Auswahl der wissenschaftlichen Literatur zum Thema „Weed“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Weed" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Weed"

1

Place, G. T., S. C. Reberg-Horton, D. L. Jordan, T. G. Isleib und G. G. Wilkerson. „Influence of Virginia Market Type Genotype on Peanut Response to Weed Interference“. Peanut Science 39, Nr. 1 (01.01.2012): 22–29. http://dx.doi.org/10.3146/ps10-12.1.

Der volle Inhalt der Quelle
Annotation:
Abstract Differences in the ability of cultivars to compete with weeds are not well-defined for peanut. Research was conducted in 2007 and 2008 to compare the growth and competitiveness of the virginia market type cultivars NC 10C, NC-V 11, NC 12C, Phillips, VA 98R, and breeding lines N99027L, N01013T, and N02020J under weedy and weed-free conditions. Weed-free peanut was established by applying preemergence and postemergence herbicides throughout the growing season supplemented by weekly hand removal of weeds. Clethodim was applied to weedy peanut to eliminate annual grass interference but not interference from broadleaf weeds and sedges. Weed-free peanut biomass, weedy peanut biomass, and weed biomass were not affected by genotype 10 weeks after peanut emergence. Although substantial yield loss was noted in presence of weeds, the percent yield loss did not vary by genotype when comparing weedy and weed-free yield. These data suggest that cultivar selection within virginia market type peanut will have limited utility in a comprehensive weed management strategy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Dekker, Jack. „Weed diversity and weed management“. Weed Science 45, Nr. 3 (Juni 1997): 357–63. http://dx.doi.org/10.1017/s0043174500092985.

Der volle Inhalt der Quelle
Annotation:
The story of agriculture is the story of weed interference. After millennia of weed control we still have weeds. This situation has led many growers to observe that “the weeds always win.” One of the most important reasons weeds are so successful is their biodiversity. Biodiversity is an inevitable consequence of the struggle an individual weed species undergoes in the presence of neighbors, and by occupying a physical space in an agroecosystem. Weeds have evolved in response to cropping system practices by adapting and occupying niches left available in agroecosystems. Forces created by our cropping practices over evolutionary time have led to the weed diversity we observe today. Diversity underlies weed management in several important ways. A plant experiences diversity among its neighbors in at least five different ways. Weeds have adapted to selection in agroecosystems in several ways: (1) genetic variants within a species; (2) somatic polymorphism of plant parts; (3) success in diverse habitat microsites; (4) temporal adaptations within the community; and (5) floristic diversity of a community at higher levels than the species. Herein, weed diversity is discussed in this broader context, in terms of population behaviors that emerge as a consequence of the activities of individual components at lower levels of organization. Diversity is also discussed in terms of its implications for weed management. The potential exists to develop management strategies based on differences in weed and crop diversity. These strategies might be developed by characterization of weedy genetic and phenotypic diversity; enhancement of crop, cropping system, and agroecosystem diversity; and characterization of the spatial distribution of weed populations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

A.Y, Mamudu,, und Adeyemi, M. „CRITICAL PERIOD OF WEED INTERFERENCE ON SOYBEAN (GLYCINE MAX (L) MERRILL)“. Reviews In Food and Agriculture 3, Nr. 2 (06.01.2022): 76–79. http://dx.doi.org/10.26480/rfna.02.2022.76.79.

Der volle Inhalt der Quelle
Annotation:
Weeds are one of the important factors affecting agriculture production, weeds and inadequate weed control and management pose a detrimental factor affecting crop production. The experiment was conducted at the Teaching and Research Farm of Federal University Technology, Minna, Nigeria, to determine the effectiveness of different weeding regime and critical period of weed interference in the growth and yield of soyabean. The treatments were laid out in a Randomized Complete Block Design (RCBD) and replicated three times. There are ten treatments consisting of weed infested and weed-free as follows T1= soybean + weeding for 2 weeks, T2= soybean + weeding for 4 weeks, T3= soybean + weeding for 6 weeks, T4= soybean + weeding for 8 weeks, T5= soybean + weedy for 2 weeks, T6= soybean + weedy for 4 weeks ,T7= soybean + weedy for 6 weeks, T8= soybean + weedy for 8 weeks, T9= soybean + weed-free plot till end and T10= soybean + no weeding till end. Data were collected on weed cover score, weed dry weight, plant height, pod weight and grain yield. The Data were subjected to analysis of variance using SAS, software version 9, 2002. The results showed that soyabean with weed-free plot for 4, 6 8 and weed-free throughout significantly P<0.05 suppressed weed and increases yield by 70 % compared to other treatments The use of early maturing variety of soybean in addition to weed-free plot throughout the growth stage and weed-free for 8 weeks could be recommended in controlling weed interference in soybean for better soybean growth and yield.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Shahzad, Muhammad, Khawar Jabran, Mubshar Hussain, Muhammad Aown Sammar Raza, Leonard Wijaya, Mohamed A. El-Sheikh und Mohammed Nasser Alyemeni. „The impact of different weed management strategies on weed flora of wheat-based cropping systems“. PLOS ONE 16, Nr. 2 (18.02.2021): e0247137. http://dx.doi.org/10.1371/journal.pone.0247137.

Der volle Inhalt der Quelle
Annotation:
The world population will rise in future, which would demand more wheat production to fulfil dietary needs of wheat-dependent population of the world. Food security in wheat-dependent regions will greatly rely on wheat productivity. Weed infestation is a major constraint reducing wheat productivity globally. Nonetheless, cropping systems and weed management strategies strongly influence weed infestation in modern agriculture. Herbicides are the key weed management tool in conventional agriculture. However, frequent use of herbicides have resulted in the evolution of herbicide-resistance weeds, which made weed management a challenging task. Sustainable and eco-friendly weed management strategies shift weed-crop competition in the favour of crop plants. Limited studies have evaluated the interactive effect of cropping systems and weed management strategies on weed flora of wheat-based cropping systems (WBCSs). This two-year study evaluated the impact of different weed management strategies (WMSs) on weed flora of WBCSs, i.e., fallow-wheat (FW), rice-wheat (RW), cotton-wheat (CW), mungbean-wheat (MW) and sorghum-wheat (SW). The WMSs included in the study were, false seedbed, allelopathic water extracts and herbicide application, while weed-free and weedy-check were maintained as control treatments. Data relating to diversity and density of individual and total broadleaved and narrow-leaved weeds were recorded. The WBCSs, WMSs and their interaction significantly altered diversity and density of individual, total, broadleaved and narrow-leaved weeds. Weed-free and weedy-check treatments recorded the lowest and the highest values of diversity and density of individual, total, broadleaved and narrow-leaved weeds. Herbicide application effectively reduced density and diversity of weeds. Allelopathic water extracts and false seedbed proved less effective than herbicides. On the other hand, SW cropping system not only reduced weed density but also limited the weed flora. It is concluded that false seedbed and SW cropping system can be efficiently used to manage weeds in WBCSs. However, long-term studies are needed to infer the impact of SW cropping system and false seedbed on soil properties, soil microbes and productivity of wheat crop.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

LEMIEUX, C., A. K. WATSON und J. M. DESCHÊNES. „WEED POPULATION DYNAMICS IN RECENTLY ESTABLISHED TIMOTHY STANDS: GROWTH AND PHYSIOGNOMY OF THE WEED COMPONENTS“. Canadian Journal of Plant Science 67, Nr. 4 (01.10.1987): 1035–44. http://dx.doi.org/10.4141/cjps87-139.

Der volle Inhalt der Quelle
Annotation:
In two experiments conducted in the field between 1983 and 1985, timothy was established with or without barley, red clover, grassy weeds and broadleaf weeds. The plots were sampled during establishment and production years. At each sampling, the botanical composition was evaluated to characterize the weed populations. Throughout establishment, the weed populations were dominated by annual broadleaf and grassy weeds which, when growing separately, produced comparable amounts of biomass. However, when growing together, the grassy weeds were clearly dominated by the broadleaf weeds. During the subsequent production years, the weedy populations were dominated by perennial broadleaf weeds. Neither the structure of the weed populations, nor the short-term dynamics of the grassy weed populations were affected by the management system used. However, the short-term dynamics of the broadleaf weed populations were influenced by barley, red clover and the weed control treatments applied during the year of establishment. The use of barley accelerated the growth of the broadleaf weed populations while red clover delayed it. Subsequent broadleaf weed populations were noticeably larger in the plots where they were allowed to grow during the establishment year.Key words: Broadleaf weeds, grassy weeds, Phleum pratense, competition, short-term dynamics
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Mubeen, Khuram, Muhammad Shehzad, Naeem Sarwar, Haseeb ur Rehman, Tauqeer Ahmad Yasir, Allah Wasaya, Matlob Ahmad et al. „The impact of horse purslane (Trianthema portulacastrum L.) infestation on soybean [Glycine max (L.) Merrill] productivity in northern irrigated plains of Pakistan“. PLOS ONE 16, Nr. 9 (20.09.2021): e0257083. http://dx.doi.org/10.1371/journal.pone.0257083.

Der volle Inhalt der Quelle
Annotation:
Horse purslane (Trianthema portulacstrum L.) is an important weed of soybean crop capable of causing significant yield reduction. Therefore, this study assessed the impact of horse purslane and other weeds’ infestation on the productivity of soybean. Ten treatments, i.e., weed-free throughout the growing season, horse purslane-free till 20, 40 and 60 days after emergence (DAE), all weeds-free till 20, 40 and 60 DAE, weedy-check (excluding horse purslane), weedy-check (horse purslane alone) and weedy-check (all weeds) were included in the study. Data relating to density and dry weight of recorded weed species, and yield and related traits of soybean were recorded. Overall, infestation percentage of horse purslane was 33.10 and 51%, whereas dry weight was 12 and 44 g m-2 during 1st and 2nd year, respectively. The highest dry weight of all weed species was recorded at 45 DAE in weedy-check all weeds treatment during both years. The lowest relative density and frequency of horse purslane were recorded in the treatment where it was controlled until 20 DAE during 2018 at 30 DAE, whereas the same treatment recoded the lowest density of horse purslane at 45 DAE during 2019. The relative frequency of horse purslane was non-significant for weedy-check horse purslane and weedy-check all weeds treatments during 2018, whereas former treatment had higher relative frequency of horse purslane in weedy-check all weeds than the later during 2019. Yield and related traits significantly differed among different treatments used in the study. The treatment all weeds controlled until 40 DAE recorded higher number of pods per plant, 1000-seed weight and seed yield during both years. The yield reduction in weedy-check treatments was; weedy-check all weeds > weedy-check all weeds except horse purslane > weedy-check horse purslane only. It is concluded that horse purslane was not the sole weed interfering soybean fields and weed flora consisted of false amaranth [Digera muricata (L.) Mart.] and purple nut sedge (Cyperus rotundus L.). Hence, if the soybean fields in northern irrigated plains of Pakistan are infested with horse purslane or heavily infested with horse purslane or other weeds, these should be controlled in initial 40 DAE to improve soybean productivity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ellis, P. R. „Weeds —influences of weed vegetation in ipm and non-chemical weed control“. Phytoparasitica 20, S1 (März 1992): S71—S75. http://dx.doi.org/10.1007/bf02980412.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Shahabuddin, M., MM Hossain, M. Salim und M. Begum. „Efficacy of pretilachlor and oxadiazon on weed control and yield performance of transplant Aman rice“. Progressive Agriculture 27, Nr. 2 (17.08.2016): 119–27. http://dx.doi.org/10.3329/pa.v27i2.29320.

Der volle Inhalt der Quelle
Annotation:
Two experimentswere carried out at the Agronomy Field laboratory, Bangladesh Agricultural University, Mymensingh during July to December 2014 to study the effectiveness of pretilachlor and oxadiazon on weed control and yield performance oftransplant aman rice. In experiment I BRRI dhan31and in experiment II BRRI dhan46 was transplanted with eight weeding practices viz., weedy check; one hand weeding; two hand weeding; weed free;Pretilachlor only;Oxadiazon only;Pretilachlor + one hand weeding; and Oxadiazon+ one hand weeding. The design was split-plot with three replications. Eleven weed species were found to be infested in the experimental plots. Although weeds were completely controlled in weed free treatment, it is not practicable.Pretilachlor oroxadiazon with one hand weeding performed the best in terms of weed density and weed biomass over single application of each and even manual weeding. Weeds were completely resistant to weedy check, poorly susceptible to one hand weeding, moderately susceptible to two hand weeding and single application of both herbicide and highly susceptible to both herbicides with one hand weeding while weeds were completely susceptible to weed free treatment. Herbicides produced slight phyto-toxicity which was recovered by two weeks of application. The highest grain yield was recorded from weed free treatment and was statistically identical to pretilachlor oroxadiazon with one hand weeding. Single application of pretilachlor oroxadiazon ranked the third in terms of yield and statistically similar to two hand weeding followed by one hand weeding. Weedy check performed the worst.Progressive Agriculture 27 (2): 119-127, 2016
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Abbas, Rana Nadeem, Asif Iqbal, Muhammad Aamir Iqbal, Omar M. Ali, Raees Ahmed, Raina Ijaz, Adel Hadifa und Brandon J. Bethune. „Weed-Free Durations and Fertilization Regimes Boost Nutrient Uptake and Paddy Yield of Direct-Seeded Fine Rice (Oryza sativa L.)“. Agronomy 11, Nr. 12 (30.11.2021): 2448. http://dx.doi.org/10.3390/agronomy11122448.

Der volle Inhalt der Quelle
Annotation:
Under the changing climate, fertilization regimes and weed infestation management in aromatic direct-seeded fine rice (DSR) remain vital for curbing environmental hazards and ensuring food security. A multi-year field study was undertaken to appraise the influence of fertilization techniques and weed-free periods on weed dynamics, nutrient uptake and paddy yield in a semi-arid environment. Treatments included two fertilization methods (broadcasting and side placement) and five weed-free durations (20, 30, 40, 50 post-seeding days, DAS) along with a weed-free crop for a whole season. Weed competition for a season-long crop (weedy check) was maintained for each fertilizer application method. Our results revealed that the side placement of fertilizers resulted in a significantly lower weed density and biomass, even under season-long weed competition. The highest paddy yield was recorded for a crop without weeds, while weed-free duration of up to 50 DAS followed it. The uptake of nitrogen (N), phosphorus (P) and potassium (K) for a weed-free duration of up to 50 DAS were only 19%, 9% and 8%, respectively, as compared to the weedy check. The uptake of N, P and K by weeds in the broadcast method was 18%, 30% and 24% higher, compared to side-placed fertilizers. The period of 20–50 DAS remained critical in DSR as far as weed control was concerned. Thus, the side placement of fertilizers and controlling weeds for up to 50 days after rice sowing can be recommended for general adoption in semi-arid agro-ecological conditions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Roland, Gerhards, Bezhin Kostyantyn und Santel Hans-Joachim. „Sugar beet yield loss predicted by relative weed cover, weed biomass and weed density“. Plant Protection Science 53, No. 2 (25.01.2017): 118–25. http://dx.doi.org/10.17221/57/2016-pps.

Der volle Inhalt der Quelle
Annotation:
Sugar beet yield loss was predicted from early observations of weed density, relative weed cover, and weed biomass using non-linear regression models. Six field experiments were conducted in Germany and in the Russian Federation in 2012, 2013 and 2014. Average weed densities varied from 20 to 131 with typical weed species compositions for sugar beet fields at both locations. Sugar beet yielded higher in Germany and relative yield losses were lower than in Russia. Data of weed density, relative weed cover, weed biomass and relative yield loss fitted well to the non-linear regression models. Competitive weed species such as Chenopodium album and Amaranthus retroflexus caused more than 80% yield loss. Relative weed cover regression models provided more accurate predictions of sugar beet yield losses than weed biomass and weed density.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Weed"

1

Perrins, James Michael. „Why is a weed a weed?“ Thesis, University of York, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304356.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Mühleisen, Martin Bernd. „Chemical weed control : options in fibre flax“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0031/MQ64411.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Bitterlich, Iris. „Weed interference and weed control in cole crops and onion“. Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/28920.

Der volle Inhalt der Quelle
Annotation:
Additive weed competition experiments were undertaken to study the effect of lamb's-quarters (Chenopodium album) interference on direct seeded broccoli. Lamb's-quarters (3, 8, 10, 12, and 15 plants m⁻²) began to affect broccoli growth 28 to 36 days after seeding. Decreases in crop growth increased with weed density as time after seeding increased. Yield data were fitted to a rectangular hyperbolic model which indicated that even one lamb's-quarters plant m⁻² could reduce total yield by 18 to 20 percent and marketable yield (head >10 cm across) by 22 to 37 percent. Lamb's-quarters reduced total yield by reducing average head weight and not by lowering the number of heads per plot. On the other hand, the weed reduced marketable yield by reducing both the average head weight and the number of heads per plot. The feasibility of using liquid ammonium nitrate as a post-emergent weed control spray in cole crops was studied. The relative susceptibility of different weed species grown by themselves (1989) and with two crops (broccoli and onion; 1987) to ammonium nitrate (800 L ha⁻¹; 0, 7.5, 10, 15, 20 percent N) burning was investigated. The fertilizer controlled shepherd's-purse (Capsella bursa-pastoris), chickweed (Stellaria media), cudweed {Gnaphalium uliginosum), and redroot pigweed (Amaranthus retroflexus), but not lamb's-quarters, purslane (Portulaca oleracea), and annual bluegrass (Poa annua). Corn spurry (Spergula arvensis) varied in its tolerance. Although weed populations were reduced by 70 percent in 1987, the remaining weeds competed so strongly with the onion and broccoli that the crop plants did not reach a harvestable size. The large initial weed population (799 plants m⁻²), the large number of tolerant weeds present, and the possible recovery of some of the susceptible weeds may all have been factors responsible for crop failure. The effect of different shepherd's-purse densities (52 to 988 plants m⁻²) on the degree of ammonium nitrate (800 L ha⁻¹; 20 percent N) control in broccoli was also studied. The initial weed control achieved was reduced over time either because some weeds counted as dead had recovered or new plants were being recruited to the population through seed germination. Although the maximum density of shepherd's-purse plants that survived was 219 plants m⁻², these plants did not significantly reduce crop yield possibly because shepherd's-purse is not a very competitive species and all the surviving weeds had been damaged to varying degrees, further reducing their competitive ability. The relative susceptibility of various crop cultivars to ammonium nitrate (800 L ha⁻¹; 0, 10, 15, 20 percent N) burning was also studied. In 1987, the growth rates of 'Lunet' (Brussels sprouts), ‘SGI' (broccoli), 'Elgon' (cauliflower), and 'Matra' (cauliflower) initially decreased but the plants recovered; they were largely unaffected in 1988. The growth rates of 'White Lisbon' (onion), 'Emperor' (broccoli), and 'Early Marvel' (cabbage) were largely unaffected in either year. Although some cultivars had shown initial signs of lower growth rates, there was no decrease in crop yield. Leaf surfaces of tolerant and susceptible crop and weed species were examined by scanning electron microscopy to determine the basis of ammonium nitrate selectivity. Leaf surfaces of tolerant species were completely covered with a crystalline wax layer, while susceptible species had little or no epicuticular wax. Cellulose acetate was used to remove the epicuticular wax from cabbage leaves. The stripped leaves showed far greater ammonium nitrate retention and salt injury than unstripped leaves, demonstrating the importance of the epicuticular wax in providing protection against ammonium nitrate injury. Trichomes, observed on the leaf surfaces of some susceptible species, may further increase ammonium nitrate retention and, therefore, salt injury.
Land and Food Systems, Faculty of
Graduate
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Liphadzi, Konanani Benedictor. „Weed competitiveness and soil health response to weed management practices /“. Search for this dissertation online, 2004. http://wwwlib.umi.com/cr/ksu/main.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Gardiner, Ian O. „The effects of crop rotation and weed management on weed populations“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ39825.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ndou, Aifheli Meshack. „Interaction of weed emergence, weed density, and herbicide rate in soybean“. Diss., Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1668.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

McGinley, Susan. „Fighting Weeds in Lemon Orchards: Weed-Sensing Sprayer Could be the Key“. College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2002. http://hdl.handle.net/10150/622246.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Baraibar, Padró Bàrbara. „Seed predators and weed seed predation for weed control in winter cereals“. Doctoral thesis, Universitat de Lleida, 2011. http://hdl.handle.net/10803/31991.

Der volle Inhalt der Quelle
Annotation:
La depredació de llavors pot causar pèrdues significatives de llavors de males herbes en sistemes agrícoles i, per tant, pot contribuir al control de les arvenses. Actualment, el coneixement existent sobre la identitat i la contribució relativa dels diferents depredadors de llavors, i dels factors que limiten aquesta depredació és escàs. Aquest estudi té com a objectiu contribuir a augmentar aquest coneixement pel cas específic del cereals d’hivern a les zones semi-àrides del nord-est espanyol. Tradicionalment, aquesta zona ha estat de secà i caracteritzada per un intens treball del sòl. Però, amb el temps, una superfície creixent d’aquesta zona ha anat transformant-se al regadiu; i a la restant zona de secà, la sembra directa ha anat creixent en superfície. Per aquest motiu, es va estudiar l’impacte d’aquestes dues transformacions en la depredació de llavors de males herbes. L’estudi ha mostrat que en les àrees de secà, les formigues recol·lectores de l’espècie Messor barbarus estan contribuint d’una manera substancial al control de males herbes al emportar-se grans quantitats de llavors de males herbes durant els mesos de primavera i estiu. El conreu del sòl a l’estiu va fer decréixer les taxes de depredació i va provocar l’enterrament de la majoria de les llavors que es trobaven a la superfície del sòl, impedint, d’aquesta manera, la continuació de la depredació. Igualment, el conreu del sòl també va fer disminuir la densitat de nius de formigues als camps conreats en comparació amb els camps de sembra directa. L’expansió de l’àrea en sembra directa hauria de donar lloc a unes taxes elevades de control natural de les males herbes en una àmplia zona. Per contra, el reg per inundació va eliminar completament les formigues recol·lectores i va portar casi a la completa pèrdua d’aquest servei de l’ecosistema. Encara que caràbids i ratolins eren presents als marges dels cultius, les taxes de depredació a l’interior dels camps van ser extremadament baixes. Les causes d’aquesta falta de depredació encara no són conegudes i haurien de ser estudiades en el futur. Les densitats de nius de formigues recol·lectores varien enormement entre camps i, per tant, s’espera que les taxes de depredació variïn en conseqüència. Les causes d’aquesta variabilitat no van poder ser identificades. La densitat de nius de M. barbarus no es van poder correlacionar amb les característiques del sòl més comunes, amb paràmetres topogràfics ni amb practiques de maneig, excepte amb el nombre d’anys des de l’adopció de la sembra directa. La densitat de nius de M. barbarus va ser màxima després de 11 – 12 anys de sembra directa. A part d’això, no es van poder formular recomanacions per incrementar les densitats de nius en aquelles zones en les que són baixes. L’èxit de la depredació de llavors de males herbes com a servei de l’ecosistema també depèn de l’habilitat dels depredadors de respondre d’una manera directament denso-dependent a densitats creixents de llavors. La resposta a diferents densitats de llavors per part de ratolins granívors va ser investigada en camps de blat del nord-est d’Alemanya. Els ratolins van respondre a densitats creixents de llavors d’una forma directament denso-dependent i per tant, s’espera que puguin ser capaços de controlar d’una manera efectiva els rodals de males herbes. Les respostes a densitats creixents de llavors per part de ratolins i formigues recol·lectores en les condicions del nord-est de l’estat espanyol estan essent investigades actualment. Es possible que les formigues recol·lectores puguin, ocasionalment, destruir llavors de cultiu. Tanmateix, les pèrdues de rendiment causades per M. barbarus van ser negligibles en la majoria dels casos (0.4% del rendiment) i poden ser explicades per la densitat de nius, la mida d’aquests i el nombre d’anys que el camp porta en sembra directa. Ocasionalment, es van registrar pèrdues de rendiment més altes (9.2% del rendiment). Les causes d’aquestes pèrdues han d’esser estudiades en detall en el futur. Aquest estudi exemplifica la fortalesa i la vulnerabilitat d’un servei del ecosistema. A les zones de secà del nord-est espanyol, s’estan donant, d’una forma natural, altes taxes altes de depredació de llavors de males herbes que contribueixen substancialment al control d’aquestes herbes. Tanmateix, aquest servei es pot perdre fàcilment tal com il·lustren l’absència de depredació de llavors en les àrees regades a manta i la resposta de les formigues recol·lectores a un excessiu treball del sòl. Les densitats de nius de formigues recol·lectores existents podrien ser preservades limitant el nivell de pertorbació del sòl. En regions semi-àrides, on la producció de cereals és marginalment rendible degut a l’escassetat d’aigua, la preservació del control natural de les males herbes dut a terme per les formigues recol·lectores és necessària per preservar la sostenibilitat del sistema
La depredación de semillas puede causar pérdidas significativas de semillas de malas hierbas en sistemas agrícolas y, por lo tanto, puede contribuir al control de dichas hierbas. Actualmente, el conocimiento existente acerca de la identidad y contribución relativa de los depredadores de semillas, y de los factores que limitan esta depredación es escaso. Este estudio tiene como objetivo contribuir a incrementar dicho conocimiento para el caso específico de los cereales de invierno en las zonas semi-áridas del noreste español. Tradicionalmente, esta zona ha sido de secano y caracterizada por un intenso laboreo del suelo. Sin embargo, la superficie de regadío ha ido incrementándose en la zona y, en la zona de secano restante, la siembra directa también ha ido en aumento. Por este motivo, se estudió el impacto de estas dos transformaciones en la depredación de semillas de malas hierbas. El estudio ha mostrado que, en las zonas de secano, las hormigas granívoras de la especie Messor barbarus están contribuyendo de una forma sustancial al control de malas hierbas, al llevarse grandes cantidades de semillas de malas hierbas durante los meses de primavera i verano. El laboreo del suelo en verano redujo las tasas de depredación de semillas y provocó el enterramiento de la mayoría de las semillas presentes en la superficie del suelo, lo que impidió, en gran medida, la continuación de la depredación. De la misma forma, el laboreo del suelo también disminuyó la densidad de nidos de hormigas en los campos cultivados en comparación con los campos de siembra directa. La expansión del área en siembra directa debería dar lugar a tasas elevadas de control natural de malas hierbas en una amplia zona. Contrariamente, el riego por inundación eliminó por completo a las hormigas granívoras y llevó a la casi completa desaparición de este servicio del ecosistema. Aún cuando carábidos y pequeños roedores estaban presentes en los márgenes de los cultivos, las tasas de depredación en el interior de los campos fueron extremadamente bajas. Las causas de esta falta de depredación son aún desconocidas y deberían ser estudiadas en el futuro. Las densidades de nidos de hormigas granívoras varían enormemente entre campos y, por lo tanto, se espera que las tasas de depredación también varíen en consecuencia. Las causas de dicha variabilidad no pudieron ser identificadas. Las densidades de nidos de M. barbarus no se pudieron correlacionar con las características del suelo más comunes, con parámetros topográficos ni con las prácticas de manejo del cultivo, exceptuando en número de años desde la adopción de la siembra directa. Las densidades de nidos de M. barbarus fueron máximas después de 11-12 años de siembra directa. A parte de esto, no se pudieron formular recomendaciones para incrementar las densidades de nidos en aquellas zonas en las que son bajas. El éxito de la depredación de semillas de malas hierbas como servicio del ecosistema depende también de la habilidad de los depredadores para responder de una forma directamente denso-dependiente a densidades crecientes de semillas. La respuesta a diferentes densidades de semillas por parte de roedores granívoros fue investigada en campos de trigo del noreste de Alemania. Los roedores respondieron a densidades crecientes de semillas de una forma directamente denso-dependiente, por lo que se espera que puedan ser capaces de controlar de una forma efectiva, los rodales de malas hierbas. Las respuestas a densidades crecientes de semillas por parte de roedores y hormigas granívoras en condiciones del noreste español están siendo investigadas en la actualidad. Es posible que las hormigas granívoras puedan, ocasionalmente, destruir semillas de cultivo. Sin embargo, las pérdidas de rendimiento causadas por M. barbarus fueron insignificantes en la mayoría de casos (0.4% del rendimiento) y pueden ser explicadas por la densidad de nidos, su tamaño y el número de años de siembra directa del campo. Ocasionalmente, se registraron pérdidas de rendimiento más elevadas (9.2% del rendimiento). Las causas de estas pérdidas deben ser estudiadas en más detalle en el futuro. Este estudio ejemplifica la fortaleza y la vulnerabilidad de un servicio del ecosistema. En las zonas de secano del noreste español se están dando, de forma natural, altas tasas de depredación de semillas de malas hierbas, que están contribuyendo sustancialmente al control de las malas hierbas. Sin embargo, este servicio puede perderse fácilmente tal como muestran la ausencia de depredación de semillas en las áreas regadas a manta y la respuesta de las hormigas granívoras a un excesivo laboreo del suelo. Las densidades de nidos de hormigas existentes podrían ser preservadas limitando el grado de perturbación del suelo. En regiones semi-áridas, donde la producción de cereales es marginalmente rentable debido a la escasez de agua, el mantenimiento del control natural de las malas hierbas por parte de las hormigas granívoras se hace necesario para preservar la sostenibilidad del sistema.
Seed predation can cause significant losses of weed seeds in agricultural systems and can, thus, contribute to weed control. Knowledge on the identity and relative contribution to weed control by various seed predators, and on factors limiting seed predation is currently lacking. This study aimed at casting light on these aspects for the specific case of winter cereal fields in semi-arid north-eastern Spain. This area is traditionally managed without irrigation and with tillage. However, an ever increasing proportion of the arable land is being irrigated and the remainder of the rain fed land is managed without tillage. The impact of tillage and irrigation on weed seed predators and seed removal rates were, therefore, studied. The study showed that in the rain-fed area, Messor barbarus harvester ants are contributing substantially to weed control by removing large quantities of weed seeds during spring and summer. Tillage during summer decreased predation rates and buried most of the weed seeds located on the soil surface, thus preventing further seed removal. Tillage also decreased the number of harvester ant nests compared to no-till fields. The expansion of the area that is managed with minimum and no-till should result in high natural weed control level over a large area. In contrast, inundative irrigation completely eliminated harvester ants, and led to the almost complete loss of this ecosystem service. Although carabid beetles and rodents were present in the field edges, predation rates in the field interior were extremely low. Causes for the lack of seed predation are still unknown and should be further investigated. Densities of harvester ant nests varied enormously between fields; concomitant weed seed predation rates are expected to vary accordingly. Causes for this variability could not be identified. Harvester ant nest density did not correlate with the most common soil characteristics, topographic variables or crop and management practices, with the exception of the number of years of no-till. Harvester ant density was highest after 11-12 years of no-till. Other than that, no recommendations could be formulated to increase nest densities in those areas were they are low. Success of weed seed predation as an ecosystem service also depends on the ability of predators to respond in a direct density dependent way to increasing seed densities. The density dependent response of granivorous rodents to seed patches with varying density was investigated in winter cereal fields of north-eastern Germany. Rodents responded in a direct density dependent way to increasing seed densities and are, therefore, expected to effectively control weed patches. The density dependent response by harvester ants and granivorous rodents in cereal fields in NE Spain are currently being investigated. It is feasible that harvester ants occasionally destroy crop seeds and cause crop damage. Yield loss caused by M. barbarus was, however, negligible (0.4 % of yield), and was explained by nest density, nest size and number of years without tillage. Based on these results, damage caused by harvester ants was more than offset by the benefits with regard to weed control. However, occasional higher yield losses (max. 9.2%) were recorded and the conditions leading to higher losses should be investigated further. This study exemplifies both the strength and vulnerability of an ecosystem service. High weed seed predation by harvester ants is occurring naturally in rain-fed cereals in north-eastern Spain and contributes substantially to weed control. However, this service can easily be lost as illustrated by the absence of seed predation in the flood irrigated areas and the response of harvester ants to excessive tillage. Existing densities of harvester ant nests could be preserved by limiting the level of soil disturbance. In semi-arid regions, cereal production is marginally cost effective due to limited water availability and, therefore, preserving natural weed control by harvester ants is needed in order to preserve the sustainability of the system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Beamer, Kenneth Paul. „Weed Management and Soil Quality Outcomes of Non-Chemical Weed Control Tactics“. Thesis, North Dakota State University, 2018. https://hdl.handle.net/10365/28854.

Der volle Inhalt der Quelle
Annotation:
In the Northern Great Plains (NGP), weed management within organic systems remains a challenge. Experiments were conducted at two distinct sites in North Dakota to investigate effects of deep mulch no-till (NT) on soil quality indices, weed densities, and weed seedbank densities. We hypothesized that alfalfa mulch no-till and arbuscular mycorrhizal fungi (AMF) inoculant would be associated with reductions in weed densities and improvements to soil quality and vegetable yield. NT treatments were associated with reductions in weed densities and time required for weeding, with improvements in soil quality, such as increased AMF biomass, and yield for snap pea, onion, beet, and butternut squash compared to tilled treatments. Our findings suggest deep mulch no-till using alfalfa residue may be a viable option for small-scale organic vegetable producers in the NGP. Additional research is required to determine costs associated with sowing, harvesting, baling, and applying alfalfa mulch compared to tilling.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Dissanayake, N. P. „Studies on weed biology“. Thesis, University of Reading, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332797.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Weed"

1

Johnston, William J. Lawn weed control for homeowners. [Pullman, Wash.]: Cooperative Extension, Washington State University, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Johnston, William J. Lawn weed control for homeowners. Pullman, Wash: Cooperative Extension, Washington State University, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Schroeder, Jill. Weed management in conventional till grain sorghum. Las Cruces, NM: Agricultural Experiment Station, Cooperative Extension Service, College of Agriculture and Home Economics, New Mexico State University, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Alex, J. F. Weed control in lawns and gardens. Toronto, Ont: Ministry of Agriculture, Food and Rural Affairs, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Caton, B. P. A practical field guide to weeds of rice in Asia. Los Baños, Laguna, Philippines: IRRI, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Caton, B. P. A practical field guide to weeds of rice in Asia. Los Baños, Laguna, Philippines: International Rice Research Institute, 2004.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Weed Historic Lumber Town Musum (Weed, Calif.). Weed. Charleston, SC: Arcadia, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Weed Historic Lumber Town Musum (Weed, Calif.). Weed. Charleston, SC: Arcadia, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Johnston, William J. Lawn weed control for Washington state homeowners. [Pullman, Wash.]: Cooperative Extension, Washington State University, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Johnston, William J. Lawn weed control for Washington State homeowners. 2. Aufl. [Pullman, Wash.]: Cooperative Extension, Washington State University, 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Weed"

1

Schweizer, E. E., und M. J. May. „Weeds and weed control“. In The Sugar Beet Crop, 485–519. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-009-0373-9_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Peters, Elroy J., und R. A. Peters. „Weeds and Weed Control“. In Agronomy Monographs, 555–73. Madison, WI, USA: American Society of Agronomy, 2015. http://dx.doi.org/10.2134/agronmonogr15.c25.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Peters, Elroy J., und Dean L. Linscott. „Weeds and Weed Control“. In Agronomy Monographs, 705–35. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2015. http://dx.doi.org/10.2134/agronmonogr29.c23.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Monks, David W., Katie M. Jennings, Stephen L. Meyers, Tara P. Smith und Nicholas E. Korres. „Sweetpotato: Important Weeds and Sustainable Weed Management“. In Weed Control, 580–96. Boca Raton, FL:CRC Press,[2018]"A Science publishers book."|Include bibliographical references and index.: CRC Press, 2018. http://dx.doi.org/10.1201/9781315155913-31.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Aly, Radi, und Neeraj Kumar Dubey. „Weed Management for Parasitic Weeds“. In Recent Advances in Weed Management, 315–45. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1019-9_14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Rueda-Ayala, Victor, Jesper Rasmussen und Roland Gerhards. „Mechanical Weed ControlMechanical weed control“. In Precision Crop Protection - the Challenge and Use of Heterogeneity, 279–94. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9277-9_17.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Lutman, P. J. W. „Weed control“. In The Potato Crop, 373–402. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2340-2_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Weed, Nathan C. „Weed, Nathan“. In Encyclopedia of Personality and Individual Differences, 5760–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-24612-3_2071.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Arteca, Richard N. „Weed Control“. In Plant Growth Substances, 273–311. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-2451-6_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bayer, D. E. „Weed Management“. In Rice, 287–309. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3754-4_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Weed"

1

Darbyshire, Madeleine, Adrian Salazar-Gomez, Callum Lennox, Junfeng Gao, Elizabeth Sklar und Simon Parsons. „Localising Weeds Using a Prototype Weed Sprayer“. In UKRAS22 Conference "Robotics for Unconstrained Environments". EPSRC UK-RAS Network, 2022. http://dx.doi.org/10.31256/ua7pr2w.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Coble, Harold D. „Weed Thresholds“. In Proceedings of the 28th Annual Integrated Crop Management Conference. Iowa State University, Digital Press, 1989. http://dx.doi.org/10.31274/icm-180809-290.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Visser, R., und A. J. M. Timmermans. „Weed-It: a new selective weed control system“. In Photonics East '96, herausgegeben von George E. Meyer und James A. DeShazer. SPIE, 1996. http://dx.doi.org/10.1117/12.262852.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Li, Liujun, Donglin Zhou, Jiang Chang und Dev Shrestha. „Large weed database and YOLO weed identification algorithm evaluation“. In 2023 Omaha, Nebraska July 9-12, 2023. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2023. http://dx.doi.org/10.13031/aim.202300728.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

„Weed Database Development: An Updated Survey of Public Weed Datasets and Cross-Season Weed Detection Adaptation“. In 2023 Omaha, Nebraska July 9-12, 2023. American Society of Agricultural and Biological Engineers, 2023. http://dx.doi.org/10.13031/aim.202301280.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hartzler, Robert. „Biological Weed Management“. In Proceedings of the First Annual Crop Production and Protection Conference. Iowa State University, Digital Press, 1989. http://dx.doi.org/10.31274/icm-180809-313.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Owen, Michael D. K. „Weed Management Update“. In Proceedings of the 1995 Integrated Crop Management Conference. Iowa State University, Digital Press, 1995. http://dx.doi.org/10.31274/icm-180809-516.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Owen, Micheal D. K. „Weed Management Update“. In Proceedings of the 1995 Integrated Crop Management Conference. Iowa State University, Digital Press, 1996. http://dx.doi.org/10.31274/icm-180809-548.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Owen, Micheal D. K. „Weed Management Update“. In Proceedings of the 10th Annual Integrated Crop Management Conference. Iowa State University, Digital Press, 1998. http://dx.doi.org/10.31274/icm-180809-612.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Hartzler, Bob. „Weed Population Dynamics“. In Proceedings of the 10th Annual Integrated Crop Management Conference. Iowa State University, Digital Press, 2000. http://dx.doi.org/10.31274/icm-180809-675.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Weed"

1

Hartzler, Robert G. Weed Management Studies. Ames: Iowa State University, Digital Repository, 2005. http://dx.doi.org/10.31274/farmprogressreports-180814-1119.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Owen, Michael D., James F. Lux und Damian D. Franzenburg. Weed Management in Soybeans. Ames: Iowa State University, Digital Repository, 2003. http://dx.doi.org/10.31274/farmprogressreports-180814-1041.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Owen, Michael D., James F. Lux und Damian D. Franzenburg. Weed Management in Soybean. Ames: Iowa State University, Digital Repository, 2002. http://dx.doi.org/10.31274/farmprogressreports-180814-1150.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Owen, Michael D., James F. Lux, Damian D. Franzenburg und Dean M. Grossnickle. Weed Management in Corn. Ames: Iowa State University, Digital Repository, 2010. http://dx.doi.org/10.31274/farmprogressreports-180814-1211.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Pringnitz, Brent A., und Robert G. Hartzler. Soybean Weed Management Studies. Ames: Iowa State University, Digital Repository, 2003. http://dx.doi.org/10.31274/farmprogressreports-180814-2153.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Van Dee, Kevin. Soybean Weed Competition Study. Ames: Iowa State University, Digital Repository, 2002. http://dx.doi.org/10.31274/farmprogressreports-180814-2318.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Owen, Michael D., James F. Lux und Damian D. Franzenburg. Weed Management in Corn. Ames: Iowa State University, Digital Repository, 2003. http://dx.doi.org/10.31274/farmprogressreports-180814-2390.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Rueber, David, und Robert G. Hartzler. Time of Weed Control. Ames: Iowa State University, Digital Repository, 2008. http://dx.doi.org/10.31274/farmprogressreports-180814-2537.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Pringnitz, Brent A., und Robert G. Hartzler. Soybean Weed Management Studies. Ames: Iowa State University, Digital Repository, 2001. http://dx.doi.org/10.31274/farmprogressreports-180814-2562.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Owen, Michael D., James F. Lux und Damian D. Franzenburg. No-Tillage Weed Control. Ames: Iowa State University, Digital Repository, 2004. http://dx.doi.org/10.31274/farmprogressreports-180814-340.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie