Zeitschriftenartikel zum Thema „Weld plasticity“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Weld plasticity" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Malushin, N. N., D. V. Valuev, A. V. Valueva, and A. Serikbol. "Kinetic Study of the Effect of Plasticity and its Role in Stress Relaxation in the Weld Speed Steel during the Martensitic Transformation." Applied Mechanics and Materials 682 (October 2014): 58–63. http://dx.doi.org/10.4028/www.scientific.net/amm.682.58.
Der volle Inhalt der QuelleOddy, A. S., J. A. Goldak, and J. M. J. McDill. "Transformation Plasticity and Residual Stresses in Single-Pass Repair Welds." Journal of Pressure Vessel Technology 114, no. 1 (1992): 33–38. http://dx.doi.org/10.1115/1.2929009.
Der volle Inhalt der QuelleZhang, Tian Hui, Hong Cai Fu, Wen Min Liu, Yun Chun Cheng, and Ren Ping Xu. "Influence of Weld Heat Input on Weld Joint between B610CF and 16MnR Steel." Advanced Materials Research 154-155 (October 2010): 421–24. http://dx.doi.org/10.4028/www.scientific.net/amr.154-155.421.
Der volle Inhalt der QuelleJang, Gab Chul, Kyong Ho Chang, and Chin Hyung Lee. "Effect of Residual Stress and Weld Metal on Hysteretic Behavior of a Welded Tubular T-Joint." Key Engineering Materials 353-358 (September 2007): 2077–80. http://dx.doi.org/10.4028/www.scientific.net/kem.353-358.2077.
Der volle Inhalt der QuelleCho, Jae Hyung, Suk Hoon Kang, Kyu Hwan Oh, Heung Nam Han, and Suk Bong Kang. "Friction Stir Weld Modeling of Aluminum Alloys." Advanced Materials Research 26-28 (October 2007): 999–1002. http://dx.doi.org/10.4028/www.scientific.net/amr.26-28.999.
Der volle Inhalt der QuelleJiang, Xiao Xia, Shang Cai Fei, Shuai Zhang, Hua Ji, and Liang Zhu. "Failure Analysis of the Laser-Welded Web-Core Steel Sandwich Panel with Narrow Weld Width T-Joints." Applied Mechanics and Materials 863 (February 2017): 311–16. http://dx.doi.org/10.4028/www.scientific.net/amm.863.311.
Der volle Inhalt der QuelleZhao, Li, Fu Ju Zhang, and Shao Hua Feng. "Microstructure and Mechanical Properties of Weld in 980MPa Grade Steel by Ultra-Narrow Gap Welding." Advanced Materials Research 322 (August 2011): 263–66. http://dx.doi.org/10.4028/www.scientific.net/amr.322.263.
Der volle Inhalt der QuelleMatyunin, V. M., A. P. Sliva, A. Marchenkov Yu, et al. "Non-destructive testing of physical and mechanical properties of local zones in welded joints." Journal of Physics: Conference Series 2275, no. 1 (2022): 012002. http://dx.doi.org/10.1088/1742-6596/2275/1/012002.
Der volle Inhalt der QuelleGu, Lidong, Qi Tang, Yanqing Li, Fengde Liu, and Piyao Liu. "Improving Plasticity of Ferritic Stainless Steel Welded Joints via Laser Spot Control." Micromachines 14, no. 11 (2023): 2072. http://dx.doi.org/10.3390/mi14112072.
Der volle Inhalt der QuelleChen, Yun Chun, Wen Min Liu, Hou Sen Yang, Tian Hui Zhang, and Pei Jun Yan. "Influence of Weld Parameter on Penstock Joint of B610CF-16MnR Steel." Advanced Materials Research 675 (March 2013): 270–74. http://dx.doi.org/10.4028/www.scientific.net/amr.675.270.
Der volle Inhalt der QuelleZhang, Tian Hui, Hong Cai Fu, Pei Jun Yan, Fang Wei Jin, and Qiong Wang. "Microstructures and Mechanical Properties of Weld Joint between B610CF and 16MnR Steel." Advanced Materials Research 139-141 (October 2010): 352–55. http://dx.doi.org/10.4028/www.scientific.net/amr.139-141.352.
Der volle Inhalt der QuelleMuránsky, Ondrej, Cory J. Hamelin, Mike C. Smith, Phillip J. Bendeich, and Lyndon Edwards. "The Role of Plasticity Theory on the Predicted Residual Stress Field of Weld Structures." Materials Science Forum 772 (November 2013): 65–71. http://dx.doi.org/10.4028/www.scientific.net/msf.772.65.
Der volle Inhalt der QuelleLazzarin, P., and P. Livieri. "Welded joints: Limits on criteria for plasticity zones located at weld toes." Welding International 14, no. 10 (2000): 806–10. http://dx.doi.org/10.1080/09507110009549272.
Der volle Inhalt der QuelleDimas, Agustinus, Tatacipta Dirgantara, Leonardo Gunawan, Annisa Jusuf, and Ichsan Setya Putra. "The Effects of Spot Weld Pitch to the Axial Crushing Characteristics of Top-Hat Crash Box." Applied Mechanics and Materials 660 (October 2014): 578–82. http://dx.doi.org/10.4028/www.scientific.net/amm.660.578.
Der volle Inhalt der QuelleXiong, Ying. "Analysis of the Effect of Load Ratio on Fatigue Crack Growth." Advanced Materials Research 181-182 (January 2011): 330–36. http://dx.doi.org/10.4028/www.scientific.net/amr.181-182.330.
Der volle Inhalt der QuelleWang, Qing Bao, Zhuo Xin Li, Yao Wu Shi, Guo Dong Li, and Hui Wang. "Overlaying Weld Cracks of Pinch Roller and its Formation Mechanism." Advanced Materials Research 512-515 (May 2012): 1965–71. http://dx.doi.org/10.4028/www.scientific.net/amr.512-515.1965.
Der volle Inhalt der QuelleMIKAMI, Yoshiki, Keisuke SOGABE, and Masahito MOCHIZUKI. "EBSP-based Crystal Plasticity FEM Simulation of Microscopic Stress Distribution in Weld Metal." QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY 29, no. 3 (2011): 100s—103s. http://dx.doi.org/10.2207/qjjws.29.100s.
Der volle Inhalt der QuelleBraga, Vagner, Raquel Alvim de Figueiredo Mansur, Rafael Humberto Mota de Siqueira, and Milton Sergio Fernandes de Lima. "Formability of in-situ Austempered Transformation-induced Plasticity Steels After Laser Beam Welding." Soldagem & Inspeção 23, no. 3 (2018): 402–12. http://dx.doi.org/10.1590/0104-9224/si2303.09.
Der volle Inhalt der QuelleZhang, Qiushi, Hongcheng Chi, Hong Zhang, and Fengde Liu. "Effect of joint-extrusion-force on the plasticity of beam oscillation fiber laser welded X2CrTiNb18 ferritic corrosion resisting steels." Journal of Physics: Conference Series 2459, no. 1 (2023): 012120. http://dx.doi.org/10.1088/1742-6596/2459/1/012120.
Der volle Inhalt der QuelleWang, Wen-Quan, Shu-Cheng Dong, Fan Jiang, and Ming Cao. "Effects of Ar and He on Microstructures and Properties of Laser Welded 800MPa TRIP Steel." MATEC Web of Conferences 142 (2018): 03004. http://dx.doi.org/10.1051/matecconf/201814203004.
Der volle Inhalt der QuelleKalácska, Eszter, Kornél Májlinger, Enikő Réka Fábián, and Pasquale Russo Spena. "MIG-Welding of Dissimilar Advanced High Strength Steel Sheets." Materials Science Forum 885 (February 2017): 80–85. http://dx.doi.org/10.4028/www.scientific.net/msf.885.80.
Der volle Inhalt der QuelleWang, Q., C. L. Qi, D. L. Sun, X. L. Han, and D. Q. Wang. "Effect of Heat Treatment on Microstructure and Mechanical Property of 30Si2MnCrMoV Welded Joint." Advanced Materials Research 664 (February 2013): 754–59. http://dx.doi.org/10.4028/www.scientific.net/amr.664.754.
Der volle Inhalt der QuelleJi, Ang, Liping Zhang, and Genchen Peng. "Influence analysis of anti-spatter spray on welding process and weld properties." Journal of Physics: Conference Series 2541, no. 1 (2023): 012019. http://dx.doi.org/10.1088/1742-6596/2541/1/012019.
Der volle Inhalt der QuelleHu, B. R., J. Z. Liu, B. Chen, L. F. Wang, and Xue Ren Wu. "Fatigue Behavior and Life Prediction for Argon-Arc Weld Joints Based on Small Crack Methodology." Key Engineering Materials 306-308 (March 2006): 157–62. http://dx.doi.org/10.4028/www.scientific.net/kem.306-308.157.
Der volle Inhalt der QuelleMuránsky, O., C. J. Hamelin, M. C. Smith, P. J. Bendeich, and L. Edwards. "The effect of plasticity theory on predicted residual stress fields in numerical weld analyses." Computational Materials Science 54 (March 2012): 125–34. http://dx.doi.org/10.1016/j.commatsci.2011.10.026.
Der volle Inhalt der QuelleParedes, Marcelo, Junhe Lian, Tomasz Wierzbicki, Mihaela E. Cristea, Sebastian Münstermann, and Philippe Darcis. "Modeling of plasticity and fracture behavior of X65 steels: seam weld and seamless pipes." International Journal of Fracture 213, no. 1 (2018): 17–36. http://dx.doi.org/10.1007/s10704-018-0303-x.
Der volle Inhalt der QuelleBlach, Juraj, and Ladislav Falat. "The Influence of Thermal Exposure and Hydrogen Charging on the Notch Tensile Properties and Fracture Behaviour of Dissimilar T91/TP316H Weldments." High Temperature Materials and Processes 33, no. 4 (2014): 329–37. http://dx.doi.org/10.1515/htmp-2013-0053.
Der volle Inhalt der QuellePerulli, Patrizia, Michele Dassisti, and Giuseppe Casalino. "Thermo-Mechanical Simulation of Hybrid Welding of DP/AISI 316 and TWIP/AISI 316 Dissimilar Weld." Materials 13, no. 9 (2020): 2088. http://dx.doi.org/10.3390/ma13092088.
Der volle Inhalt der QuelleBhat, Sunil, and Vijay G. Ukadgaonker. "Fatigue Life Enhancement of Welded Steel-Steel Composite during Crack Growth from Weak to Strong Steel: An Experimental Validation." Key Engineering Materials 417-418 (October 2009): 825–28. http://dx.doi.org/10.4028/www.scientific.net/kem.417-418.825.
Der volle Inhalt der QuelleČerný, Michal, and Josef Filípek. "Synergy of corrosion activity and defects in weld bonds." Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 52, no. 2 (2004): 105–14. http://dx.doi.org/10.11118/actaun200452020105.
Der volle Inhalt der QuelleLiu, J. Z., Xue Ren Wu, L. F. Wang, B. R. Hu, and B. Chen. "Effect of Size and Location of a Weld Defect on Fatigue Life for Argon-Arc Welded Titanium Alloy Joint." Advanced Materials Research 33-37 (March 2008): 121–28. http://dx.doi.org/10.4028/www.scientific.net/amr.33-37.121.
Der volle Inhalt der QuelleFaucon, Lorenzo Etienne, Tim Boot, Ton Riemslag, Sean Paul Scott, Ping Liu, and Vera Popovich. "Hydrogen-Accelerated Fatigue of API X60 Pipeline Steel and Its Weld." Metals 13, no. 3 (2023): 563. http://dx.doi.org/10.3390/met13030563.
Der volle Inhalt der QuelleMuth, Adrienne, Carl Fischer, Sabine Oeser, and Heiner Oesterlin. "Fully coupled crystal plasticity and hydrogen diffusion modeling of X52 pipeline steel and weld microstructures." Computational Materials Science 258 (August 2025): 114005. https://doi.org/10.1016/j.commatsci.2025.114005.
Der volle Inhalt der QuelleXu, Jiachen, Xiaoxiao Zhou, and Dawei Zhu. "Effect of Arc Length on Oxygen Content and Mechanical Properties of Weld Metal during Pulsed GMAW." Crystals 12, no. 2 (2022): 176. http://dx.doi.org/10.3390/cryst12020176.
Der volle Inhalt der QuellePuzyr, Ruslan, Yulia Siraia, and Viktoriia Diatlovska. "Modeling the material of the cylindrical work with welded seam at compression distribution of vehicle parts." Mechanics and Advanced Technologies 5, no. 1 (2021): 130–35. http://dx.doi.org/10.20535/2521-1943.2021.5.1.218045.
Der volle Inhalt der QuelleSłania, J., G. Golański, and W. Gasz. "Braze Welding of Elements of Industrial Fittings." Archives of Metallurgy and Materials 60, no. 1 (2015): 391–401. http://dx.doi.org/10.1515/amm-2015-0065.
Der volle Inhalt der QuelleTan, Diao, Li Cao, and Wenlei Sun. "A Numerical Simulation Study on the Tensile Properties of Welds in Laser-Arc Hybrid Welding of Q355 Medium-Thick Plates." Coatings 15, no. 3 (2025): 252. https://doi.org/10.3390/coatings15030252.
Der volle Inhalt der QuelleLiu, Chuan, Ying Luo, Min Yang, and Qiang Fu. "Effects of material hardening model and lumped-pass method on welding residual stress simulation of J-groove weld in nuclear RPV." Engineering Computations 33, no. 5 (2016): 1435–50. http://dx.doi.org/10.1108/ec-08-2015-0216.
Der volle Inhalt der QuelleJang, Gab Chul, and Kyong Ho Chang. "Characteristics of the Static and Dynamic Behavior of Steel Piles with a Welded Joint." Materials Science Forum 580-582 (June 2008): 613–16. http://dx.doi.org/10.4028/www.scientific.net/msf.580-582.613.
Der volle Inhalt der QuelleZhang, Yunlong, Yanbin Chen, Wang Tao, Zhenglong Lei, Zhaohui Yang, and Tiantian Nan. "Influence of Post-Weld Heat Treatments on Microstructure and Mechanical Properties of Laser Beam Welded 2060-T3/2099-T3Al-Li T-Joints." Metals 9, no. 12 (2019): 1318. http://dx.doi.org/10.3390/met9121318.
Der volle Inhalt der QuelleYan, Yingjie, Yukun Zhang, Lixian Zhao, et al. "Effect of Applied Tensile Stress on Hydrogen-Induced Delayed Fracture Mode of Fe-Ni-Cr Austenitic Alloy Weldment." Metals 12, no. 10 (2022): 1614. http://dx.doi.org/10.3390/met12101614.
Der volle Inhalt der QuelleMa, Chengyong, Yanchang Qi, Yuqing Zhang, Zhiquan Wu, and Xin Zhang. "Weld defects and precipitates of deposited metal in 9Ni steel welded joint." Materials Science-Poland 40, no. 1 (2022): 25–48. http://dx.doi.org/10.2478/msp-2022-0007.
Der volle Inhalt der QuellePeng, Yun, Yan Chang Qi, Chang Hong He, Zhi Ling Tian, and Hong Jun Xiao. "Microstructure and its Formation Mechanism of Weld Metal of Al-Bearing TRIP Steel." Materials Science Forum 638-642 (January 2010): 3591–96. http://dx.doi.org/10.4028/www.scientific.net/msf.638-642.3591.
Der volle Inhalt der QuelleWang, Hua, Yun Peng Zhang, and Xiao Yu Zhang. "TZM Alloy TIG Welding Process and Microstructure of Welded Joints." Advanced Materials Research 291-294 (July 2011): 867–71. http://dx.doi.org/10.4028/www.scientific.net/amr.291-294.867.
Der volle Inhalt der QuelleHu, Yu, Yonghua Shi, Kai Wang, and Jiqiang Huang. "Effect of Heat Input on the Microstructure and Mechanical Properties of Local Dry Underwater Welded Duplex Stainless Steel." Materials 16, no. 6 (2023): 2289. http://dx.doi.org/10.3390/ma16062289.
Der volle Inhalt der QuelleLiu, Xing, Wanli Ling, Yue Li, Jianfeng Wang, and Xiaohong Zhan. "Interlaminar Microstructure and Mechanical Properties of Narrow Gap Laser Welding of 40-mm-Thick Ti-6Al-4V Alloy." Materials 15, no. 21 (2022): 7742. http://dx.doi.org/10.3390/ma15217742.
Der volle Inhalt der QuelleSeiichiro TSUTSUMI,, Yuki KIYOKAWA,, Riccardo FINCATO, Yosuke OGINO, Yoshinori HIRATA, and Satoru ASAI. "ASSEEEMENT OF FATIGUE CRACK INITIATION LIFE OF JOINTS BY USING WELD POOR AND CYCLIC PLASTICITY ANALYSIS." Journal of Japan Society of Civil Engineers, Ser. A2 (Applied Mechanics (AM)) 74, no. 2 (2018): I_337—I_347. http://dx.doi.org/10.2208/jscejam.74.i_337.
Der volle Inhalt der QuelleJaske, Carl E. "Fatigue-Strength-Reduction Factors for Welds in Pressure Vessels and Piping." Journal of Pressure Vessel Technology 122, no. 3 (2000): 297–304. http://dx.doi.org/10.1115/1.556186.
Der volle Inhalt der QuelleGreen, D., R. Parker, and D. Marsh. "Comparison of Theoretical Estimates and Experimental Measurements of Fatigue Crack Growth Under Severe Thermal Shock Conditions—Part II: Theoretical Assessment and Comparison With Experiment." Journal of Pressure Vessel Technology 109, no. 4 (1987): 421–27. http://dx.doi.org/10.1115/1.3264925.
Der volle Inhalt der QuelleNyrkova, L. I., T. M. Labur, E. I. Shevtsov, et al. "Complex of properties of 2219 alloy weld joint in T62 state under modeling operating conditions." Kosmìčna nauka ì tehnologìâ 28, no. 2 (2022): 14–29. http://dx.doi.org/10.15407/knit2022.02.014.
Der volle Inhalt der Quelle