un diélectrique liquide comme agent d'encapsulation potentiel qui pourrait avoir de meilleures performances électriques et thermiques que le gel de silicone. Nous avons effectué la caractérisation diélectrique de plusieurs liquides potentiels et développé un modèle de simulation de champ pour étudier le champ électrique au point triple dans les modules de puissance. Des mesures de décharges partielles ont été effectuées sous courant alternatif et à montée rapide avec différents substrats électroniques de puissance intégrés dans des diélectriques liquides. Nous avons également étudié la possibilité de refroidir des dispositifs de puissance avec une amélioration du transfert de chaleur EHD et réalisé des expériences supplémentaires sur le vieillissement thermique des liquides. Les résultats ont indiqué que les liquides peuvent potentiellement être utilisés comme encapsulants dans les modules de puissance
Power modules based on wide band gap semiconductor has the potential to withstand high temperature (junction temperature >>200°C) and high voltage (blocking voltage of 10kV) contary to silicone based power module. However, silicone gel, the most commonly used encapsulant material in power modules cannot operatrate above 200°C. Moreover, electrical breakdown and partial discharge events results in permanent damage of the power module. In this work, we propose liquid dielectric as a potential encapsulant that may have better electrical and thermal performance than silicone gel. We did dielectric characterization of several potential liquids and developed field simulation model to study the electric field at triple point in power modules. Partial discharge measurements were made under AC and fast rise with different power electronic substrates embedded in liquid dielectrics. We also investigated the possibility of cooling power devices with EHD heat transfer enhancement and performed some supplementary experiments on thermal againg of liquids. The results indicated that liquids have potential to be used as encapsulant in power modules
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Chan, Yung. „Optical functions of wide band gap semiconductors /“. View the Table of Contents & Abstract, 2004. http://sunzi.lib.hku.hk/hkuto/record/B32021264.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Tirino, Louis. „Transport Properties of Wide Band Gap Semiconductors“. Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5210.

Der volle Inhalt der Quelle
Annotation:
Transport Properties of Wide Band Gap Semiconductors Louis Tirino III 155 pages Directed by Dr. Kevin F. Brennan The objective of this research has been the study of the transport properties and breakdown characteristics of wide band gap semiconductor materials and their implications on device performance. Though the wide band gap semiconductors have great potential for a host of device applications, many gaps remain in the collective understanding about their properties, frustrating the evaluation of devices made from these materials. The model chosen for this study is based on semiclassical transport theory as described by the Boltzmann Transport Equation. The calculations are performed using an ensemble Monte Carlo simulation method. The simulator includes realistic, numerical energy band structures derived from an empirical pseudo-potential method. The carrier-phonon scattering rates and impact ionization transition rates are numerically evaluated from the electronic band structure. Several materials systems are discussed and compared. The temperature-dependent, high-field transport properties of electrons in gallium arsenide, zincblende gallium nitride, and cubic-phase silicon carbide are compared. Since hole transport is important in certain devices, the simulator is designed to simulate electrons and holes simultaneously. The bipolar simulator is demonstrated in the study of the multiplication region of gallium nitride avalanche photodiodes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chan, Yung, und 陳勇. „Optical functions of wide band gap semiconductors“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B45015338.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Saadatkia, Pooneh. „Optoelectronic Properties of Wide Band Gap Semiconductors“. Bowling Green State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1562379152593304.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Farahmand, Maziar. „Advanced simulation of wide band gap semiconductor devices“. Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/14777.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kusch, Gunnar. „Characterization of low conductivity wide band gap semiconductors“. Thesis, University of Strathclyde, 2016. http://digitool.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=27392.

Der volle Inhalt der Quelle
Annotation:
This thesis covers research on low electric conductivity wide band gap semiconductors of the group-III nitride material system. The work presented focussed on using multi-mode scanning electron microscope (SEM) techniques to investigate the luminescence properties and their correlation with surface effects, doping concentration and structure of semiconductor structures. The measurement techniques combined cathodoluminescence (CL) for the characterization of luminescence properties, secondary electron (SE) imaging for imaging of the morphology and wavelength dispersive X-ray (WDX) spectroscopy for compositional analysis. The high spatial resolution of CL and SE-imaging allowed for the investigation of nanometer sized features, whilst environmental SEM allowed the characterisation of low conductivity samples. The investigated AlxGa₁₋xN samples showed a strong dependence on the miscut of the substrate, which was proven to influence the surface morphology and the compositional homogeneity. Studying the influence of the AlxGa₁₋xN sample thickness displayed a reduced strain in the samples with increasing thickness as well as an increasing crystalline quality. The analysis of AlxGa₁₋xN:Si samples showed the incorporation properties of Si in AlxGa₁₋xN, the correlation between defect luminescence, Si concentration and resistivity as well as the influence of threading dislocations on the luminescence properties and incorporation of point defects. The characterization of UV-LED structures demonstrated that a change in the band structure is one of the main reasons for a decreasing output power in AlₓGa₁₋ₓN based UV-LEDs. In addition the dependence of the luminescence properties and crystalline quality of InxAl₁₋xN based UV-LEDs on various growth parameters (e.g. growth temperature, quantum well thickness) was investigated. The study of nanorods revealed the influence of the template on the compositional homogeneity and luminescence of InxAl₁₋xN nanorod LEDs. Furthermore,the influence of optical modes in these structures was studied and found to provide an additional engineering parameter for the design of nanorod LEDs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Mickevičius, Jūras. „Carrier recombination in wide-band-gap nitride semiconductors“. Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2009. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2009~D_20091121_102304-00016.

Der volle Inhalt der Quelle
Annotation:
The thesis is dedicated to carrier recombination investigations in wide-band-gap semiconductors and their structures. The complex experimental studies were performed by combining several different techniques. Carrier dynamics in GaN epilayers were investigated under extremely low and high excitation conditions. A new method for interpreting photoluminescence decay kinetics was suggested by interrelating luminescence and light-induced grating decay transients. The new approach for studies of yellow band in GaN was shown by linking the carrier lifetime with yellow band intensity. Two AlGaN epilayers grown by different novel growth techniques were compared and the factors limiting carrier lifetime were identified. Moreover, more evidence on alloy mixing and band potential fluctuations in AlGaN was provided by our study. Essential knowledge was attained about carrier dynamics in high-Al-content AlGaN/AlGaN multiple quantum well structures: the influence of built-in electric field and carrier localization on carrier dynamics. Most of the samples under study were grown by MEMOCVDTM growth technique, and our study confirmed the high potential of this innovative growth technique for improving material quality.
Disertacija skirta krūvininkų rekombinacijos tyrimams plačiatarpiuose nitridiniuose puslaidininkiuose bei jų dariniuose. Kompleksiniai eksperimentiniai tyrimai buvo atlikti naudojant kelias skirtingas metodikas. Atlikti krūvininkų dinamikos GaN sluoksniuose tyrimai labai žemų ir aukštų sužadinimų sąlygomis. Pasiūlytas naujas liuminescencijos gesimo kinetikų interpretavimo metodas, siejant liuminescencijos ir šviesa indukuotų dinaminių gardelių kinetikas. Naujas požiūris į geltonosios liuminescencijos juostą GaN sluoksniuose leido susieti geltonosios liuminescencijos intensyvumą su krūvininkų gyvavimo trukme. Skirtingomis technologijomis augintų AlGaN sluoksnių palyginimas suteikė informacijos apie juostos potencialo fliuktuacijas bei krūvininkų gyvavimo trukmę ribojančius veiksnius AlGaN medžiagose. Atskleista naujų krūvininkų dinamikos daugialakštėse AlGaN/AlGaN kvantinėse duobėse ypatumų – vidinio elektrinio lauko bei kvantinės duobės pločio fliuktuacijų sąlygotos lokalizacijos įtaka krūvininkų dinamikai. Dauguma tirtų bandinių buvo auginti naudojant MEMOCVDTM technologiją ir tyrimai patvirtino šios technologijos potencialą siekiant pagerinti medžiagų kokybę.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Bellotti, E. (Enrico). „Advanced modeling of wide band gap semiconductor materials and devices“. Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/15354.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Lajn, Alexander. „Transparent rectifying contacts on wide-band gap oxide semiconductors“. Doctoral thesis, Universitätsbibliothek Leipzig, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-102799.

Der volle Inhalt der Quelle
Annotation:
Die vorliegenden Arbeit befasst sich mit der Herstellung und Charakterisierung von transparenten Metall-Halbleiter- Feldeffekttransistoren. Dazu werden im ersten Kapitel transparente gleichrichtende Kontakte, basierend auf dem Konzept von Metalloxidkontakten, hergestellt und im Hinblick auf chemische Zusammensetzung des Kontaktmaterials, Barriereninhomogenität und Kompatibilität mit amorphen Halbleitern untersucht. Außerdem wird die Anwendbarkeit der Kontakte als UV-Sensor studiert. Im zweiten Kapitel werden transparente leitfähige Oxide vorgestellt und insbesondere deren optische und elektrische Eigenschaften in Abhängigkeit von den Herstellungsbedingungen studiert. Das dritte Kapitel beinhaltet Untersuchungen zu transparenten Feldeffektransistoren, die auf den im ersten Kapitel untersuchten transparenten gleichrichtenden Kontakten basieren (TMESFETs). Insbesondere die elektrischen Stabilität der Bauelemente hinsichtlich Beleuchtung, erhöhten Temperaturen und Spannungsstress wird untersucht. Auch die Langzeitstabilität, Reproduzierbarkeit und der Effekt gepulster Spannungen wird betrachtet. Weiterhin wird die Verwendung amorpher Halbleiter im Kanal und damit auch die Herstellung flexibler Transistoren auf Folie demonstriert. Zuletzt werden die TMESFETs integriert und als Inverterschaltkreise aufgebaut und untersucht. Außerdem wird die Eignung der Transistoren zur Messung von Aktionspotentialen von Nervenzellen studiert.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Wind band gap Semiconductors"

1

1953-, Prelas Mark Antonio, North Atlantic Treaty Organization. Scientific Affairs Division. und NATO Advanced Research Workshop on Wide Band Gap Electronic Materials: Diamond, Aluminum Nitride, and Boron Nitride (1994 : Minsk, Belarus), Hrsg. Wide band gap electronic materials. Dordrecht: Kluwer Academic Publishers, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

United States. National Aeronautics and Space Administration., Hrsg. Further improvements in program to calculate electronic properties of narrow band gap materials: Final report. [Washington, DC: National Aeronautics and Space Administration, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Yang, Fan. Electromagnetic band gap structures in antenna engineering. New York: Cambridge University Press, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

T͡Sidilʹkovskiĭ, I. M. Electron spectrum of gapless semiconductors. Berlin: Springer, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Symposium L on Nitrides and Related Wide Band Gap Materials of the E-MRS (1998 Strasbourg, France). Nitrides and related wide band gap materials: Proceedings of Symposium L on Nitrides and Related Wide Band Gap Materials of the E-MRS 1998 Spring Conference, Strasbourg, France, June 16-19, 1998. Amsterdam: Elsevier, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Yi-Gao, Sha, und United States. National Aeronautics and Space Administration., Hrsg. Growth of wide band gap II-VI compound semiconductors by physical vapor transport. [Washington, DC: National Aeronautics and Space Administration, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Yi-Gao, Sha, und United States. National Aeronautics and Space Administration., Hrsg. Growth of wide band gap II-VI compound semiconductors by physical vapor transport. [Washington, DC: National Aeronautics and Space Administration, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Trieste ICTP-IUPAP Semiconductor Symposium (7th 1992). Wide-band-gap semiconductors: Proceedings of the Seventh Trieste ICTP-IUPAP Semiconductor Symposium, International Centre for Theoretical Physics, Trieste, Italy, 8-12 June 1992. Herausgegeben von Van de Walle, Chris Gilbert. Amsterdam: North-Holland, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Symposium, L. on Nitrides and Related Wide Band Gap Materials (1998 Strasbourg France). Nitrides and related wide band gap materials: Proceedings of Symposium L on Nitrides and Related Wide Band Gap Materials of the E-MRS 1998 Spring Conference, Strasbourg, France 16-19 June 1998. Amsterdam: Elsevier, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

United States. National Aeronautics and Space Administration., Hrsg. Bulk growth of wide band gap II-VI compound semiconductors by physical vapor transport. Bellingham, Wash: Society of Photo-Optical Instrumentation Engineers, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Wind band gap Semiconductors"

1

Ravichandran, K., S. Suvathi, P. Ravikumar und R. Mohan. „Wide Band Gap Semiconductors“. In Handbook of Semiconductors, 40–53. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003450146-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

„Copyright“. In Wide-Band-Gap Semiconductors, iv. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-81573-6.50001-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

„Front Matter“. In Wide-Band-Gap Semiconductors, v. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-81573-6.50002-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Frova, A., und E. Tosatti. „Preface“. In Wide-Band-Gap Semiconductors, vii—viii. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-81573-6.50003-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Van de Walle, Chris G. „Introduction“. In Wide-Band-Gap Semiconductors, ix—x. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-81573-6.50004-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Davis, Robert F. „Thin films and devices of diamond, silicon carbide and gallium nitride“. In Wide-Band-Gap Semiconductors, 1–15. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-81573-6.50005-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Nurmikko, Arto V., und Robert L. Gunshor. „Optical physics and laser devices in II–VI quantum confined heterostructures“. In Wide-Band-Gap Semiconductors, 16–26. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-81573-6.50006-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Walker, C. T., J. M. DePuydt, M. A. Haase, J. Qiu und H. Cheng. „Blue–green II–VI laser diodes“. In Wide-Band-Gap Semiconductors, 27–35. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-81573-6.50007-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Moustakas, T. D., T. Lei und R. J. Molnar. „Growth of GaN by ECR-assisted MBE“. In Wide-Band-Gap Semiconductors, 36–49. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-81573-6.50008-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Yoshikawa, Akihiko. „Ar ion laser-assisted metalorganic vapor phase epitaxy of ZnSe“. In Wide-Band-Gap Semiconductors, 50–64. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-81573-6.50009-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Wind band gap Semiconductors"

1

Chambouleyron, I. „VARIABLE BAND-GAP AMORPHOUS SEMICONDUCTORS“. In Proceedings of the International School on Crystal Growth and Characterization of Advanced Materials. WORLD SCIENTIFIC, 1988. http://dx.doi.org/10.1142/9789814541589_0023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Spirkoska, D., A. Efros, S. Conesa-Boj, J. R. Morante, J. Arbiol, A. Fontcuberta i Morral, G. Abstreiter, Jisoon Ihm und Hyeonsik Cheong. „Single Material Band Gap Engineering in GaAs Nanowires“. In PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666516.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wilke, Ingrid. „Terahertz emission from narrow band gap semiconductors“. In Optics East 2007, herausgegeben von Mehdi Anwar, Anthony J. DeMaria und Michael S. Shur. SPIE, 2007. http://dx.doi.org/10.1117/12.735101.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ten, Sergey Y., Fritz Henneberger, Michael Rabe und Nasser Peyghambarian. „Exciton tunneling in wide-band-gap semiconductors“. In Photonics West '96, herausgegeben von Weng W. Chow und Marek Osinski. SPIE, 1996. http://dx.doi.org/10.1117/12.238966.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ishikawa, Masato, Takashi Nakayama, Jisoon Ihm und Hyeonsik Cheong. „Nitrogen-induced optical absorption spectra of InP and GaP: direct vs. indirect band-gap systems“. In PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666264.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kuriyama, K., T. Ishikawa und K. Kushida. „Optical Band Gap and Bonding Character of Li3GaN2“. In PHYSICS OF SEMICONDUCTORS: 28th International Conference on the Physics of Semiconductors - ICPS 2006. AIP, 2007. http://dx.doi.org/10.1063/1.2730466.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Dietl, Tomasz. „Spintronics And Ferromagnetism In Wide-Band-Gap Semiconductors“. In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1993996.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Feix, Gudrun. „Advanced packaging for wide band gap power semiconductors“. In 2017 5th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D). IEEE, 2017. http://dx.doi.org/10.23919/ltb-3d.2017.7947427.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Khurgin, Jacob B. „Band gap engineering for laser cooling of semiconductors“. In Integrated Optoelectronic Devices 2006, herausgegeben von Marek Osinski, Fritz Henneberger und Yasuhiko Arakawa. SPIE, 2006. http://dx.doi.org/10.1117/12.644138.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Cyrille, Duchesne, Cussac Philippe und Chauffleur Xavier. „Interconnection technology for new wide band gap semiconductors“. In 2013 15th European Conference on Power Electronics and Applications (EPE). IEEE, 2013. http://dx.doi.org/10.1109/epe.2013.6634619.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Wind band gap Semiconductors"

1

Edgar, James H. MOVPE Reactor for Deposition of Wide Band Gap Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, April 2001. http://dx.doi.org/10.21236/ada393589.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hommerich, Uwe. Optical Characterization of Rare Earth-doped Wide Band Gap Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, August 1999. http://dx.doi.org/10.21236/ada369833.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kouvetakis, John. Synthesis, Characterization, Properties and Performance of Novel Direct Band Gap Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, Mai 2007. http://dx.doi.org/10.21236/ada482288.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Cheng, Hung Hsiang. Development of Direct Band Gap Group IV Semiconductors with the Incorporation of Sn. Fort Belvoir, VA: Defense Technical Information Center, März 2012. http://dx.doi.org/10.21236/ada558773.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie