Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Whispering gallery modes (WGMs)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Whispering gallery modes (WGMs)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Whispering gallery modes (WGMs)"
da Silva, Jaime, Elie R. Salameh, M. Volkan Ötügen und Dominique Fourguette. „Photonic Seismometer Based on Whispering Gallery Modes“. Seismological Research Letters 93, Nr. 2A (26.01.2022): 753–62. http://dx.doi.org/10.1785/0220210253.
Der volle Inhalt der QuelleWoska, Simon, Lukas Rebholz, Pascal Rietz und Heinz Kalt. „Intrinsic mode coupling in mirror-symmetric whispering gallery resonators“. Optics Express 30, Nr. 18 (24.08.2022): 32847. http://dx.doi.org/10.1364/oe.459348.
Der volle Inhalt der QuelleDukin A. A. und Golubev V. G. „Features of the shape of the emission spectrum of a spherical microresonator with a high refractive index luminescent shell due to the polarization of the whispering gallery modes“. Optics and Spectroscopy 130, Nr. 11 (2022): 1465. http://dx.doi.org/10.21883/eos.2022.11.55107.3857-22.
Der volle Inhalt der QuelleKogut, A. Ye, I. K. Kuzmichev, R. S. Dolia, S. O. Nosatiuk, Ye A. Shulha und He Jaochan. „A shielded planar dielectric resonator with whispering gallery modes“. Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series 63, Nr. 4 (12.01.2019): 478–85. http://dx.doi.org/10.29235/1561-8358-2018-63-4-478-485.
Der volle Inhalt der QuelleDantham, Venkata Ramanaiah, und Prem Ballabh Bisht. „Influence of whispering gallery modes (WGMs) on energy transfer“. Chemical Physics 388, Nr. 1-3 (September 2011): 38–42. http://dx.doi.org/10.1016/j.chemphys.2011.07.015.
Der volle Inhalt der QuelleZhou, Taojie, Kar Wei Ng, Xiankai Sun und Zhaoyu Zhang. „Ultra-thin curved visible microdisk lasers with three-dimensional whispering gallery modes“. Nanophotonics 9, Nr. 9 (04.07.2020): 2997–3002. http://dx.doi.org/10.1515/nanoph-2020-0242.
Der volle Inhalt der QuelleDu, Xiao-Jing, Xu-Tao Tang, Bo Xie, Lin Ma, Ma-Long Hu, Jun He und Zhong-Jian Yang. „Turning whispering-gallery-mode responses through Fano interferences in coupled all-dielectric block-disk cavities“. Optics Express 31, Nr. 18 (17.08.2023): 29380. http://dx.doi.org/10.1364/oe.500562.
Der volle Inhalt der QuelleOkada, Naoki, James B. Cole, Shigeki Yamada, Kensuke Ogawa und Yoshifumi Katayama. „Nonstandard FDTD Simulation-Based Design of CROW Wavelength Splitters“. Advances in Optical Technologies 2011 (01.06.2011): 1–6. http://dx.doi.org/10.1155/2011/265702.
Der volle Inhalt der QuelleMichihata, Masaki, Akifumi Kawasaki und Yasuhiro Takaya. „Precise Diameter Measurement of a Microsphere Based on Polarization Analysis of Whispering Gallery Mode Resonance“. Applied Mechanics and Materials 870 (September 2017): 108–13. http://dx.doi.org/10.4028/www.scientific.net/amm.870.108.
Der volle Inhalt der QuelleSiriroj, R., K. Srinuanjan und P. P. Yupapin. „Micro Plasma Source Design Using WGMs a PANDA Ring“. Advanced Materials Research 979 (Juni 2014): 3–6. http://dx.doi.org/10.4028/www.scientific.net/amr.979.3.
Der volle Inhalt der QuelleDissertationen zum Thema "Whispering gallery modes (WGMs)"
Jana, Subha. „Biodetection using fluorescence energy transfer from Quantum dot excited whispering gallery modes to fluorescent acceptors“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLS081.
Der volle Inhalt der QuelleQuantification of specific biomarkers is an important diagnostic tool. Standard immunoassays such as ELISA require extensive washing steps and signal amplification, in particular when the biomarker of interest is only present at very low concentrations. On the other hand, non-radiative Förster resonance energy transfer (FRET) has been used to design one-step homogenous bioassays which do not require any washing steps, where the biomarker enables the formation of a sandwich complex involving donor-labeled and acceptor-labeled antibodies. FRET from the donor to the acceptor then provides an optical signature of the complex formation, hence of the biomarker of interest. However, FRET which is highly sensitive to the donor-acceptor distance, only occurs in a significant rate when the distance between the donor and acceptor is less than 10 nanometers; thus the large size of many biological complexes limits the efficiency of energy transfer, preventing sensitive detection. Here I propose a novel energy transfer modality that uses solution-phase optical microcavities to enhance energy transfer. Following that, I describe a bio-sensing scheme designed to detect a cancer biomarker DNA in solution.To this aim, I have designed microcavity structures in which fluorescent colloidal quantum dots are located inside dielectric polymer microspheres to enable strong coupling of their fluorescence emission with the cavity resonance modes or whispering gallery modes (WGMs) of the microspheres. A detailed study was carried out to comprehend the structural and optical properties of these optical microcavities. I also characterized the energy transfer between these modes and acceptor dye-loaded nanoparticles present in the evanescent field, within a few tens of nanometers above the microsphere surface. An analytical model was constructed to provide insights into the WGM mediated energy transfer (WGET) mechanisms. Moreover, a comparison between WGET and FRET revealed the superiority of WGET in the context of building sensors with improved sensitivity and longer range of detection. In the last part of the thesis, a strategy is discussed in detail to provide biological functionalities to these optical microcavities which would enable them to interact with target analytes such as DNA, RNA, and proteins with high specificity, and moreover to reduce non-specific interactions. This strategy then was adapted to attach DNA capture probes onto the WGM enabled microcavities. Using the DNA attached microspheres as optical donor in combination with probe-DNA functionalized dye nanoparticles as optical acceptors, a biosensing assay has been successfully demonstrated to detect a cancer biomarker DNA called survivin in the solution phase. This assay did not only show good sensitivity towards the target, but also it has proven to be highly specific. The detection scheme has been demonstrated in a sophisticated confocal microscope at the single microsphere level, then successfully translated to a much simpler spectrofluorometer that measures fluorescence from the whole sample solution; the signature of the sandwich complex formation was also effectively detected.In conclusion, I demonstrated that microcavity-assisted energy transfer has several advantages over regular FRET assays. A real bio-sensing assay based on the WGET principle has also been successfully designed to detect cancer biomarkers with high sensitivity and specificity. This study thus opens up many possibilities to design high-performing and more accurate assays to detect varieties of biological entities
Shah, Suhani Kiran. „Modeling scattered intensity from microspheres in evanescent field“. Thesis, [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-2021.
Der volle Inhalt der QuelleYue, HongQuan. „Optical whispering gallery modes in chalcogenide As2Se3 microspheres“. Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104591.
Der volle Inhalt der QuelleCette thèse présente une analyse théorique et expérimentale du couplage des microsphères anisotropes en verre de chalcogénure. Les modes de galerie résonants (WGMS) de microsphères isotrope sont aussi présentés et la relation de dispersion TE et TM des WGMS est dérivée à partir des équations vectorielles électromagnétiques en coordonnées sphériques. Les équations de Maxwell peuvent être résolues en 2D pour la résolution en 3D de microsphères axisymétriques ou a symétrie rotationnelle isotrope. Les quatre premiers WGMS TE et TM sont simulés dans le modèle 2D en utilisant la méthode des éléments finis. La capacité de liaison, le volume modal V et facteur de qualité Q dépendent de l'indice de réfraction et de la taille de la microsphère. On décompose une onde lumineuse en multiples fronts d'onde plan à l'intérieur de la microsphère; le coefficient de couplage entre une microsphère et un microfil est déterminé par le nombre de WGMS et la distance entre la microsphère et microfil. Le facteur de qualité Q est analysé; le couplage TE & TM de microsphères non linéaire est introduit à partir de simulations Matlab. Des expériences de couplage pour la transmission, la réflexion et le port à fonction «drop» sont conduites. Les ondes lumineuses pour le couplage proviennent d'une source de lumière à large bande incohérent et d'une source laser étroite accordable à bande étroite. La lumière à large bande a donné des résultats à haute sensibilité tandis que le laser cohérent facilite la mesure de couplage.En dernier lieu, les microsphères de chalcogénure ont été utilisées comme élément de rétroaction pour un milieu amplificateur. En comparaison avec des microsphères de silice, les microsphères de chalcogénure génèrent une réponse qui est plus instable due à la perturbation par les porteurs libres et l'activité thermique.
Foster, David H. „Fabry-Perot and Whispering Gallery Modes In Realistic Resonator Models“. Thesis, view abstract or download file of text, 2006. http://wwwlib.umi.com/cr/uoregon/fullcit?p3211216.
Der volle Inhalt der QuelleTypescript. Includes vita and abstract. Includes bibliographical references (leaves 204-213). Also available for download via the World Wide Web; free to University of Oregon users.
Dinyari, Khodadad. „Coupling Nitrogen Vacancy Centers in Diamond Nanopillars Whispering Gallery Microresonators“. Thesis, University of Oregon, 2013. http://hdl.handle.net/1794/12962.
Der volle Inhalt der QuellePang, Shuo. „Whispering gallery modes in quantum dot-embedded dielectric microspheres for tagless remote refractometric sensing“. Texas A&M University, 2008. http://hdl.handle.net/1969.1/85998.
Der volle Inhalt der QuelleFraser, Michael John. „Optical Fiber Microstructures for Self-Contained Whispering Gallery Mode Excitation“. Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/73659.
Der volle Inhalt der QuellePh. D.
Auxemery, Philippe. „Contribution à l'étude des paramètres électriques et électromagnétiques des modes de galerie des résonateurs diélectriques“. Limoges, 1989. http://www.theses.fr/1989LIMO4001.
Der volle Inhalt der QuelleKlusmann, Carolin [Verfasser], und H. [Akademischer Betreuer] Kalt. „Hybrid Photonic–Plasmonic Modes in Coated Whispering-Gallery Resonators / Carolin Klusmann ; Betreuer: H. Kalt“. Karlsruhe : KIT-Bibliothek, 2019. http://d-nb.info/1191267466/34.
Der volle Inhalt der QuelleCros, Dominique. „Les whispering gallery modes des resonateurs dielectriques : application aux oscillateurs et combineurs de puissance millimetriques“. Limoges, 1990. http://www.theses.fr/1990LIMO0108.
Der volle Inhalt der QuelleBücher zum Thema "Whispering gallery modes (WGMs)"
Vollmer, Frank, und Deshui Yu. Optical Whispering Gallery Modes for Biosensing. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06858-4.
Der volle Inhalt der QuelleVollmer, Frank, und Deshui Yu. Optical Whispering Gallery Modes for Biosensing. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60235-2.
Der volle Inhalt der QuelleVollmer, Frank, und Deshui Yu. Optical Whispering Gallery Modes for Biosensing: From Physical Principles to Applications. Springer International Publishing AG, 2020.
Den vollen Inhalt der Quelle findenVollmer, Frank, und Deshui Yu. Optical Whispering Gallery Modes for Biosensing: From Physical Principles to Applications. Springer International Publishing AG, 2021.
Den vollen Inhalt der Quelle findenVollmer, Frank, und Deshui Yu. Optical Whispering Gallery Modes for Biosensing: From Physical Principles to Applications. Springer International Publishing AG, 2022.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Whispering gallery modes (WGMs)"
Vollmer, Frank, und Deshui Yu. „Applications of WGM Microcavities in Physics“. In Optical Whispering Gallery Modes for Biosensing, 175–255. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06858-4_4.
Der volle Inhalt der QuelleShen, Zhen. „Whispering Gallery Modes Microcavity“. In Experimental Research of Cavity Optomechanics, 13–25. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4458-7_2.
Der volle Inhalt der QuelleVollmer, Frank, und Deshui Yu. „Whispering Gallery Modes in Optical Microcavities“. In Biological and Medical Physics, Biomedical Engineering, 117–70. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60235-2_3.
Der volle Inhalt der QuelleKawashima, Hitoshi, und Toshifumi Hasama. „Photonic Wavepacket in Whispering-Gallery Modes“. In Ultrafast Phenomena XIII, 241–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-59319-2_75.
Der volle Inhalt der QuelleVollmer, Frank, und Deshui Yu. „Whispering Gallery Modes in Optical Microcavities“. In Optical Whispering Gallery Modes for Biosensing, 119–73. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06858-4_3.
Der volle Inhalt der QuelleVollmer, Frank, und Deshui Yu. „Surface Plasmon Resonance“. In Optical Whispering Gallery Modes for Biosensing, 63–118. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06858-4_2.
Der volle Inhalt der QuelleVollmer, Frank, und Deshui Yu. „Sensing with Light“. In Optical Whispering Gallery Modes for Biosensing, 1–61. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06858-4_1.
Der volle Inhalt der QuelleVollmer, Frank, und Deshui Yu. „Fundamentals of Quantum Optics“. In Optical Whispering Gallery Modes for Biosensing, 347–97. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06858-4_6.
Der volle Inhalt der QuelleVollmer, Frank, und Deshui Yu. „Molecular Cavity QED“. In Optical Whispering Gallery Modes for Biosensing, 399–446. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06858-4_7.
Der volle Inhalt der QuelleVollmer, Frank, und Deshui Yu. „Single Molecule Sensing“. In Optical Whispering Gallery Modes for Biosensing, 257–345. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06858-4_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Whispering gallery modes (WGMs)"
Birks, T. A., und J. C. Knight. „Excitation of Whispering Gallery Modes in Fibres by Fibres“. In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/cleo_europe.1998.cthi2.
Der volle Inhalt der QuelleManzo, Maurizio, und Ryan Schwend. „A Novel Microlaser Based Plasmonic-Polymer Hybrid Resonator“. In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86998.
Der volle Inhalt der QuelleTatel, Gerard, und Xiaoyi Bao. „Microsphere coupled off-core fiber sensor for ultrasound sensing“. In Optical Fiber Sensors. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/ofs.2022.w4.70.
Der volle Inhalt der QuelleQuan, Haiyong, und Zhixiong Guo. „Radiation Transfer in Whispering-Gallery Mode Microcavities“. In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80012.
Der volle Inhalt der QuelleGizatulin, Azat, und Albert Sultanov. „Application of whispering gallery modes (WGM) in optical communications“. In optical-technologies-in-telecommunications-2017, herausgegeben von Vladimir A. Andreev, Vladimir A. Burdin, Oleg G. Morozov, Albert H. Sultanov und Anton V. Bourdine. SPIE, 2018. http://dx.doi.org/10.1117/12.2317739.
Der volle Inhalt der QuelleQuan, Haiyong, und Zhixiong Guo. „Characterization of Optical Microcavity Whispering-Gallery-Mode Resonators“. In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72263.
Der volle Inhalt der QuelleJalaludeen, Mohammed Zia, Shilong Li und Síle Nic Chormaic. „Internal Structure of Hollow Microbubble Resonators“. In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/fio.2022.jw5a.96.
Der volle Inhalt der QuelleLi, Fu, Zhoutian Fu, Di Jia und Lan Yang. „Observation of Optomechanical Solitons in a WGM Microresonator“. In Nonlinear Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/nlo.2023.tu3a.3.
Der volle Inhalt der QuelleWang, Zhizheng, Yiang Qin und A. Ping Zhang. „Optically 3D μ-printed directional-emission WGM microlasers for on-chip integrated sensing“. In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_at.2023.atu3r.2.
Der volle Inhalt der QuelleFrenkel, Matthew, Marlon Avellan und Zhixiong Guo. „Optical Whispering-Gallery Mode Phenomenon as a Composite Sensor With Applications to Direct On-Chip Thermal Sensing“. In ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17245.
Der volle Inhalt der Quelle