Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Wettability of plastics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Wettability of plastics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Wettability of plastics"
NAGAI, Yoshinae, und Takao YAKOU. „Wettability of wood and biodegradable plastics“. Proceedings of Conference of Kanto Branch 2004.10 (2004): 471–72. http://dx.doi.org/10.1299/jsmekanto.2004.10.471.
Der volle Inhalt der QuelleFujinami, Akinori, Daisuke Matsunaka und Yoji Shibutani. „Water wettability/non-wettability of polymer materials by molecular orbital studies“. Polymer 50, Nr. 2 (Januar 2009): 716–20. http://dx.doi.org/10.1016/j.polymer.2008.11.050.
Der volle Inhalt der QuelleHirai, Yuji, Hiroyuki Mayama, Riku Tamura, Yasutaka Matsuo, Takahiro Okamatsu, Toshihiko Arita und Masatsugu Shimomura. „Microstructured rubber and its wettability“. Polymer Journal 51, Nr. 8 (22.04.2019): 721–30. http://dx.doi.org/10.1038/s41428-019-0192-5.
Der volle Inhalt der QuelleAllen, K. W. „Contact angle, wettability and adhesion“. International Journal of Adhesion and Adhesives 14, Nr. 1 (Januar 1994): 69. http://dx.doi.org/10.1016/0143-7496(94)90024-8.
Der volle Inhalt der QuellePastore Carbone, Maria Giovanna, Daniele Tammaro, Anastasios C. Manikas, George Paterakis, Ernesto Di Maio und Costas Galiotis. „Wettability of graphene by molten polymers“. Polymer 180 (Oktober 2019): 121708. http://dx.doi.org/10.1016/j.polymer.2019.121708.
Der volle Inhalt der QuelleBoruvka, Martin. „Anisotropic Wetting Behavior on Injection Molded Polypropylene Parts Inspired by Surface Structure of Moss“. Applied Mechanics and Materials 752-753 (April 2015): 168–71. http://dx.doi.org/10.4028/www.scientific.net/amm.752-753.168.
Der volle Inhalt der QuelleMohammed-Ziegler, Ildikó, Zoltán Hórvölgyi, András Tóth, Willis Forsling und Allan Holmgren. „Wettability and spectroscopic characterization of silylated wood samples“. Polymers for Advanced Technologies 17, Nr. 11-12 (2006): 932–39. http://dx.doi.org/10.1002/pat.778.
Der volle Inhalt der QuelleGomes, Cristina M., M. Helena Ad�o, Benilde J. V. Saramago und Anabela C. Fernandes. „Wettability of cellular polyurethane“. Journal of Polymer Science Part B: Polymer Physics 35, Nr. 3 (Februar 1997): 407–14. http://dx.doi.org/10.1002/(sici)1099-0488(199702)35:3<407::aid-polb1>3.0.co;2-p.
Der volle Inhalt der QuelleLee, Min-Jae, Seon-Young Park und A.-Young Sung. „Characterization of Biocompatible Hydrogel Lenses Using Methacrylic Acid with Neodymium Oxide Nanoparticles“. Polymers 13, Nr. 10 (14.05.2021): 1575. http://dx.doi.org/10.3390/polym13101575.
Der volle Inhalt der QuelleWagner, Natalie, und Patrick Theato. „Light-induced wettability changes on polymer surfaces“. Polymer 55, Nr. 16 (August 2014): 3436–53. http://dx.doi.org/10.1016/j.polymer.2014.05.033.
Der volle Inhalt der QuelleDissertationen zum Thema "Wettability of plastics"
Chow, Ping-Sheng. „Separation of mixed plastics by flotation“. Thesis, University of Nottingham, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318720.
Der volle Inhalt der QuelleErmis, Martin. „Odstraňování mikroplastů z vody“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444298.
Der volle Inhalt der QuelleTabibian, Seyedshayan. „Étude expérimentale et modélisation de réacteurs à lit fluidisé de type Wurster couplés à des jets de plasma à pression atmosphérique pour le traitement de surface de particules“. Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS382.
Der volle Inhalt der QuellePolypropylene particles are used for various purposes, however, the good mechanical properties of PP are counterbalanced by a poor wettability. The wettability of PP particles was therefore improved by an atmospheric pressure blown-arc air plasma jet treatment in a new designed homemade Wurster fluidized bed reactor. This reactor, was used to treat 200 g of particles per batch. The surface free energy of PP particles determined by the Zisman method showed an increase from 30.7 mN/m to 38.6 mN/m after 120s of treatment. XPS results showed a 5% increase of the atomic concentration of oxygen on the surface of the treated particles. In order to describe the process, a 2D axisymmetric non-isothermal k-ε turbulent model was used to determine the velocity field, pressure and temperature profile of the gas phase inside the reactor. Furthermore an Eulerian-Eulerian multiphasic CFD model was added to determine the dynamics of the particles inside the reactor, and the results were compared with fast imaging, thermocouple and anemometry measurements. These investigations are very important to monitor the homogeneity of the particle treatments, to determine the average effective treatment time for each particle and to avoid overheating of thermally sensitive PP. We also studied the possibility to use non-equilibrium plasmas to decontaminate peppercorn particles in a fluidized bed. Indeed, this plasma is characterized by the formation of Reactive Oxygen and Nitrogen Species, UV and high temperature; the latter is obviously a problem for plasma medicine, but is not a problem to treat non-living objects, specially containing highly resilient microorganisms such as spores
Buchteile zum Thema "Wettability of plastics"
Zarras, Peter, Paul A. Goodman und John D. Stenger-Smith. „Functional Polymeric Coatings“. In Research Perspectives on Functional Micro- and Nanoscale Coatings, 78–104. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-5225-0066-7.ch004.
Der volle Inhalt der QuelleZarras, Peter, Paul A. Goodman und John D. Stenger-Smith. „Functional Polymeric Coatings“. In Materials Science and Engineering, 648–74. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-1798-6.ch026.
Der volle Inhalt der Quelle„Can contact angle measurements be used to predict soiling and cleaning of plastic flooring materials?“ In Contact Angle, Wettability and Adhesion, Volume 4, 215–26. CRC Press, 2006. http://dx.doi.org/10.1201/b12166-15.
Der volle Inhalt der Quelle„Effect of grafting efficiency on peel strength, contact angle, particle size and viscosity of butyl acrylate–PUD hybrid adhesives for plastic laminates“. In Contact Angle, Wettability and Adhesion, Volume 5, 247–60. CRC Press, 2008. http://dx.doi.org/10.1201/b12144-18.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Wettability of plastics"
Bai, Zongwu, Garth B. Wilks, Gyaneshwar P. Tandon, Brandon J. Yocum und Ryan S. Justice. „Functional Silver Nanoink for Direct Write Applications“. In ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/smasis2012-7922.
Der volle Inhalt der QuellePeng, Fei, Can Yang, Chunbo Li, Huan Yang und Xiao-Hong Yin. „Material Dependent Laser-Induced Patterns for Metal-Plastic Hybrids Directly Jointed Using Injection Molding“. In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24540.
Der volle Inhalt der QuelleBenabdallah, Habib S., und Jianjun J. Wei. „Effects of Lubricants on the Friction and Wear Properties of PTFE and POM“. In ASME/STLE 2004 International Joint Tribology Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/trib2004-64028.
Der volle Inhalt der QuelleHsieh, W. F., Henry Lin, Vincent Chen, Jun Liu, Irene Ou und Y. S. Lou. „The Investigation of Oven Contamination and Corresponding Methodology“. In ISTFA 2019. ASM International, 2019. http://dx.doi.org/10.31399/asm.cp.istfa2019p0426.
Der volle Inhalt der QuelleZhong, Hanyi, Xiangzheng Kong, Zhengsong Qiu, Weian Huang, Xianbin Zhang und Chong Zhao. „Effect of Nano Carbon Spheres on the Properties of Oil-Based Drilling Fluids under High Temperature Conditions“. In International Petroleum Technology Conference. IPTC, 2021. http://dx.doi.org/10.2523/iptc-21404-ms.
Der volle Inhalt der QuelleZhang, Qingwei, Ioannis Neitzel, Vadym N. Mochalin, Isabel Knoke, David M. Wootton, Yury Gogotsi, Peter I. Lelkes und Jack G. Zhou. „PLLA-Nanodiamond Composites and Their Application in Bone Tissue Engineering“. In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13336.
Der volle Inhalt der Quelle