Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Wet chemical syntheses“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Wet chemical syntheses" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Wet chemical syntheses"
Gilroy, Kyle D., Hsin-Chieh Peng, Xuan Yang, Aleksey Ruditskiy und Younan Xia. „Symmetry breaking during nanocrystal growth“. Chemical Communications 53, Nr. 33 (2017): 4530–41. http://dx.doi.org/10.1039/c7cc01121k.
Der volle Inhalt der QuelleWang, Bingzhe, Verena Engelhardt, Alexandra Roth, Rüdiger Faust und Dirk M. Guldi. „n- versus p-doping of graphite: what drives its wet-chemical exfoliation?“ Nanoscale 9, Nr. 32 (2017): 11632–39. http://dx.doi.org/10.1039/c7nr03379f.
Der volle Inhalt der QuellePalmero, Paola. „Microstructural Tailoring of YAG and YAG-Containing Nanoceramics through Advanced Synthesis Routes“. Advances in Science and Technology 62 (Oktober 2010): 34–43. http://dx.doi.org/10.4028/www.scientific.net/ast.62.34.
Der volle Inhalt der QuelleGuldi, Dirk Michael. „(Invited) Towards Understanding the Competition of Electron and Energy Transfer in “Molecular” Nanographenes on the Example of Hexa-Peri-Hexabenzocoronene“. ECS Meeting Abstracts MA2024-01, Nr. 7 (09.08.2024): 795. http://dx.doi.org/10.1149/ma2024-017795mtgabs.
Der volle Inhalt der QuelleWang, Yumeng, und Zhenxing Yin. „Review of Wet Chemical Syntheses of Copper Nanowires and Their Recent Applications“. Applied Science and Convergence Technology 28, Nr. 6 (30.11.2019): 186–93. http://dx.doi.org/10.5757/asct.2019.28.6.186.
Der volle Inhalt der QuelleBecker, Sidney, Jonas Feldmann, Stefan Wiedemann, Hidenori Okamura, Christina Schneider, Katharina Iwan, Antony Crisp, Martin Rossa, Tynchtyk Amatov und Thomas Carell. „Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides“. Science 366, Nr. 6461 (03.10.2019): 76–82. http://dx.doi.org/10.1126/science.aax2747.
Der volle Inhalt der QuellePadmini, P., und T. R. Narayanan Kutty. „Wet chemical syntheses of ultrafine multicomponent ceramic powders through gel to crystallite conversion“. Journal of Materials Chemistry 4, Nr. 12 (1994): 1875. http://dx.doi.org/10.1039/jm9940401875.
Der volle Inhalt der QuelleIsobe, T. „Low-temperature wet chemical syntheses of nanocrystal phosphors with surface modification and their characterization“. physica status solidi (a) 203, Nr. 11 (September 2006): 2686–93. http://dx.doi.org/10.1002/pssa.200669630.
Der volle Inhalt der QuelleSportelli, Maria, Margherita Izzi, Annalisa Volpe, Maurizio Clemente, Rosaria Picca, Antonio Ancona, Pietro Lugarà, Gerardo Palazzo und Nicola Cioffi. „The Pros and Cons of the Use of Laser Ablation Synthesis for the Production of Silver Nano-Antimicrobials“. Antibiotics 7, Nr. 3 (28.07.2018): 67. http://dx.doi.org/10.3390/antibiotics7030067.
Der volle Inhalt der QuelleCorreya, Adrine Antony, V. P. N. Nampoori und A. Mujeeb. „Microwave assisted synthesis of bismuth titanate nanosheets and its photocatalytic effects“. PeerJ Materials Science 5 (07.03.2023): e26. http://dx.doi.org/10.7717/peerj-matsci.26.
Der volle Inhalt der QuelleDissertationen zum Thema "Wet chemical syntheses"
Qin, Jiadong. „Novel Wet Chemical Syntheses of Graphene Oxide and Vanadium Oxide for Energy Storage Applications“. Thesis, Griffith University, 2020. http://hdl.handle.net/10072/393192.
Der volle Inhalt der QuelleThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
Poirier, Romain. „Synthèse en solution de sulfures divisés pour les électrolytes de batteries lithium-ion tout solide“. Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10212.
Der volle Inhalt der QuelleSolid electrolytes are now considered to be the key to the development of new generations of batteries. Two types of solid electrolyte have mainly been studied, polymers and inorganics, but their performance remains limited. One promising way of obtaining high-performance electrolytes is to use inorganic particles incorporated into a polymer matrix to form a hybrid electrolyte. Among the possible inorganic materials, the sulfide family (Li3PS4, Li6PS5X with X= Cl, Br, I) has very high ionic conductivities. However, these materials are generally obtained by the solid route, leading to aggregated micrometric particles. Furthermore, although solution syntheses have recently been demonstrated, the potential to control their size, morphology and prevent aggregation has not been exploited. The aim of this thesis is to develop a methodology for the synthesis of sulfides that enables the size, morphology and aggregation of particles to be controlled so that they can be incorporated into a polymer phase. Several solution synthesis routes were developed in order to overcome the kinetic limitations of conventional synthesis. These different synthesis methods have produced a wide range of particles with different morphologies and aggregation rates. The impact of particle size and morphology on the electrochemical performance of the electrolytes was studied. The best performing electrolytes were tested in hybrid formulations as well as in complete all-solid state electrochemical cells with a Li/In anode
Sortland, Øyvind Sunde. „Wet Chemical Synthesis of Materials for Intermediate Band Solar Cells“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for materialteknologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-16327.
Der volle Inhalt der QuelleTucić, Aleksandar. „Wet chemical synthesis and characterization of organic/TiO 2 multilayers“. [S.l. : s.n.], 2008. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-34138.
Der volle Inhalt der QuelleTucić, Aleksandar [Verfasser]. „Wet chemical synthesis and characterization of organic, TiO2 multilayers / vorgelegt von Aleksandar Tucić“. Stuttgart : Max-Planck-Inst. für Metallforschung, 2008. http://d-nb.info/995389497/34.
Der volle Inhalt der QuelleBorton, Peter Thomas. „Preparation and Characterization of Manganese Fulleride“. University of Dayton / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1354556594.
Der volle Inhalt der QuelleKlein, Thomas [Verfasser]. „Wet chemical synthesis of nano and submicron Al particles for the preparation of Ni and Ru aluminides / Thomas Klein“. Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1231792027/34.
Der volle Inhalt der QuelleKennedy, Steven Roger 1971. „Synthesis, characterization and use of peroxotungstic ethoxide as a precursor to wet-chemically derived tungsten oxide thin films“. Thesis, The University of Arizona, 1996. http://hdl.handle.net/10150/278554.
Der volle Inhalt der QuelleRostek, Alexander [Verfasser], und Matthias [Akademischer Betreuer] Epple. „Wet-chemical synthesis of mono- and bimetallic nanoparticles of group VIII to XI metals and their detailed characterisation / Alexander Rostek ; Betreuer: Matthias Epple“. Duisburg, 2019. http://d-nb.info/1191691055/34.
Der volle Inhalt der QuelleHagelin, Alexander. „ZnO nanoparticles : synthesis of Ga-doped ZnO, oxygen gas sensing and quantum chemical investigation“. Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-64730.
Der volle Inhalt der QuelleBücher zum Thema "Wet chemical syntheses"
Rottenberg, Jonathan. Depression. Oxford University Press, 2021. http://dx.doi.org/10.1093/wentk/9780190083151.001.0001.
Der volle Inhalt der QuelleNorwood, F. Bailey, Michelle S. Calvo-Lorenzo, Sarah Lancaster und Pascal A. Oltenacu. Agricultural and Food Controversies. Oxford University Press, 2015. http://dx.doi.org/10.1093/wentk/9780199368433.001.0001.
Der volle Inhalt der QuelleWertz, Julie, Jonathan Faiers, Willow Mullins, Beverly Lemire, Susan Carden und Fiona Anderson. Turkey Red. Bloomsbury Publishing Plc, 2024. http://dx.doi.org/10.5040/9781350217249.
Der volle Inhalt der QuelleBuchteile zum Thema "Wet chemical syntheses"
Majid, Abdul, und Maryam Bibi. „Wet Chemical Synthesis Methods“. In Cadmium based II-VI Semiconducting Nanomaterials, 43–101. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68753-7_3.
Der volle Inhalt der QuelleNagabhushana, K. S., und H. Bönnemann. „Wet Chemical Synthesis of Nanoparticles“. In Nanotechnology in Catalysis, 51–82. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-9048-8_4.
Der volle Inhalt der QuelleJadhav, Abhijit. „Wet Chemical Methods for Nanop article Synthesis“. In Chemical Methods for Processing Nanomaterials, 49–58. First edition. | Boca Raton : CRC Press, Taylor & Francis Group, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429023187-3.
Der volle Inhalt der QuelleZhang, Fan. „“Wet” Chemical Synthesis and Manipulation of Upconversion Nanoparticles“. In Photon Upconversion Nanomaterials, 21–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45597-5_2.
Der volle Inhalt der QuelleSingh, Vartika S., und S. V. Moharil. „Simple Wet-Chemical Synthesis of Ce3+ Doped γ-BaAlF5“. In Springer Proceedings in Physics, 557–62. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7691-8_53.
Der volle Inhalt der QuelleMurase, Hideaki, Shoichiro Shio und Atsushi Nakahira. „Synthesis and Evaluation of Hollow-Tubular ZnO by Wet Chemical Method“. In Solid State Phenomena, 571–74. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-31-0.571.
Der volle Inhalt der QuelleShrivastava, Navadeep, und Surender Kumar Sharma. „Controlled Wet Chemical Synthesis of Multifunctional Nanomaterials: Current Status and Future Possibility“. In Nanohybrids in Environmental & Biomedical Applications, 3–28. Boca Raton, FL: CRC Press, Taylor & Francis Group, [2019] |: CRC Press, 2019. http://dx.doi.org/10.1201/9781351256841-1.
Der volle Inhalt der QuelleAsamoah, R. B., A. Yaya, E. Annan, P. Nbelayim, F. Y. H. Kutsanedzie, P. K. Nyanor und I. Asempah. „Novel Cost-Effective Synthesis of Copper Oxide Nanostructures by The Influence of pH in the Wet Chemical Synthesis“. In Sustainable Education and Development – Sustainable Industrialization and Innovation, 522–29. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-25998-2_40.
Der volle Inhalt der QuelleJeon, Seung Yup, Eun Ju Chae, Won Ki Lee, Gun Dae Lee, Seong Soo Hong, Seog Young Yoon und Seong Soo Park. „A Study for Synthesis of Nanobelt and Nanowire Nickel Powders by Wet Chemical Method“. In Materials Science Forum, 83–86. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-431-6.83.
Der volle Inhalt der QuelleKasinath, Rajendra K., Michael Klem und Robert Usselman. „Citrate Mediated Wet Chemical Synthesis of Fe Doped Nanoapatites: A Model for Singly Doped Multifunctional Nanostructures“. In Supplemental Proceedings, 11–17. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118357002.ch2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Wet chemical syntheses"
Tumram, Priya V., Pranay R. Kautkar und S. V. Moharil. „Wet chemical synthesis of KCaI3:Eu2+ phosphor“. In PROF. DINESH VARSHNEY MEMORIAL NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM 2018. Author(s), 2019. http://dx.doi.org/10.1063/1.5098612.
Der volle Inhalt der QuelleTumram, Priya V., S. P. Wankhede und S. V. Moharil. „Wet chemical synthesis of KSr2I5:Eu2+ phosphor“. In INTERNATIONAL CONFERENCE ON “MULTIDIMENSIONAL ROLE OF BASIC SCIENCE IN ADVANCED TECHNOLOGY” ICMBAT 2018. Author(s), 2019. http://dx.doi.org/10.1063/1.5100391.
Der volle Inhalt der QuelleZhang, Can-ying, Hai-tao Zhu und Da-xiong Wu. „Controllable Synthesis of Nanofluids With Wet Chemical Method“. In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18163.
Der volle Inhalt der QuelleCepeda-Pérez, E. I., T. López-Luke, L. Pérez-Mayen, Alberto Hidalgo, E. de la Rosa, Alejandro Torres-Castro, Andrea Ceja-Fdez, Juan Vivero-Escoto und Ana Lilia Gonzalez-Yebra. „Wet chemical synthesis of quantum dots for medical applications“. In European Conference on Biomedical Optics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/ecbo.2015.95371h.
Der volle Inhalt der QuelleSamanta, P. K., A. K. Mandal, S. Mishra und A. Saha. „Wet-chemical synthesis and optical properties of CuO nanoparticles“. In 2017 1st International Conference on Electronics, Materials Engineering and Nano-Technology (IEMENTech). IEEE, 2017. http://dx.doi.org/10.1109/iementech.2017.8076941.
Der volle Inhalt der QuelleKlochko, N. P., V. R. Kopach, G. S. Khrypunov, V. E. Korsun, V. M. Lyubov, O. N. Otchenashko, D. O. Zhadan et al. „Nanostructured thermoelectric thin films obtained by wet chemical synthesis“. In 2017 IEEE 7th International Conference "Nanomaterials: Application & Properties" (NAP). IEEE, 2017. http://dx.doi.org/10.1109/nap.2017.8190362.
Der volle Inhalt der QuelleCepeda-Pérez, E. I., T. López-Luke, L. Pérez-Mayen, Alberto Hidalgo, E. de la Rosa, Alejandro Torres-Castro, Andrea Ceja-Fdez, Juan Vivero-Escoto und Ana L. Gonzalez-Yebra. „Wet chemical synthesis of quantum dots for medical applications“. In European Conferences on Biomedical Optics, herausgegeben von J. Quincy Brown und Volker Deckert. SPIE, 2015. http://dx.doi.org/10.1117/12.2183183.
Der volle Inhalt der QuelleCepeda-Pérez, E. I., M. A. Cueto-Bastida, F. Durán-Robles, L. Pérez-Mayen, T. López-Luke und E. de la Rosa. „Cell Imaging Technique Using Quantum Dots by Wet Chemical Synthesis“. In Latin America Optics and Photonics Conference. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/laop.2014.lth4a.25.
Der volle Inhalt der QuellePark, H. Y., K. M. Lee, Y. H. Ahn, Soonil Lee, Ken Ha Koh, K. H. Park und D. R. Suh. „Cathodoluminescence Characterization of ZnO Nanorods Grown by Wet Chemical Synthesis“. In 2007 Conference on Lasers and Electro-Optics - Pacific Rim. IEEE, 2007. http://dx.doi.org/10.1109/cleopr.2007.4391340.
Der volle Inhalt der QuelleSugan, S., und R. Dhanasekaran. „Wet chemical synthesis and characterization of AgGaSe[sub 2] nanoparticles“. In PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS AND MATERIAL SCIENCE: RAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4810128.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Wet chemical syntheses"
Landolt, Peter, Ezra Dunkelblum, Robert R. Heath und Moshe Kehat. Host Plant Chemical Mediation of Heliothis Reproductive Behavior. United States Department of Agriculture, Oktober 1992. http://dx.doi.org/10.32747/1992.7568753.bard.
Der volle Inhalt der QuelleDinger, Eric, und Eric Dinger. Analysis of stream types in Klamath Network parks based on physical habitat and chemical characters. National Park Service, 2024. http://dx.doi.org/10.36967/2306085.
Der volle Inhalt der QuelleSela, Shlomo, und Michael McClelland. Desiccation Tolerance in Salmonella and its Implications. United States Department of Agriculture, Mai 2013. http://dx.doi.org/10.32747/2013.7594389.bard.
Der volle Inhalt der QuelleSchaffer, Arthur A., und Jocelyn Rose. Understanding Cuticle Development in Tomato through the Study of Novel Germplasm with Malformed Cuticles. United States Department of Agriculture, Juni 2013. http://dx.doi.org/10.32747/2013.7593401.bard.
Der volle Inhalt der Quelle