Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Weakly hyperbolic systems.

Zeitschriftenartikel zum Thema „Weakly hyperbolic systems“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Weakly hyperbolic systems" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Arbieto, Alexander, André Junqueira und Bruno Santiago. „On Weakly Hyperbolic Iterated Function Systems“. Bulletin of the Brazilian Mathematical Society, New Series 48, Nr. 1 (04.10.2016): 111–40. http://dx.doi.org/10.1007/s00574-016-0018-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

YONEDA, GEN, und HISA-AKI SHINKAI. „CONSTRUCTING HYPERBOLIC SYSTEMS IN THE ASHTEKAR FORMULATION OF GENERAL RELATIVITY“. International Journal of Modern Physics D 09, Nr. 01 (Februar 2000): 13–34. http://dx.doi.org/10.1142/s0218271800000037.

Der volle Inhalt der Quelle
Annotation:
Hyperbolic formulations of the equations of motion are essential technique for proving the well-posedness of the Cauchy problem of a system, and are also helpful for implementing stable long time evolution in numerical applications. We, here, present three kinds of hyperbolic systems in the Ashtekar formulation of general relativity for Lorentzian vacuum spacetime. We exhibit several (I) weakly hyperbolic, (II) diagonalizable hyperbolic, and (III) symmetric hyperbolic systems, with each their eigenvalues. We demonstrate that Ashtekar's original equations form a weakly hyperbolic system. We discuss how gauge conditions and reality conditions are constrained during each step toward constructing a symmetric hyperbolic system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Krylovas, A., und R. Čiegis. „Asymptotic Approximation of Hyperbolic Weakly Nonlinear Systems“. Journal of Nonlinear Mathematical Physics 8, Nr. 4 (Januar 2001): 458–70. http://dx.doi.org/10.2991/jnmp.2001.8.4.2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Spagnolo, Sergio, und Giovanni Taglialatela. „Analytic Propagation for Nonlinear Weakly Hyperbolic Systems“. Communications in Partial Differential Equations 35, Nr. 12 (04.11.2010): 2123–63. http://dx.doi.org/10.1080/03605300903440490.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Colombini, F., und Guy Métivier. „The Cauchy problem for weakly hyperbolic systems“. Communications in Partial Differential Equations 43, Nr. 1 (08.12.2017): 25–46. http://dx.doi.org/10.1080/03605302.2017.1399906.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Arbieto, Alexander, Carlos Matheus und Maria José Pacifico. „The Bernoulli Property for Weakly Hyperbolic Systems“. Journal of Statistical Physics 117, Nr. 1/2 (Oktober 2004): 243–60. http://dx.doi.org/10.1023/b:joss.0000044058.99450.c9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

D'Ancona, Piero, Tamotu Kinoshita und Sergio Spagnolo. „Weakly hyperbolic systems with Hölder continuous coefficients“. Journal of Differential Equations 203, Nr. 1 (August 2004): 64–81. http://dx.doi.org/10.1016/j.jde.2004.03.016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Souza, Rafael R. „Sub-actions for weakly hyperbolic one-dimensional systems“. Dynamical Systems 18, Nr. 2 (Juni 2003): 165–79. http://dx.doi.org/10.1080/1468936031000136126.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Alabau-Boussouira, Fatiha. „Indirect Boundary Stabilization of Weakly Coupled Hyperbolic Systems“. SIAM Journal on Control and Optimization 41, Nr. 2 (Januar 2002): 511–41. http://dx.doi.org/10.1137/s0363012901385368.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

DREHER, MICHAEL, und INGO WITT. „ENERGY ESTIMATES FOR WEAKLY HYPERBOLIC SYSTEMS OF THE FIRST ORDER“. Communications in Contemporary Mathematics 07, Nr. 06 (Dezember 2005): 809–37. http://dx.doi.org/10.1142/s0219199705001969.

Der volle Inhalt der Quelle
Annotation:
For a class of first-order weakly hyperbolic pseudo-differential systems with finite time degeneracy, well-posedness of the Cauchy problem is proved in an adapted scale of Sobolev spaces. These Sobolev spaces are constructed in correspondence to the hyperbolic operator under consideration, making use of ideas from the theory of elliptic boundary value problems on manifolds with singularities. In addition, an upper bound for the loss of regularity that occurs when passing from the Cauchy data to the solutions is established. In many examples, this upper bound turns out to be sharp.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Jiang, Kai. „Local normal forms of smooth weakly hyperbolic integrable systems“. Regular and Chaotic Dynamics 21, Nr. 1 (Januar 2016): 18–23. http://dx.doi.org/10.1134/s1560354716010020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Melo, Ítalo. „On $$\mathbb {P}$$ P -Weakly Hyperbolic Iterated Function Systems“. Bulletin of the Brazilian Mathematical Society, New Series 48, Nr. 4 (30.05.2017): 717–32. http://dx.doi.org/10.1007/s00574-017-0042-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Bessa, Mário, Manseob Lee und Sandra Vaz. „Stable weakly shadowable volume-preserving systems are volume-hyperbolic“. Acta Mathematica Sinica, English Series 30, Nr. 6 (15.05.2014): 1007–20. http://dx.doi.org/10.1007/s10114-014-3093-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

DAFERMOS, C. M. „HYPERBOLIC SYSTEMS OF BALANCE LAWS WITH WEAK DISSIPATION“. Journal of Hyperbolic Differential Equations 03, Nr. 03 (September 2006): 505–27. http://dx.doi.org/10.1142/s0219891606000884.

Der volle Inhalt der Quelle
Annotation:
Global BV solutions are constructed to the Cauchy problem for strictly hyperbolic systems of balance laws endowed with a rich family of entropies and source that is merely weakly dissipative, of the type induced by relaxation mechanisms.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

SHAO, ZHI-QIANG. „GLOBAL WEAKLY DISCONTINUOUS SOLUTIONS TO THE MIXED INITIAL–BOUNDARY VALUE PROBLEM FOR QUASILINEAR HYPERBOLIC SYSTEMS“. Mathematical Models and Methods in Applied Sciences 19, Nr. 07 (Juli 2009): 1099–138. http://dx.doi.org/10.1142/s0218202509003735.

Der volle Inhalt der Quelle
Annotation:
In this paper, we consider the mixed initial–boundary value problem for first-order quasilinear hyperbolic systems with general nonlinear boundary conditions in the half space {(t, x) | t ≥ 0, x ≥ 0}. Based on the fundamental local existence results and global-in-time a priori estimates, we prove the global existence of a unique weakly discontinuous solution u = u(t, x) with small and decaying initial data, provided that each characteristic with positive velocity is weakly linearly degenerate. Some applications to quasilinear hyperbolic systems arising in physics and other disciplines, particularly to the system describing the motion of the relativistic closed string in the Minkowski space R1+n, are also given.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Chen, Gui-Qiang, Wei Xiang und Yongqian Zhang. „Weakly Nonlinear Geometric Optics for Hyperbolic Systems of Conservation Laws“. Communications in Partial Differential Equations 38, Nr. 11 (02.11.2013): 1936–70. http://dx.doi.org/10.1080/03605302.2013.828229.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Krylov, A. V. „Averaging of weakly nonlinear hyperbolic systems with nonuniform integral means“. Ukrainian Mathematical Journal 43, Nr. 5 (Mai 1991): 566–73. http://dx.doi.org/10.1007/bf01058542.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Rasskazov, I. O. „The Riemann Problem for Weakly Perturbed 2 × 2 Hyperbolic Systems“. Journal of Mathematical Sciences 122, Nr. 5 (August 2004): 3564–71. http://dx.doi.org/10.1023/b:joth.0000034036.97955.a8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Jiang, Ning, und C. David Levermore. „Weakly Nonlinear-Dissipative Approximations of Hyperbolic–Parabolic Systems with Entropy“. Archive for Rational Mechanics and Analysis 201, Nr. 2 (28.05.2011): 377–412. http://dx.doi.org/10.1007/s00205-010-0361-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Bondarev, B. V. „Averaging in hyperbolic systems subject to weakly dependent random perturbations“. Ukrainian Mathematical Journal 44, Nr. 8 (August 1992): 915–23. http://dx.doi.org/10.1007/bf01057110.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

REULA, OSCAR A. „STRONGLY HYPERBOLIC SYSTEMS IN GENERAL RELATIVITY“. Journal of Hyperbolic Differential Equations 01, Nr. 02 (Juni 2004): 251–69. http://dx.doi.org/10.1142/s0219891604000111.

Der volle Inhalt der Quelle
Annotation:
We discuss several topics related to the notion of strong hyperbolicity which are of interest in general relativity. After introducing the concept and showing its relevance we provide some covariant definitions of strong hyperbolicity. We then prove that if a system is strongly hyperbolic with respect to a given hypersurface, then it is also strongly hyperbolic with respect to any nearby surface. We then study for how much these hypersurfaces can be deformed and discuss then causality, namely what the maximal propagation speed in any given direction is. In contrast with the symmetric hyperbolic case, for which the proof of causality is geometrical and direct, relaying in energy estimates, the proof for general strongly hyperbolic systems is indirect for it is based in Holmgren's theorem. To show that the concept is needed in the area of general relativity we discuss two results for which the theory of symmetric hyperbolic systems shows to be insufficient. The first deals with the hyperbolicity analysis of systems which are second order in space derivatives; they include certain versions of the ADM and the BSSN families of equations. This analysis is considerably simplified by introducing pseudo-differential first-order evolution equations. Well-posedness for some members of the latter family systems is established by showing they satisfy the strong hyperbolicity property. Furthermore it is shown that many other systems of such families are only weakly hyperbolic, implying they should not be used for numerical modeling. The second result deals with systems having constraints. The question posed is which hyperbolicity properties, if any, are inherited from the original evolution system by the subsidiary system satisfied by the constraint quantities. The answer is that, subject to some condition on the constraints, if the evolution system is strongly hyperbolic then the subsidiary system is also strongly hyperbolic and the causality properties of both are identical.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Krylovas, A., und R. Čiegis. „A REVIEW OF NUMERICAL ASYMPTOTIC AVERAGING FOR WEAKLY NONLINEAR HYPERBOLIC WAVES“. Mathematical Modelling and Analysis 9, Nr. 3 (30.09.2004): 209–22. http://dx.doi.org/10.3846/13926292.2004.9637254.

Der volle Inhalt der Quelle
Annotation:
We present an overview of averaging method for solving weakly nonlinear hyperbolic systems. An asymptotic solution is constructed, which is uniformly valid in the “large” domain of variables t + |x| ∼ O(ϵ –1). Using this method we obtain the averaged system, which disintegrates into independent equations for the nonresonant systems. A scheme for theoretical justification of such algorithms is given and examples are presented. The averaged systems with periodic solutions are investigated for the following problems of mathematical physics: shallow water waves, gas dynamics and elastic waves. In the resonant case the averaged systems must be solved numerically. They are approximated by the finite difference schemes and the results of numerical experiments are presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Begun, N. A. „Perturbations of weakly hyperbolic invariant sets of two-dimension periodic systems“. Vestnik St. Petersburg University: Mathematics 48, Nr. 1 (Januar 2015): 1–8. http://dx.doi.org/10.3103/s1063454115010033.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Li, Ta-Tsien, und Yue-Jun Peng. „Cauchy problem for weakly linearly degenerate hyperbolic systems in diagonal form“. Nonlinear Analysis: Theory, Methods & Applications 55, Nr. 7-8 (Dezember 2003): 937–49. http://dx.doi.org/10.1016/j.na.2003.08.010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Pesin, Ya B., und Ya G. Sinai. „Space-time chaos in the system of weakly interacting hyperbolic systems“. Journal of Geometry and Physics 5, Nr. 3 (1988): 483–92. http://dx.doi.org/10.1016/0393-0440(88)90035-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Rohde, Ch. „Entropy solutions for weakly coupled hyperbolic systems in several space dimensions“. Zeitschrift für angewandte Mathematik und Physik 49, Nr. 3 (1998): 470. http://dx.doi.org/10.1007/s000000050102.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

GOSSE, LAURENT, SHI JIN und XIANTAO LI. „TWO MOMENT SYSTEMS FOR COMPUTING MULTIPHASE SEMICLASSICAL LIMITS OF THE SCHRÖDINGER EQUATION“. Mathematical Models and Methods in Applied Sciences 13, Nr. 12 (Dezember 2003): 1689–723. http://dx.doi.org/10.1142/s0218202503003082.

Der volle Inhalt der Quelle
Annotation:
Two systems of hyperbolic equations, arising in the multiphase semiclassical limit of the linear Schrödinger equations, are investigated. One stems from a Wigner measure analysis and uses a closure by the Delta functions, whereas the other relies on the classical WKB expansion and uses the Heaviside functions for closure. The two resulting moment systems are weakly and non-strictly hyperbolic respectively. They provide two different Eulerian methods able to reproduce superimposed signals with a finite number of phases. Analytical properties of these moment systems are investigated and compared. Efficient numerical discretizations and test-cases with increasing difficulty are presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Krylovas, Aleksandras. „Application of the method of stationary phase to weakly nonlinear hyperbolic systems asymptotic solving“. Lietuvos matematikos rinkinys 44 (17.12.2004): 164–68. http://dx.doi.org/10.15388/lmr.2004.31907.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Krylovas, A. „ASYMPTOTIC METHOD FOR APPROXIMATION OF RESONANT INTERACTION OF NONLINEAR MULTIDIMENSIONAL HYPERBOLIC WAVES“. Mathematical Modelling and Analysis 13, Nr. 1 (31.03.2008): 47–54. http://dx.doi.org/10.3846/1392-6292.2008.13.47-54.

Der volle Inhalt der Quelle
Annotation:
A method of averaging along characteristics of weakly nonlinear hyperbolic systems, which was presented in earlier works of the author for one dimensional waves, is generalized for some cases of multidimensional wave problems. In this work we consider such systems and discuss a way to use the internal averaging along characteristics for new problems of asymptotical integration.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Alves, José, Carla Dias, Stefano Luzzatto und Vilton Pinheiro. „SRB measures for partially hyperbolic systems whose central direction is weakly expanding“. Journal of the European Mathematical Society 19, Nr. 10 (2017): 2911–46. http://dx.doi.org/10.4171/jems/731.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Demengel, F., und J. Rauch. „Measure valued solutions of asymptotically homogeneous semilinear hyperbolic systems in one space variable“. Proceedings of the Edinburgh Mathematical Society 33, Nr. 3 (Oktober 1990): 443–60. http://dx.doi.org/10.1017/s0013091500004855.

Der volle Inhalt der Quelle
Annotation:
We study systems which in characteristic coordinates have the formwhere A is a k × k diagonal matrix with distinct real eigenvalues. The nonlinearity F is assumed to be asymptotically homogeneous in the sense, that it is a sum of two terms, one positively homogeneous of degree one in u and a second which is sublinear in u and vanishes when u = 0. In this case, F(t, x, u(t)) is meaningful provided that u(t) is a Radon measure, and, for Radon measure initial data there is a unique solution (Theorem 2.1).The main result asserts that if μn is a sequence of initial data such that, in characteristic coordinates, the positive and negative parts of each component, , converge weakly to μ±, then the solutions coverge weakly and the limit has an interesting description given by a nonlinear superposition principle.Simple weak converge of the initial data does not imply weak convergence of the solutions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Gao, Jing, und Yao-Lin Jiang. „A periodic wavelet method for the second kind of the logarithmic integral equation“. Bulletin of the Australian Mathematical Society 76, Nr. 3 (Dezember 2007): 321–36. http://dx.doi.org/10.1017/s0004972700039721.

Der volle Inhalt der Quelle
Annotation:
A periodic wavelet Galerkin method is presented in this paper to solve a weakly singular integral equations with emphasis on the second kind of Fredholm integral equations. The kernel function, which includes of a smooth part and a log weakly singular part, is discretised by the periodic Daubechies wavelets. The wavelet compression strategy and the hyperbolic cross approximation technique are used to approximate the weakly singular and smooth kernel functions. Meanwhile, the sparse matrix of systems can be correspondingly obtained. The bi-conjugate gradient iterative method is used to solve the resulting algebraic equation systems. Especially, the analytical computational formulae are presented for the log weakly singular kernel. The computational error for the representative matrix is also evaluated. The convergence rate of this algorithm is O (N-p log(N)), where p is the vanishing moment of the periodic Daubechies wavelets. Numerical experiments are provided to illustrate the correctness of the theory presented here.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Kinoshita, Tamotu. „On the Cauchy Problem with small analytic data for nonlinear weakly hyperbolic systems“. Tsukuba Journal of Mathematics 21, Nr. 2 (Oktober 1997): 397–420. http://dx.doi.org/10.21099/tkbjm/1496163249.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Fitzgibbon, W. E., und Michel Langlais. „Weakly coupled hyperbolic systems modeling the circulation of FeLV in structured feline populations“. Mathematical Biosciences 165, Nr. 1 (Mai 2000): 79–95. http://dx.doi.org/10.1016/s0025-5564(00)00011-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Garg, Naveen Kumar. „A class of upwind methods based on generalized eigenvectors for weakly hyperbolic systems“. Numerical Algorithms 83, Nr. 3 (15.05.2019): 1091–121. http://dx.doi.org/10.1007/s11075-019-00717-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Barkwell, Lawrence, Peter Lancaster und Alexander S. Markus. „Gyroscopically Stabilized Systems: A Class Of Quadratic Eigenvalue Problems With Real Spectrum“. Canadian Journal of Mathematics 44, Nr. 1 (01.12.1991): 42–53. http://dx.doi.org/10.4153/cjm-1992-002-2.

Der volle Inhalt der Quelle
Annotation:
AbstractEigenvalue problems for selfadjoint quadratic operator polynomials L(λ) = Iλ2 + Bλ+ C on a Hilbert space H are considered where B, C∈ℒ(H), C >0, and |B| ≥ kI + k-l C for some k >0. It is shown that the spectrum of L(λ) is real. The distribution of eigenvalues on the real line and other spectral properties are also discussed. The arguments rely on the well-known theory of (weakly) hyperbolic operator polynomials.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Williams, Mark. „Weakly stable hyperbolic boundary problems with large oscillatory coefficients: Simple cascades“. Journal of Hyperbolic Differential Equations 17, Nr. 01 (März 2020): 141–83. http://dx.doi.org/10.1142/s0219891620500058.

Der volle Inhalt der Quelle
Annotation:
We prove energy estimates for exact solutions to a class of linear, weakly stable, first-order hyperbolic boundary problems with “large”, oscillatory, zeroth-order coefficients, that is, coefficients whose amplitude is large, [Formula: see text], compared to the wavelength of the oscillations, [Formula: see text]. The methods that have been used previously to prove useful energy estimates for weakly stable problems with oscillatory coefficients (e.g. simultaneous diagonalization of first-order and zeroth-order parts) all appear to fail in the presence of such large coefficients. We show that our estimates provide a way to “justify geometric optics”, that is, a way to decide whether or not approximate solutions, constructed for example by geometric optics, are close to the exact solutions on a time interval independent of [Formula: see text]. Systems of this general type arise in some classical problems of “strongly nonlinear geometric optics” coming from fluid mechanics. Special assumptions that we make here do not yet allow us to treat the latter problems, but we believe the present analysis will provide some guidance on how to attack more general cases.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Benzoni-Gavage, Sylvie, Frédéric Rousset, Denis Serre und K. Zumbrun. „Generic types and transitions in hyperbolic initial–boundary-value problems“. Proceedings of the Royal Society of Edinburgh: Section A Mathematics 132, Nr. 5 (Oktober 2002): 1073–104. http://dx.doi.org/10.1017/s030821050000202x.

Der volle Inhalt der Quelle
Annotation:
The stability of linear initial–boundary-value problems for hyperbolic systems (with constant coefficients) is linked to the zeros of the so-called Lopatinskii determinant. Depending on the location of these zeros, problems may be either unstable, strongly stable or weakly stable. The first two classes are known to be ‘open’, in the sense that the instability or the strong stability persists under a small change of coefficients in the differential operator and/or in the boundary condition.Here we show that a third open class exists, which we call ‘weakly stable of real type’. Many examples of physical or mathematical interest depend on one or more parameters, and the determination of the stability class as a function of these parameters usually needs an involved computation. We simplify it by characterizing the transitions from one open class to another one. These boundaries are easier to determine since they must solve some overdetermined algebraic system.Applications to the wave equation, linear elasticity, shock waves and phase boundaries in fluid mechanics are given.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Benzoni-Gavage, Sylvie, Frédéric Rousset, Denis Serre und K. Zumbrun. „Generic types and transitions in hyperbolic initial–boundary-value problems“. Proceedings of the Royal Society of Edinburgh: Section A Mathematics 132, Nr. 5 (Oktober 2002): 1073–104. http://dx.doi.org/10.1017/s0308210502000537.

Der volle Inhalt der Quelle
Annotation:
The stability of linear initial–boundary-value problems for hyperbolic systems (with constant coefficients) is linked to the zeros of the so-called Lopatinskii determinant. Depending on the location of these zeros, problems may be either unstable, strongly stable or weakly stable. The first two classes are known to be ‘open’, in the sense that the instability or the strong stability persists under a small change of coefficients in the differential operator and/or in the boundary condition.Here we show that a third open class exists, which we call ‘weakly stable of real type’. Many examples of physical or mathematical interest depend on one or more parameters, and the determination of the stability class as a function of these parameters usually needs an involved computation. We simplify it by characterizing the transitions from one open class to another one. These boundaries are easier to determine since they must solve some overdetermined algebraic system.Applications to the wave equation, linear elasticity, shock waves and phase boundaries in fluid mechanics are given.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Morisse, Baptiste. „On hyperbolicity and Gevrey well-posedness. Part three: a model of weakly hyperbolic systems“. Indiana University Mathematics Journal 70, Nr. 2 (2021): 743–80. http://dx.doi.org/10.1512/iumj.2021.70.8198.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Corli, Andrea. „Weakly non-linear geometric optics for hyperbolic systems of conservation laws with shock waves“. Asymptotic Analysis 10, Nr. 2 (1995): 117–72. http://dx.doi.org/10.3233/asy-1995-10202.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Rohde, Christian. „Upwind finite volume schemes for weakly coupled hyperbolic systems of conservation laws in 2D“. Numerische Mathematik 81, Nr. 1 (01.11.1998): 85–123. http://dx.doi.org/10.1007/s002110050385.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Margenstern, Maurice. „A Weakly Universal Cellular Automaton in the Heptagrid of the Hyperbolic Plane“. Complex Systems 27, Nr. 4 (15.12.2018): 315–54. http://dx.doi.org/10.25088/complexsystems.27.4.315.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Korsch, Andrea, und Dietmar Kröner. „On existence and uniqueness of entropy solutions of weakly coupled hyperbolic systems on evolving surfaces“. Computers & Fluids 169 (Juni 2018): 296–308. http://dx.doi.org/10.1016/j.compfluid.2017.08.021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Qu, Peng, und Cunming Liu. „Global classical solutions to partially dissipative quasilinear hyperbolic systems with one weakly linearly degenerate characteristic“. Chinese Annals of Mathematics, Series B 33, Nr. 3 (Mai 2012): 333–50. http://dx.doi.org/10.1007/s11401-012-0715-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Benoit, Antoine. „WKB expansions for weakly well-posed hyperbolic boundary value problems in a strip: Time depending loss of derivatives“. Journal of Hyperbolic Differential Equations 18, Nr. 03 (September 2021): 557–608. http://dx.doi.org/10.1142/s0219891621500181.

Der volle Inhalt der Quelle
Annotation:
We are interested in geometric optics expansions for linear hyperbolic systems of equations defined in the strip [Formula: see text]. More precisely the aim of this paper is to describe the influence of the boundary conditions on the behavior of the solution. This question has already been addressed in [A. Benoit, Wkb expansions for hyperbolic boundary value problems in a strip: Selfinteraction meets strong well-posedness, J. Inst. Math. Jussieu 19(5) (2020) 1629–1675] for stable boundary conditions. Here we do not require that the boundary conditions lead to strongly well-posed problems but only to weakly well-posed problems (that is loss(es) of derivatives are possible). The question is thus to determine what can be the minimal loss of derivatives in the energy estimate of the solution. The main result of this paper is to show, thanks to geometric optics expansions, that if the strip problem admits a boundary in the so-called [Formula: see text]-class of [S. Benzoni-Gavage, F. Rousset, D. Serre and K. Zumbrun, Generic types and transitions in hyperbolic initial-boundary-value problems, Proc. Roy. Soc. Edinburgh Sect. A 132(5) (2002) 1073–1104] then the loss of derivatives shall be at least increasing with the time of resolution. More precisely this loss is bounded by below by a step function increasing with respect to time which depends on the minimal time needed to perform a full regeneration of the wave packet.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Alabau-Boussouira, Fatiha. „A Two-Level Energy Method for Indirect Boundary Observability and Controllability of Weakly Coupled Hyperbolic Systems“. SIAM Journal on Control and Optimization 42, Nr. 3 (Januar 2003): 871–906. http://dx.doi.org/10.1137/s0363012902402608.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Gourdin, Daniel, und Todor Gramchev. „Global Cauchy problems on Rn for weakly hyperbolic systems with coefficients admitting superlinear growth for |x| → ∞“. Bulletin des Sciences Mathématiques 150 (Februar 2019): 35–61. http://dx.doi.org/10.1016/j.bulsci.2016.01.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Dai, Wenrong. „Asymptotic Behavior of Global Classical Solutions of Quasilinear Non-strictly Hyperbolic Systems with Weakly Linear Degeneracy*“. Chinese Annals of Mathematics, Series B 27, Nr. 3 (Juni 2006): 263–86. http://dx.doi.org/10.1007/s11401-004-0523-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Guliyev, H. F., und H. T. Tagiyev. „An optimal control problem with nonlocal conditions for the weakly nonlinear hyperbolic equation“. Optimal Control Applications and Methods 34, Nr. 2 (12.04.2012): 216–35. http://dx.doi.org/10.1002/oca.2018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie