Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Wearable neurotechnology“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Wearable neurotechnology" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Wearable neurotechnology"
Simons, Stephen, Maria Provo und Renee Shimizu. „0431 Transcranial Electrical Stimulation with a Wearable Device Dramatically Reduces Sleep Onset Latency in Insomnia“. SLEEP 47, Supplement_1 (20.04.2024): A185. http://dx.doi.org/10.1093/sleep/zsae067.0431.
Der volle Inhalt der Quelledu Bois, N., A. D. Bigirimana, A. Korik, L. Gaju Kéthina, E. Rutembesa, J. Mutabaruka, L. Mutesa, G. Prasad, S. Jansen und D. Coyle. „Electroencephalography and psychological assessment datasets to determine the efficacy of a low-cost, wearable neurotechnology intervention for reducing Post-Traumatic Stress Disorder symptom severity“. Data in Brief 42 (Juni 2022): 108066. http://dx.doi.org/10.1016/j.dib.2022.108066.
Der volle Inhalt der QuelleChen, Witney, Lowry Kirkby, Miro Kotzev, Patrick Song, Ro’ee Gilron und Brian Pepin. „The Role of Large-Scale Data Infrastructure in Developing Next-Generation Deep Brain Stimulation Therapies“. Frontiers in Human Neuroscience 15 (06.09.2021). http://dx.doi.org/10.3389/fnhum.2021.717401.
Der volle Inhalt der QuelleBosch, Victoria, und Giulio Mecacci. „Eyes on the road: brain computer interfaces and cognitive distraction in traffic“. Frontiers in Neuroergonomics 4 (26.05.2023). http://dx.doi.org/10.3389/fnrgo.2023.1171910.
Der volle Inhalt der QuelleLópez-Larraz, Eduardo, Carlos Escolano, Almudena Robledo-Menéndez, Leyre Morlas, Alexandra Alda und Javier Minguez. „A garment that measures brain activity: proof of concept of an EEG sensor layer fully implemented with smart textiles“. Frontiers in Human Neuroscience 17 (26.05.2023). http://dx.doi.org/10.3389/fnhum.2023.1135153.
Der volle Inhalt der QuelleDissertationen zum Thema "Wearable neurotechnology"
Banville, Hubert. „Enabling real-world EEG applications with deep learning“. Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG005.
Der volle Inhalt der QuelleOur understanding of the brain has improved considerably in the last decades, thanks to groundbreaking advances in the field of neuroimaging. Now, with the invention and wider availability of personal wearable neuroimaging devices, such as low-cost mobile EEG, we have entered an era in which neuroimaging is no longer constrained to traditional research labs or clinics. "Real-world'' EEG comes with its own set of challenges, though, ranging from a scarcity of labelled data to unpredictable signal quality and limited spatial resolution. In this thesis, we draw on the field of deep learning to help transform this century-old brain imaging modality from a purely clinical- and research-focused tool, to a practical technology that can benefit individuals in their day-to-day life. First, we study how unlabelled EEG data can be utilized to gain insights and improve performance on common clinical learning tasks using self-supervised learning. We present three such self-supervised approaches that rely on the temporal structure of the data itself, rather than onerously collected labels, to learn clinically-relevant representations. Through experiments on large-scale datasets of sleep and neurological screening recordings, we demonstrate the significance of the learned representations, and show how unlabelled data can help boost performance in a semi-supervised scenario. Next, we explore ways to ensure neural networks are robust to the strong sources of noise often found in out-of-the-lab EEG recordings. Specifically, we present Dynamic Spatial Filtering, an attention mechanism module that allows a network to dynamically focus its processing on the most informative EEG channels while de-emphasizing any corrupted ones. Experiments on large-scale datasets and real-world data demonstrate that, on sparse EEG, the proposed attention block handles strong corruption better than an automated noise handling approach, and that the predicted attention maps can be interpreted to inspect the functioning of the neural network. Finally, we investigate how weak labels can be used to develop a biomarker of neurophysiological health from real-world EEG. We translate the brain age framework, originally developed using lab and clinic-based magnetic resonance imaging, to real-world EEG data. Using recordings from more than a thousand individuals performing a focused attention exercise or sleeping overnight, we show not only that age can be predicted from wearable EEG, but also that age predictions encode information contained in well-known brain health biomarkers, but not in chronological age. Overall, this thesis brings us a step closer to harnessing EEG for neurophysiological monitoring outside of traditional research and clinical contexts, and opens the door to new and more flexible applications of this technology
Konferenzberichte zum Thema "Wearable neurotechnology"
Elmalaki, Salma, Berken Utku Demirel, Mojtaba Taherisadr, Sara Stern-Nezer, Jack J. Lin und Mohammad Abdullah Al Faruque. „Towards Internet-of-Things for Wearable Neurotechnology“. In 2021 22nd International Symposium on Quality Electronic Design (ISQED). IEEE, 2021. http://dx.doi.org/10.1109/isqed51717.2021.9424364.
Der volle Inhalt der QuelleRubio Ballester, Belén, Alica Lathe, Esther Duarte, Armin Duff und Paul F. M. J. Verschure. „A Wearable Bracelet Device for Promoting Arm Use in Stroke Patients“. In International Congress on Neurotechnology, Electronics and Informatics. SCITEPRESS - Science and and Technology Publications, 2015. http://dx.doi.org/10.5220/0005662300240031.
Der volle Inhalt der Quelle