Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Wheat Diseases and pests Cultural control.

Dissertationen zum Thema „Wheat Diseases and pests Cultural control“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-16 Dissertationen für die Forschung zum Thema "Wheat Diseases and pests Cultural control" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Gaongalelwe, Motlhasedi Olebile. „Effect of delayed sowing and increased crop density on weed emergence and competition with wheat“. Title page, table of contents and abstract only, 2002. http://web4.library.adelaide.edu.au/theses/09AFM/09afmg2118.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Dyer, Sonya. „The role of colonisation of soil and wheat roots by Trichoderma koningii in biological control of Gaeumannomyces graminis var. tritici“. Title page, table of contents and abstract only, 1998. http://web4.library.adelaide.edu.au/theses/09PH/09phd9966.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wiseman, Bronwyn Meg. „Characterisation of rhizoctonia barepatch decline“. Title page, contents and summary only, 1996. http://web4.library.adelaide.edu.au/theses/09PH/09phw8137.pdf.

Der volle Inhalt der Quelle
Annotation:
Bibliography: leaves 184-209. This thesis describes the occurence of natural, biologically based suppression of Rhizoctonia barepatch in a direct drilled system at Avon, South Australia. The supressive characteristics are transferable, removed by biocidal treatments, and active against increasing doses of R. solani AG-8, Gaeumannomyces graminis var. tritici and Fusarium graminearum. Disease severity and the viable population of Rhizoctonia are reduced in suppressive soil but the causal agent is still present. The microbial populations in suppressive and non-suppressive soil appear to differ both in their functioning and composition. The control strategy is developed through manipulation of the existing soil biota with farming practices.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bahlmann, Lieschen. „Factors affecting the resistance mechanisms of the Russian wheat aphid (Diuraphis noxia) on wheat“. Diss., University of Pretoria, 2002. http://hdl.handle.net/2263/28470.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ross, Ian Lindsay. „Mechanisms of biocontrol of Gaeumannomyces graminis var. tritici by Pseudomonas corrugata strain 2140 : genetic and biochemical aspects“. Title page, table of contents and summary only, 1996. http://web4.library.adelaide.edu.au/theses/09PH/09phr824.pdf.

Der volle Inhalt der Quelle
Annotation:
Bibliography: leaves 207-220. Pseudomonas corrigata strain 2140 (Pc2140), isolated from wheat field soil in Australia, antagonises the take-all fungus, Gaeumannomyces graminis var. tritici (Ggt) in vitro and significantly reduces take-all symptoms on wheat in pot trials. This study investigates the mechanisms by which the biocontrol agent reduces the disease symptoms. Biochemical analysis of metabolites of P. corrugata 2140 reveal a number of compounds potentially antagonistic to Ggt and which may play a role in disease control. These include water-soluble antibiotics, siderophores, proteases, peptides and volatiles including hydrogen cyanide.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bujold, Isabelle. „The use of a fungal antagonist to reduce the initial inoculum of Gibberella zeae on wheat and corn debris /“. Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=31199.

Der volle Inhalt der Quelle
Annotation:
Gibberella zeae (anamorph: Fusarium graminearum) is the causal agent of fusarium head blight (FHB) and maize ear rot, two major diseases of wheat and corn in Eastern Canada.
In Quebec, Microsphaeropsis sp., an antagonist of Venturia inaequalis, the causal agent of apple scab, was isolated from the apple leaf litter. This fungus, well adapted to Quebec climate, can reduce the initial inoculum of V. inaequalis. FHB and Gibberella ear rot are similar to apple scab because the major inoculum source comes from melanized structures produced on crop residues. Consequently, we evaluated the potential of Microsphaeropsis sp. (isolate P130A) to inhibit ascospore production of G. zeae when applied to crop residues as post harvest or pre-planting applications. Under in vitro conditions, the antagonist significantly reduced ascospore production on wheat and corn residues, when applied prior to (82% and 92% respectively) or at the same time as the pathogen (36% and 58% respectively). Under field conditions, the antagonist had no effect on the pattern of perithecia maturation but significantly reduced the number of ascospores produced on two sampling dates, May 1998 and July 1999. (Abstract shortened by UMI.)
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Eksteen, Aletta. „Ontwikkeling van molekulere merkers vir wilde-spesie-verhaalde weerstandsgeenkomplekse van gewone koring“. Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/2087.

Der volle Inhalt der Quelle
Annotation:
Thesis (MSc (Genetics))--University of Stellenbosch, 2009.
Worldwide, the rust diseases cause significant annual wheat yield losses (Wallwork 1992; Chrispeels & Sadava 1994). The utilization of host plant resistance to reduce such losses is of great importance particularly because biological control avoids the negative environmental impact of agricultural chemicals (Dedryver et al. 1996). The wild relatives of wheat are a ready source of genes for resistance to disease and insect pests. A large degree of gene synteny still exists among wheat and its wild relatives (Newbury & Paterson 2003). It is therefore possible to transfer a chromosome segment containing useful genes to a homologous region in the recipient genome without serious disruption of genetic information. Special cytogenetic techniques are employed to transfer genes from the wild relatives to the wheat genomes (Knott 1989). Unfortunately the transfer of useful genes may be accompanied by the simultaneous transfer of undesirable genes or redundant species chromatin which has to be mapped and removed (Feuillet et al. 2007). DNA markers are extremely useful for the characterisation and shortening of introgressed regions containing genes of interest (Ranade et al. 2001), and may also be used for marker aided selection of the resistance when the genes are employed commercially. Eight wheat lines containing translocations/introgressions of wild species-derived resistance genes were developed by the Department of Genetics (SU). These lines are presently being characterized and mapped and attempts are also being made to shorten the respective translocations. This study aimed to find DNA markers for the various translocations and to convert these into more reliable SCAR markers that can be used in continued attempts to characterize and improve the respective resistance sources. A total of 260 RAPD and 21 RGAP primers were used to screen the eight translocations and, with the exception of Lr19, it was possible to identify polymorpic bands associated with each translocation. However, it was not possible to convert all of these into more reliable SCAR markers. The primary reason for this was the low repeatability of most of the bands. Certain marker fragments turned out to be repeatable but could not be converted successfully. Some of the latter can, however, be used directly (in RAPD or RGAP reactions) as markers. The Lr19 translocation used in the study (Lr19-149-299) is a significantly reduced version of the original translocation and failure to identify polymorphisms associated with it can probably be ascribed to its small size. The following numbers of markers (direct and converted into SCARs) were Worldwide, the rust diseases cause significant annual wheat yield losses (Wallwork 1992; Chrispeels & Sadava 1994). The utilization of host plant resistance to reduce such losses is of great importance particularly because biological control avoids the negative environmental impact of agricultural chemicals (Dedryver et al. 1996). The wild relatives of wheat are a ready source of genes for resistance to disease and insect pests. A large degree of gene synteny still exists among wheat and its wild relatives (Newbury & Paterson 2003). It is therefore possible to transfer a chromosome segment containing useful genes to a homologous region in the recipient genome without serious disruption of genetic information. Special cytogenetic techniques are employed to transfer genes from the wild relatives to the wheat genomes (Knott 1989). Unfortunately the transfer of useful genes may be accompanied by the simultaneous transfer of undesirable genes or redundant species chromatin which has to be mapped and removed (Feuillet et al. 2007). DNA markers are extremely useful for the characterisation and shortening of introgressed regions containing genes of interest (Ranade et al. 2001), and may also be used for marker aided selection of the resistance when the genes are employed commercially. Eight wheat lines containing translocations/introgressions of wild species-derived resistance genes were developed by the Department of Genetics (SU). These lines are presently being characterized and mapped and attempts are also being made to shorten the respective translocations. This study aimed to find DNA markers for the various translocations and to convert these into more reliable SCAR markers that can be used in continued attempts to characterize and improve the respective resistance sources. A total of 260 RAPD and 21 RGAP primers were used to screen the eight translocations and, with the exception of Lr19, it was possible to identify polymorpic bands associated with each translocation. However, it was not possible to convert all of these into more reliable SCAR markers. The primary reason for this was the low repeatability of most of the bands. Certain marker fragments turned out to be repeatable but could not be converted successfully. Some of the latter can, however, be used directly (in RAPD or RGAP reactions) as markers. The Lr19 translocation used in the study (Lr19-149-299) is a significantly reduced version of the original translocation and failure to identify polymorphisms associated with it can probably be ascribed to its small size. The following numbers of markers (direct and converted into SCARs) were v identified: S8-introgression (Triticum dicoccoides) = one RAPD and two SCARs; S13-translocation (Aegilops speltoides) = four RAPDs, three RGAPs and five SCARs; S15-translocation (Ae. peregrina) = one RAPD and two SCARs; S20-translocation (Ae. neglecta) = two RAPDs, two RGAPs and one SCAR. The markers are already being employed in current projects aiming to map and shorten these translocations. Some of the markers can be combined in multiplex reactions for more effective mass screening. No repeatable markers could be identified for the four remaining translocations (S12 from Ae. sharonensis; S14 from Ae. kotschyi; Smac from Ae. biuncialis and Lr19-149-299 from Thinopyrum ponticum).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Yaku, Alexander. „Effects of intercropping sweet potato on the population density of sweet potato weevil, Cylas formicarius (F.) (Coleoptera:Curculionidae)“. Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=56673.

Der volle Inhalt der Quelle
Annotation:
Field experiments were conducted during the 1989 dry season (July to December) at the Manggoapi Farm of the Faculty of Agriculture, Cenderawasih University in Manokwari, Irian Jaya, Indonesia. The objectives of the experiments were to determine the effects of four sweet potato cropping systems on the population density of sweet potato weevils (SPW) and on the diversity of other insects within these agroecosystems.
Fewer SPW were found in intercropped sweet potato + corn (2 weevils per kg infected tubers), sweet potato + soybean (21 weevils), sweet potato + corn + soybean (8 weevils) than in monoculture sweet potato (37 weevils); percentage of damaged tubers followed the same trend, ranging from 2.6% to 14.0% in intercropped sweet potato, to 21.9% in the sweet potato monoculture. However, the higher number of SPW and damaged tubers in the monoculture did not reduce yield below that in the intercropped plots.
Insect and spider populations were more diverse in the intercropped sweet potato systems than in monoculture. Number of arthropods increased throughout the growing season. Intercropping may reduce the population density of other insect pests associated with sweet potato and may increase the population density of natural enemies.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ntushelo, Khayalethu. „Comparative studies on genetic variability and fungicide resistance in Tapesia yallundae“. Thesis, Stellenbosch : Stellenbosch University, 1998. http://hdl.handle.net/10019.1/55834.

Der volle Inhalt der Quelle
Annotation:
Thesis (MScAgric)--Stellenbosch University, 1998.
ENGLISH ABSTRACT: Eyespot is an important disease of spring wheat (Triticum aestivum L.). Four species of Ramulispora are associated with this disease, of which Tapesia yallundae and T. acuformis. are common. This thesis investigates the broader subjects of genetic variability, reproductive dynamics and fungicide resistance in Tapesia yallundae. Each of the chapters treats specific but related topics. T. yallundae, which is the only species thus far reported from South Africa, has been associated with yield losses of up to 50%. To enable the implementation of more accurate and effective control measures, understanding the dynamics of reproduction and the genetics of the pathogen is of utmost importance. Of the many plant disease control measures such as cultural practices, sanitation, biological control, etc., fungicide application is the most commonly resorted to measure in eyespot control. This thesis investigates the broader subjects of genetic variability, reproductive dynamics and fungicide resistance of Tapesia yallzll7dae. Fungicide application, however, is not without problems. The pathogen can build up resistance to fungicides. The most commonly used fungicides in eyespot control include the benzimidazole carbendazim, triazoles such as flusilazole, tebuconazole, propiconazole, bromuconazole, flutriafol, fenbuconazole, triademinol, and the imidazole, prochloraz. Cases of resistance to the groups listed above have been reported. Frequent monitoring for resistance is thus crucial to prevent wastage of fungicide and unnecessary impregnantation of the environment with potentially ineffective chemicals. In chapter 2 of this thesis 300 isolates of T. yallundae from 15 fields were evaluated for resistance against carbendazim, flusilazole, tebuconazole, propiconazole, bromuconazole, flutriafol and fenbuconazole. These results indicated that to some triazoles, such as fenbuconazole, a high level of resistance was already present in field populations. In a sexually reproducing fungus such as T. yallundae, knowledge pertaining to its ability to pass resistance factors to offspring is equally important. Mating studies were, therefore, also conducted with parental strains that showed signs of triazole resistance. Three generations were subsequently tested for resistance to five triazoles, namely flusilazole, tebuconazole, propiconazole, bromuconazole and flutriafol. Results of this study showed variable sensitivity in progeny, which indicated quantitative inheritance of resistance to triazoles. Although the sexual stage has not yet been observed in the field in South Africa, this knowledge lays the foundation for the long-term understanding of the population dynamics of the fungus. The ability of a heterothallic ascomycete population to reproduce sexually is dependent on the availability of its two mating types, MATI-I and MATI-2, their distribution, and female fertility amongst other factors. In the UK. the teleomorph is commonly observed in the field, which is in contrast to the situation in South Africa, where it has only been induced in the laboratory. A comparative study between the South African and the UK. populations was therefore undertaken. Isolates representative of the two populations were mated with tester strains as both sperm recipients and as sperm donors. This allowed the percentage of hermaphrodites to be determined. No difference in terms of female fertility was observed between the South African and the UK. populations, with both populations showing low effective population numbers. These data suggested, therefore, that the teleomorph would also occur more frequently in South Africa if the climate was more indusive to its development. The overall results of this study indicated that eyes pot could still be controlled by means of fungicide application in South Africa. Although a shift in sensitivity was observed towards fenbuconazole and flusilazole, no resistance was detected towards carbendazim. The latter might be due to the absen<.:eof the sexual stage in the field, coupled by the monocyclic nature of the pathogen and sensible fungicide regimes. The absence of T. acujormis makes the disease situation less complicated in terms of fungicide application and management. Continuous surveys will have to be conducted, however, to monitor this situation in future.
AFRIKAANSE OPSOMMING: Hierdie studie ondersoek die genetiese variasie, reproduksie dinamika en fungisied weerstand in Tapesia yallundae. Elke hoofstuk handel oor spesifieke maar verwante onderwerpe. Oogvlek is 'n belangrike siekte van lentekoring (Triticum aestivum L.). Vier spesies van Ramulispora word geassosieer met die siekte, waarvan Tapesia yallundae en T. acuformis mees algemeen voorkom. T. yallundae, wat tans die enigste spesie is wat in Suid-Afrika aangeteken is, het al verliese van tot 50% veroorsaak. Om meer akkurate en effektiewe beheermaatreels te implementeer, is dit noodsaaklik om die oorlewingsdinamika van die patogeen te verstaan. Van al die siektebeheermaatreels soos kulturele praktyke, sanitasie, biologiese beheer ens., bly fungisiedbehandeling die mees algemene maatreel vir die beheer van oogvlek. Fungisiedtoediening het egter ook verskeie probleme. Die patogeen kan weerstand opbou teen die fungisied. Die mees algemene fungisiedes wat vir oogvlekbeheer aangewend word sluit onder meer die benzimidasool karbendazim in, triasole soos flusilasool, tebukonasool, propikonasool, bromukonasool, flutriafol, fenbukonasool, triadimenol, en die imidasool, prochloraz. Weerstand is egter reeds teen hierdie middels bekend. Gedurige monitering vir weerstand is dus krities om die vermorsing van fungisied en besoedeling van die omgewing met oneffektiewe middels te beperk. In hoofstuk 2 van hierdie manuskrip word 300 isolate van T. yallundae van 15 lande geevalueer vir weerstand teenoor karbendazim, flusilasool, tebukonasool, propikonasool, bromukonasool, flutriafol en fenbukonasool. Resultate dui daarop dat teen sommige van hierdie triasole, soos bv. fenbukonasool, daar reeds 'n hoe vlak van weerstand teenwoordig was in veldpopulasies. In 'n seksueel reproduserende fungus soos T. yalluJ1dae, is dit noodsaaklik om te bepaal wat sy vermoe is om weerstandbiedenheid aan die nageslag oor te dra. Om die rede is paringstudies ook op ouers wat tekens van weerstand teenoor triasole getoon het uitgevoer. Drie generasies was gevolglik getoets vir weerstand teenoor vyf triasole, naamlik flusilasool, tebuconasool, propikonasool, brumukonasool en flutriafol. Resultate van die studie het 'n variasie in sensitiwiteit van die nageslag getoon, wat op 'n kwantitatiewe oorerwing van weerstand teen £riasole dui. Alhoewel die teleomorf nog nie in lande in Suid-Afrika opgemerk is nie, Ie hierdie kennis die fondament vir die langtermyn vertolking van die populasie dinamika van hierdie fungus. Die vermoe van 'n heterotalliese askomiseet populasie om seksueel voort te plant is afhanklik van die beskikbaarheid van sy twee paringstipes, MATI-I en MATl-2, hul verpreiding, vroulike vrugbaarheid en ander faktore. Alhoewel die teleomorf algemeen in lande in die Verenigde Koninkryk opgemerk word, is dit in kontras met die situasie in Suid-Afrika, waar hierdie stadium nog slegs in die laboratorium gelnduseer kon word. 'n Studie is dus onderneem om die Suid-Afrikaanse en V.K. populasies met mekaar te vergelyk. Isolate van die twee populasies is dus gepaar met paringsisolate as beide sperm ontvangers en sperm donors. Hierdie prosedure het dit moontlik gemaak om die persentasie hermafrodiete te bepaal. Geen verskille in vroulike fertiliteit is tussen die Suid-Afrikaanse en V.K. populasies bespeur nie, en beide populasies het ook 'n lae effektiewe populasie getal getoon. Hierdie data het dus voorgestel dat die teleomorf ook meer algemeen in Suid-Afrika sou voorkom as die klimaat meer geskik was vir teleomorf vormmg. Die resultate van hierdie studie het tot die slotsom gelei dat oogvlek steeds deur fungisiedbehandeling in Suid-Afrika beheer kan word. Alhoewel daar 'n merkbare verskuiwing in sensitiwiteit teenoor fenbukonasool en flusilasool was, was geen weerstand teenoor karbendazim waargeneem nie. Laasgenoemde kan dalk toegeskryf word aan die afwesigheid van die teleomorf in die veld, gekombineer met die monosikliese natuur van die patogeen en gebruik van alternerende fungisiedes. Die afwesigheid van T. acuformis maak die plaaslike siektetoestand minder gekompliseerd in terme van fungisied aanwending en bestuur. Voortdurende opnames sal egter uitgevoer moet word om hierdie situasie ook in die toekoms te monitor.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Cooke, Julie A. (Julie Anne). „Nutritional requirement of wheat in relation to tolerance to Rhizoctonia solani Kuhn / by Julie A. Cooke“. 2000. http://hdl.handle.net/2440/22467.

Der volle Inhalt der Quelle
Annotation:
Bibliography: leaves 119-143
v, 148 leaves : ill. ; 30 cm.
Title page, contents and abstract only. The complete thesis in print form is available from the University Library.
Thesis (Ph.D.)--University of Adelaide, Dept. of Plant Science, 2000
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Cowger, Christina. „Cephalosporium stripe of wheat : seedling-based resistance screening and pathogenic variability“. Thesis, 1997. http://hdl.handle.net/1957/33687.

Der volle Inhalt der Quelle
Annotation:
Cephalosporium stripe of wheat (Triticum aestivum), caused by the soilborne fungus Cephalosporium gramineum, results in significant yield reductions in dryland winter wheat crops of the U.S. Pacific Northwest. The development of resistant cultivars offers the best hope for disease control. Breeding for resistance is hampered by the long trial times inherent in screening adult plants, and by cultivar x environment interactions in field tests. The principal objective of this research was to develop and test a procedure for screening wheat seedlings in controlled environments for resistance to Cephalosporium stripe. Wheat seedlings were raised hydroponically in growth chambers, and the fungus was increased in large fermentation tanks. The seedlings were inoculated at about 12 days post-germination. Disease severity was assessed approximately seven days later using a chlorophyll meter to measure the symptoms of chlorosis and striping. In three trials, five soft white cultivars from the Pacific Northwest and four hard red cultivars from the Southern Great Plains with known levels of field resistance were tested with a Pacific Northwest fungal isolate. With one exception, chlorophyll readings ordered the cultivars appropriately, with moderately resistant cultivars ranking above susceptible cultivars. Three other moderately resistant cultivars from the Pacific Northwest also appeared in one or two trials, and were ranked properly by chlorophyll level. Chlorophyll levels of uninoculated plants were assayed to determine if differences in chlorophyll content were innate in the cultivars. The chlorophyll levels of uninoculated and inoculated seedling treatments were only significantly correlated when the cultivar Madsen, which ranks high both in resistance and in chlorophyll content, was included. In adult plants, flag-leaf chlorophyll level corresponded to intensity of Cephalosporium stripe symptoms where disease was present, and was independent of known field resistance in undiseased cultivars. The seedling screening technique was used to investigate pathogenic variability in C. gramineum. In two experiments, a total of eight cultivars from the Pacific Northwest and the Southern Great Plains were tested with three fungal isolates from each region. No evidence of virulence/vertical resistance was found. There was also no significant adaptation of isolates to greater virulence on cultivars from the same region.
Graduation date: 1998
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Mosupi, P. O. P. (Pharoah Olifant Pedro). „Chemical and cultural control of armoured bush cricket, Acanthoplus discoidalis (Walker) (Orthoptera: Tettigoniidae: Hetrodinae), in sorghum in Botswana“. Thesis, 2003. http://hdl.handle.net/2263/29424.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Hatting, Justin Louis. „Fungal parasitism of cereal aphids in South Africa“. Thesis, 2002. http://hdl.handle.net/10413/10249.

Der volle Inhalt der Quelle
Annotation:
The Russian wheat aphid, Diuraphis noxia is one of the most destructive exotic invaders of South Africa, capable of reducing individual wheat plant yields by up to 90%. Entomopathogenic fungi are important natural mortality factors associated with this aphid in its Eurasian endemic habitats as well as in the United States and Canada; their impact often exceeding that of predators and parasitoids. The principal objectives of this study included (1) baseline characterization of the aphid-pathogenic flora associated with aphids from South Africa, with special reference to six common cereal aphids, (2) quantification of the comparative impact of the different fungal species on the cereal-aphid complex in three different wheat producing regions of South Africa, (3) field evaluation of the Hyphomycete Beauveria bassiana against D. noxia on resistant wheat, (4) screening of six fungicides for their potential usage in managing entomophthoralean epizootics within greenhouse rearings of the Russian wheat aphid, and (5) development and evaluation of a novel bioassay protocol for screening entomopathogenic Hyphomycetes against D. noxia. A total of nine species of fungi known to infect and kill aphid hosts were collected, including the six entomophthoraleans, Pandora neoaphidis, Conidiobolus thromboides, Conidiobolus obscurus, Entomophthora planchoniana, Conidiobolus coronatus and Neozygites fresenii, and three Hyphomycetes, Beauveria bassiana, Verticillium lecanii, and Paecilomyces farinosus. The former four entomophthoraleans are considered first reports from this country. For the first time, morphological characteristics of these nine South African-collected species are visually depicted and techniques for their isolation and in vitro culture discussed. Seven species of fungi were recorded from D. noxia, of which P. neoaphidis was the most important, causing up to 50% mortality during the late season under dryland conditions in the summer-rainfall region. Mycoses at epizootic levels, together with the large diversity of fungal species recorded from this host, indicated a high level of susceptibility to fungal infection. In contrast, infection of the oat aphid Rhopalosiphum padi remained < 5% despite favourable numbers of hosts and apparently suitable environmental conditions. This phenomenon strongly suggests some level of low susceptibility to fungal infection in this species. Under irrigated conditions m KwaZulu-Natal, the rose-gram aphid Metopolophium dirhodum was the predominant aphid but remained below economical injury levels. Field surveys revealed that this aphid was effectively targeted by P. neoaphidis and C. obscurus, and findings suggest that in some areas of South Africa entomophthoralean fungi effectively suppress this aphid, negating the need for insecticide applications. On average, ca. 61% control of D. noxia on resistant wheat was observed following an application of B. bassiana (5 x 10¹³ conidia per hectare) during the early flag-leaf stage of the wheat. Efficacy of B. bassiana applications on younger plants appeared to be influenced by the level of aphid activity, possibly explained by secondary pick-up of inoculum by D. noxia. These findings accentuate the importance of understanding the tritrophic relationship between host plant, pest and pathogen. The fungicides copper oxychloride, mancozeb + oxadixyl, captab + metalaxyl, bittertanol, iprodione, and mancozeb at a rate of 0.1% active ingredient moderately to strongly inhibited C. thromboides vegetative growth (mean inhibition 81.1 %). Mancozeb at concentrations of 10.0, 2.0, 1.25, 0.5, 0.08, and 0.016% was further evaluated in vitro. The fungus growth cut-off point, midway between 1.25 and 2.0% mancozeb, was calculated and a rate of 1.625% active ingredient per litre of water was used to decontaminate the fungus-infected D. noxia cultures. A novel bioassay protocol was developed, employing live host plants for rearing aphids post inoculation. Using this design against D. noxia, an average LC₅₀ estimate of 85 conidia per mm² for B. bassiana strain GHA was calculated. Control mortality was restricted to levels below 4%. The data indicated high precision due to an average coefficient of variation for slope of less than 20%, and an average chi-squared value of 5.46 ± 2.74 (n = 10 assays). The design will accommodate the use of cereal aphid species other than D. noxia, while live host plants will facilitate tritrophic studies on the effect of host-plant resistance on fungus-induced mortality of D. noxia.
Thesis (Ph.D.)-University of Natal, Pietermaritzburg, 2002.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Sibisi, Phumzile Pretty. „The application of potassium phosphate primes wheat against aphid infestation“. Thesis, 2014. http://hdl.handle.net/10210/12359.

Der volle Inhalt der Quelle
Annotation:
M.Sc. (Botany)
Wheat is the second most important grain crop produced in South Africa. It is mostly used for human consumption (e.g. biscuits, rusks, breakfast cereals, and bread) with the remainder being used as seed and animal feed. Wheat is also used for production of alcohol for ethanol, absorbing agents for adhesives, disposable diapers and industrial uses as starch on coatings (Department of Agriculture, Forestry and Fisheries, 2011). The leading wheat producing areas in South Africa since 1994 are the Western Cape (38 %), Free State (26 %) and Northern Cape (17 %) (Department of Agriculture, Forestry and Fisheries, 2011). There are two main classes of cultivated wheat, these are durum wheat (Triticum durum) that contributes 5 % and common or bread wheat (Triticum aestivum L.), which contribute 95 % of the world wheat production (Kiplagat, 2005). One of the major threats to wheat production in South Africa and other countries is the Russian wheat aphid (RWA), (Kurdjumov), (Diuraphis noxia, Hemiptera: Aphididae) (Brooks et al., 1994). In South Africa, the Russian wheat aphid was reported as a pest of wheat in 1978 in the Eastern Free State (Walters, 1980). In the beginning of the 1979 season, it was detected only in the Eastern Free State, but quickly spread to the Western Free State and parts of Lesotho. Infestations were also isolated in some areas of KwaZulu-Natal, North West and Gauteng Province (Walters et al., 1980). Aphids are soft bodied insects and are the most economically important phloem feeders impacting on plants (Dixon, 1985; Klingler et al., 2009). Aphids damage plants in four ways. Firstly, they ingest vital plant metabolites including large volumes of translocated sugars from the phloem sap, diverting energy from the plant and reducing yield. Secondly, they secrete saliva into the plant tissues while probing the layers of leaf to find the phloem, in some instances the secreted saliva is thought to be phytotoxic (Dedryver et al., 2010). The physical damage done to the leaf along with the toxic attributes of the saliva leads to localized necrosis in some aphid plant interactions (Klingler et al., 2009). Thirdly, aphids act as virus vectors and they can be transmitted in a non-circulative or circulative manner (Chen et al., 2012).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Ross, Ian L. „Mechanisms of biocontrol of Gaeumannomyces graminis var. tritici by Pseudomonas corrugata strain 2140 : genetic and biochemical aspects / Ian Ross“. 1996. http://hdl.handle.net/2440/18760.

Der volle Inhalt der Quelle
Annotation:
Bibliography: leaves 207-220.
220 leaves : ill. ; 30 cm.
Title page, contents and abstract only. The complete thesis in print form is available from the University Library.
Pseudomonas corrigata strain 2140 (Pc2140), isolated from wheat field soil in Australia, antagonises the take-all fungus, Gaeumannomyces graminis var. tritici (Ggt) in vitro and significantly reduces take-all symptoms on wheat in pot trials. This study investigates the mechanisms by which the biocontrol agent reduces the disease symptoms. Biochemical analysis of metabolites of P. corrugata 2140 reveal a number of compounds potentially antagonistic to Ggt and which may play a role in disease control. These include water-soluble antibiotics, siderophores, proteases, peptides and volatiles including hydrogen cyanide.
Thesis (Ph.D.)--University of Adelaide, Dept. of Crop Protection, 1996
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Sikhakhane, Thandeka Nokuthula. „Genetics of Russian wheat aphid (Diuraphis noxia) resistance in bread wheat (Triticum aestivum L.) accession CItr 2401“. Diss., 2017. http://hdl.handle.net/10500/22961.

Der volle Inhalt der Quelle
Annotation:
The Russian wheat aphid (RWA) (Diuraphis noxia Kurdjumov) is one of the important insect pests of wheat (Triticum aestivum L.), barley (Hordeum vulgare L.) and other grasses. To date, there are four RWA biotypes identified in South Africa. The virulent biotypes emerged, partly due to climate change and new genetic variations within populations of RWA; hence there is a need to improve host-plant resistance, as an effective control measure. Bread wheat (Triticum aestivum L.) accession Cereal Introduction (CItr) 2401 is known to be resistant to all RWA biotypes worldwide. The goal of this study was to use a backcrossed near-isogenic line (NIL) BC5F5 mapping population, developed from a cross between CItr 2401 and susceptible Kavkaz, to identify and validate single nucleotide polymorphism (SNP) markers linked to the resistance phenotype in CItr 2401. This was achieved by (i) conducting a preliminary study that evaluated the suitability of simple sequence repeat (SSR) markers previously reported in literature for discriminating stacked RWA resistance genes and, (ii) employing SNP markers for the first time in a RWA resistance study as a future alternative to the widely used SSR markers. None of the tested SSR markers showed potential use in marker-assisted selection (MAS). The mapping population was phenotypically evaluated for RWA resistance using the four South African biotypes, viz. RWASA1, RWASA2, RWASA3 and RWASA4. Analysis of variance (ANOVA) showed significant (P<0.001) differences of genotypes after confirming the normality of residuals and homogeneity of variance. The Illumina iSelect 9,000 wheat SNP platform was used to genotype the two crossing parents and a selection of 24 NIL genotypes from the mapping population. Eight SNP markers found to be linked to the phenotype were converted to breeder-friendly and high-throughput Kompetitive allele-specific polymerase chain reaction (KASP) markers. The designed KASP markers were validated on the two crossing parents, the 24 NIL sent for SNP genotyping, on the mapping population and on the preliminary study genotypes for their effectiveness. The KASP assays developed in this study will be useful for stacking the RWA resistance from CItr 2401 with other Dn genes effective against the RWA.
Life and Consumer Sciences
M. Sc. (Life Sciences)
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie