Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Wetting behavior“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Wetting behavior" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Wetting behavior"
Wang, Rongguang, Kouji Mukai und Mitsuo Kido. „OS05W0022 Wetting behavior of micro-water on pure chromium“. Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2003.2 (2003): _OS05W0022. http://dx.doi.org/10.1299/jsmeatem.2003.2._os05w0022.
Der volle Inhalt der QuelleKumar, Girish, K. Narayan Prabhu, N. Prabhu und S. W. Dean. „Wetting Behavior of Solders“. Journal of ASTM International 7, Nr. 5 (2010): 103055. http://dx.doi.org/10.1520/jai103055.
Der volle Inhalt der QuelleRoss, D., P. Taborek und J. E. Rutledge. „Wetting behavior ofH2on cesium“. Physical Review B 58, Nr. 8 (15.08.1998): R4274—R4276. http://dx.doi.org/10.1103/physrevb.58.r4274.
Der volle Inhalt der QuelleZhang, Xiang, Bing Li Sun, Wei Na Feng, Qin Xing Zhang und Qian Li. „Wetting Behavior of Polymer Melts on Bulk Metallic Glasses“. Applied Mechanics and Materials 404 (September 2013): 25–31. http://dx.doi.org/10.4028/www.scientific.net/amm.404.25.
Der volle Inhalt der QuelleLIU, M. B., J. Z. CHANG, H. T. LIU und T. X. SU. „MODELING OF CONTACT ANGLES AND WETTING EFFECTS WITH PARTICLE METHODS“. International Journal of Computational Methods 08, Nr. 04 (20.11.2011): 637–51. http://dx.doi.org/10.1142/s0219876211002733.
Der volle Inhalt der QuelleVakamulla Raghu, Swathi Naidu, und Manuela Sonja Killian. „Wetting behavior of zirconia nanotubes“. RSC Advances 11, Nr. 47 (2021): 29585–89. http://dx.doi.org/10.1039/d1ra04751e.
Der volle Inhalt der QuelleJia, Zhi-hai, Wei Lei, Hui-nan Yang und Gang Wang. „Dynamic Wetting Behavior of Vibrated Droplets on a Micropillared Surface“. Advances in Materials Science and Engineering 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/8409683.
Der volle Inhalt der QuelleZheng, D. W., Weijia Wen, K. N. Tu und P. A. Totta. „In situ scanning electron microscopy study of eutectic SnPb and pure Sn wetting on Au/Cu/Cr multilayered thin films“. Journal of Materials Research 14, Nr. 3 (März 1999): 745–49. http://dx.doi.org/10.1557/jmr.1999.0100.
Der volle Inhalt der QuelleHan, Jeong Whan, Hwang Gu Lee und Jae Yong Park. „Numerical Simulation of Dynamic Wetting Behavior in the Wetting Balance Method“. MATERIALS TRANSACTIONS 43, Nr. 8 (2002): 1816–20. http://dx.doi.org/10.2320/matertrans.43.1816.
Der volle Inhalt der QuelleWang, Hui, Chongqing Wang, Jiangang Fu und Guohua Gu. „Wetting behavior and mechanism of wetting agents on low-energy surface“. Colloids and Surfaces A: Physicochemical and Engineering Aspects 424 (Mai 2013): 10–17. http://dx.doi.org/10.1016/j.colsurfa.2013.01.063.
Der volle Inhalt der QuelleDissertationen zum Thema "Wetting behavior"
Monast, Patrick. „Wetting behavior of ternary mixtures containing surfactants“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ64410.pdf.
Der volle Inhalt der QuelleStables, Christa Lauren. „Wetting and Penetration Behavior of Resin/Wood Interfaces“. Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/79700.
Der volle Inhalt der QuelleMaster of Science
Lodge, Richard. „Wetting behavior and surface potential characteristics of human hair“. The Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=osu1165335748.
Der volle Inhalt der QuelleTsao, Joanna W. „Influence of nanoscale roughness on wetting behavior in liquid/liquid systems“. Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53045.
Der volle Inhalt der QuelleAziz, Hossain. „COMPUTATIONAL AND EXPERIMENTAL INVESTIGATION ON THE WETTING BEHAVIOR OF DROPLET-FIBER SYSTEMS“. VCU Scholars Compass, 2019. https://scholarscompass.vcu.edu/etd/5910.
Der volle Inhalt der QuelleRosemond, St Julien Palmer III. „Characterization of the wetting behavior of place exchanged mixed-monolayer-protected gold nanoparticles“. Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/58273.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 22-24).
Mixed-monolayer-protected gold nanoparticles have been shown to have self assembling ligand shells. Given certain ligand concentrations, the NP shell can spontaneously form complex ordered domains with domain spacing as small as five angstroms. It has been proven that the solubility of NPs synthesized using a one step method is almost solely dependent on the corresponding ligand shell morphology. We have attempted to get a better understanding of the morphological differences between NPs synthesized in one step and those synthesized through place exchange by comparing their solubility characteristics. Both types NPs were functionalized using different concentrations two immiscible ligands. The place exchanged NPs almost certainly form a type of ripple shell morphology due to the presence of nonmonotonic solubility peaks in polar solvents at low hydrophilic ligand concentrations. Based on the solubility results, we conclude that the ligand shell morphology must be different for place exchanged and one step nanoparticles. The differences are most likely due to the mechanism by which place exchange populates the nanoparticles.
by St. Julien Palmer Rosemond III.
S.B.
Patel, Nirajkumar. „Micro scale flow behavior, fiber wetting and void formation in liquid composite molding“. The Ohio State University, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=osu1299253097.
Der volle Inhalt der QuelleNalagatla, Dinesh Reddy. „INFLUENCE OF SURFACE ROUGHNESS OF COPPER SUBSTRATE ON WETTING BEHAVIOR OF MOLTEN SOLDER ALLOYS“. UKnowledge, 2007. http://uknowledge.uky.edu/gradschool_theses/488.
Der volle Inhalt der QuelleSmyth, Katherine Marie. „Wetting hysteresis and droplet roll off behavior on superhydrophobic surfaces by Katherine Marie Smyth“. Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/59918.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 55-56).
Various states of hydrophobic wetting and hysteresis are observed when water droplets are deposited on micro-post surfaces of different post densities. Hysteresis is commonly defined as the difference between the advancing and receding contact angle and after many decades of research, the mechanisms governing hysteresis are still not fully understood. Particularly, stick-slip behavior of the three-phase contact line has been observed and qualitatively attributed to surface or chemical heterogeneities, but the behavior has yet to be quantified. In this thesis, contact line motion particularly focused on stick-slip behavior and its influence on drop width and contact angle was examined as a new approach to understanding hysteresis as pertaining to micro-textured surfaces. This work focuses on developing a fundamental understanding and physical model of the stick-slip behavior of the contact line and preliminarily explores the influence of contact line velocity on this stick-slip behavior and contact angle. By characterizing stick-slip behavior and hysteresis on micro-post surfaces, models can be developed that in the future can aid in surface design for optimal wetting behavior in industrial and power plant applications. Additionally, the pinning parameter has been used to predict roll off angle on micro-post surfaces for a variety of post densities and these predictions have been experimentally verified. With further definition of the pinning parameter to include surface roughness and impact phenomena, the pinning parameter can be used in surface design for droplet shedding in industrial applications.
S.B.
Denham, Martha H. „The Use of Laboratory Testing to Understand the Behavior of Collapsible Soil Upon Wetting“. PDXScholar, 1992. https://pdxscholar.library.pdx.edu/open_access_etds/4664.
Der volle Inhalt der QuelleBücher zum Thema "Wetting behavior"
Rose, Lesley Anne. Wetting behavior of FE-NI-CO-CU-O-S melts against olivine and chromite as a function of melt composition, oxygen fugacity, and pressure. 2000.
Den vollen Inhalt der Quelle findenAveyard, Bob. Surfactants. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198828600.001.0001.
Der volle Inhalt der QuelleSymposium, Nebraska. Nebraska Symposium on Motivation, 1985, Volume 33: The Law as a Behavioral Instrument (Nebraska Symposium on Motivation). University of Nebraska Press, 1986.
Den vollen Inhalt der Quelle findenSymposium, Nebraska. Nebraska Symposium on Motivation, 1985, Volume 33: The Law as a Behavioral Instrument (Nebraska Symposium on Motivation). University of Nebraska Press, 1986.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Wetting behavior"
Bascom, Willard D. „The Wetting Behavior of Fibers“. In Modern Approaches to Wettability, 359–73. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-1176-6_13.
Der volle Inhalt der QuelleMorra, M., E. Occhiello und F. Garbassi. „Wetting Behavior of Oxygen Plasma Treated PTFE“. In High Energy Density Technologies in Materials Science, 161–68. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0499-6_15.
Der volle Inhalt der QuelleVoigt, Claudia, Lisa Ditscherlein, Eric Werzner, Tilo Zienert, Rafal Nowak, Urs Peuker, Natalia Sobczak und Christos G. Aneziris. „Influence of the Wetting Behavior on the Aluminum Melt Filtration“. In Light Metals 2019, 1071–79. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05864-7_131.
Der volle Inhalt der QuelleLi, Yaqiong, Lifeng Zhang und Zineb Benouahmane. „Effect of Oxidation on Wetting Behavior Between Silicon and Silicon Carbide“. In 7th International Symposium on High-Temperature Metallurgical Processing, 237–42. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119274643.ch30.
Der volle Inhalt der QuelleLi, Yaqiong, Lifeng Zhang und Zineb Benouahmane. „Effect of Oxidation on Wetting Behavior between Silicon and Silicon Carbide“. In 7th International Symposium on High-Temperature Metallurgical Processing, 237–42. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48093-0_30.
Der volle Inhalt der QuelleYuan, Zhangfu, Xiangtao Yu, Rongyue Wang, Bingsheng Xu und Likun Zang. „Wetting Behavior and Interfacial Characteristics of High Temperature Melts Under Microgravity“. In Physical Science Under Microgravity: Experiments on Board the SJ-10 Recoverable Satellite, 361–94. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-1340-0_14.
Der volle Inhalt der QuelleKarthikeyan, A., A. Karthikeyan, S. Coulombe und A. M. Kietzig. „Effect of Particle Loading and Stability on the Wetting Behavior of Nanofluids“. In Advances in Contact Angle, Wettability and Adhesion, 179–91. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119459996.ch8.
Der volle Inhalt der QuelleSkurtys, O., P. Velásquez und F. Osorio. „Wetting Behavior of Chitosan Solutions on Blueberry Epicarp With or Without Epicuticular Waxes“. In Food Engineering Series, 509–18. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2578-0_46.
Der volle Inhalt der QuelleSheiko, Sergei S., Peter-Jan Slangen, Maarten Krupers, Ahmed Mourran und Martin Möller. „Wetting Behavior of Thin Films of Polymethacrylates with Oligo(hexafluoropropene oxide) Side Chains“. In Fluorinated Surfaces, Coatings, and Films, 71–82. Washington, DC: American Chemical Society, 2001. http://dx.doi.org/10.1021/bk-2001-0787.ch006.
Der volle Inhalt der QuelleJha, Arvind Kumar, und Manuj Sharma. „Effect of Wetting–Drying Cycles on Strength Behavior of Lime Stabilized Expansive Soil“. In Lecture Notes in Civil Engineering, 23–33. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6466-0_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Wetting behavior"
Mitra, Surjyasish, Naga Siva Kumar Gunda und Sushanta K. Mitra. „Underwater Wetting Behavior on Micro-Patterned Surfaces“. In ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icnmm2016-7941.
Der volle Inhalt der QuelleGrab, Thomas, Thomas Storch, Simon Eichinger und Ulrich Gross. „WETTING BEHAVIOR OF PROPANE DROPS ON SOLID MATERIALS“. In First Thermal and Fluids Engineering Summer Conference. Connecticut: Begellhouse, 2016. http://dx.doi.org/10.1615/tfesc1.mph.012694.
Der volle Inhalt der QuelleBuckley, J. S., und N. R. Morrow. „Characterization of Crude Oil Wetting Behavior by Adhesion Tests“. In SPE/DOE Enhanced Oil Recovery Symposium. Society of Petroleum Engineers, 1990. http://dx.doi.org/10.2118/20263-ms.
Der volle Inhalt der QuelleSatyanarayan und K. N. Prabhu. „Wetting behavior of lead-free solders on copper substrates“. In National Conference on Challenges in Research & Technology in the Coming Decades National Conference on Challenges in Research & Technology in the Coming Decades (CRT 2013). Institution of Engineering and Technology, 2013. http://dx.doi.org/10.1049/cp.2013.2550.
Der volle Inhalt der QuelleTran, An T. P., Ilhan Chang, Jooyoung Im und Gye-Chun Cho. „Upward Wetting Behavior of Unsaturated Xanthan Gum–Treated Sand“. In Second Pan-American Conference on Unsaturated Soils. Reston, VA: American Society of Civil Engineers, 2018. http://dx.doi.org/10.1061/9780784481684.016.
Der volle Inhalt der QuelleKuan, C. Y., J. M. Chou, I. C. Leu und M. H. Hon. „Tuning of Wetting Behavior on Patterned ZnO Coatings by Nanoimprinting“. In 2007 Digest of papers Microprocesses and Nanotechnology. IEEE, 2007. http://dx.doi.org/10.1109/imnc.2007.4456225.
Der volle Inhalt der QuelleRahman, M. A., und A. M. Jacobi. „Wetting Behavior and Drainage of Water Droplets on Microgrooved Brass Surface“. In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64255.
Der volle Inhalt der QuelleFarsinezhad, Samira, Prashant Waghmare, Benjamin D. Wiltshire, Saeid Amiri, Sushanta K. Mitra und Karthik Shankar. „The Wetting Behavior of TiO2 Nanotube Arrays With Perfluorinated Surface Functionalization“. In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-39395.
Der volle Inhalt der QuelleZhao, Songfang, Guoping Zhang, Rong Sun und S. W. Ricky Lee. „Wetting behavior of polymer liquid in insulation process for through silicon via“. In 2013 14th International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2013. http://dx.doi.org/10.1109/icept.2013.6756489.
Der volle Inhalt der QuelleSteidle, Nicole E., Marc Schneider, Ralf Ahrens, Matthias Worgull und Andreas E. Guber. „Fabrication of polymeric microfluidic devices with tunable wetting behavior for biomedical applications“. In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2013. http://dx.doi.org/10.1109/embc.2013.6611083.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Wetting behavior"
Porro, I. Hydrologic Behavior of Two Engineered Barriers Following Extreme Wetting. Office of Scientific and Technical Information (OSTI), September 2000. http://dx.doi.org/10.2172/799880.
Der volle Inhalt der QuelleG.Q. Tang und N.R. Morrow. WETTING BEHAVIOR OF SELECTED CRUDE OIL/BRINE/ROCK SYSTEMS. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/772382.
Der volle Inhalt der QuelleDenham, Martha. The Use of Laboratory Testing to Understand the Behavior of Collapsible Soil Upon Wetting. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.6548.
Der volle Inhalt der QuelleZhou, X., N. R. Morrow und S. Ma. Wetting behavior of selected crude oil/brine/rock systems. Topical report, March 1, 1995--March 31, 1996. Office of Scientific and Technical Information (OSTI), Dezember 1996. http://dx.doi.org/10.2172/568991.
Der volle Inhalt der QuelleWetting behavior of selected crude oil/brine/rock systems. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/293392.
Der volle Inhalt der Quelle