Dissertationen zum Thema „Wavelets (Mathematics)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Wavelets (Mathematics)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Colthurst, Thomas. „Multidimensional wavelets“. Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/43934.
Der volle Inhalt der QuelleKutyniok, Gitta. „Affine density in wavelet analysis /“. Berlin [u.a.] : Springer, 2007. http://www.gbv.de/dms/ilmenau/toc/529512874.PDF.
Der volle Inhalt der QuelleHua, Xinhou. „Dynamical systems and wavelets“. Thesis, University of Ottawa (Canada), 2002. http://hdl.handle.net/10393/6143.
Der volle Inhalt der QuelleKaroui, Abderrazek. „Multidimensional wavelets and applications“. Thesis, University of Ottawa (Canada), 1995. http://hdl.handle.net/10393/9492.
Der volle Inhalt der QuelleBowman, Christopher 1969. „Pattern formation and wavelets“. Diss., The University of Arizona, 1997. http://hdl.handle.net/10150/288741.
Der volle Inhalt der QuellePelletier, Emile. „Instrument de-synthesis using wavelets“. Thesis, University of Ottawa (Canada), 2005. http://hdl.handle.net/10393/27008.
Der volle Inhalt der QuelleShen, Jianhong 1971. „Asymptotics of wavelets and filters“. Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/47469.
Der volle Inhalt der QuelleHunter, Karin M. „Interpolatory refinable functions, subdivision and wavelets“. Thesis, Stellenbosch : University of Stellenbosch, 2005. http://hdl.handle.net/10019.1/1156.
Der volle Inhalt der QuelleSubdivision is an important iterative technique for the efficient generation of curves and surfaces in geometric modelling. The convergence of a subdivision scheme is closely connected to the existence of a corresponding refinable function. In turn, such a refinable function can be used in the multi-resolutional construction method for wavelets, which are applied in many areas of signal analysis.
Sablik, Mathieu. „Wavelets in Abstract Hilbert Space“. Thesis, Uppsala University, Department of Mathematics, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-122553.
Der volle Inhalt der QuelleYu, Lu. „Wavelets on hierarchical trees“. Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/2302.
Der volle Inhalt der QuelleZheng, Ellen Yanqing. „A comparative study of wavelets and multiwavelets“. Thesis, University of Ottawa (Canada), 1996. http://hdl.handle.net/10393/9651.
Der volle Inhalt der QuelleTomas, Brian. „Theory and application of frequency selective wavelets /“. Thesis, Connect to this title online; UW restricted, 1992. http://hdl.handle.net/1773/5755.
Der volle Inhalt der QuelleNavarro, Jaime. „The Continuous Wavelet Transform and the Wave Front Set“. Thesis, University of North Texas, 1993. https://digital.library.unt.edu/ark:/67531/metadc277762/.
Der volle Inhalt der QuelleRohwer, Birgit. „A multiresolutional approach to the construction of spline wavelets“. Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/51580.
Der volle Inhalt der QuelleENGLISH ABSTRACT: In this thesis we study a wavelet construction procedure based on a multiresolutional method, before specializing to the case of spline wavelets. First, we introduce and analyze the concepts of scaling functions and their duals, after which we analyze the multiresolutional analysis (MM) which they generate. The advantages of orthonormality in scaling functions are pointed out and discussed. Following the methods which were introduced in two standard texts of Chui, we next show how a minimally supported wavelet and its dual can be explicitly constructed from a given MM, thereby yielding an orthogonal decomposition of the space of square-(Lebesgue)integrable functions on the real line. We show that our method applied to orthonormal scaling functions also yields orthonormal wavelets, including as a special case the Daubechies wavelet. General decomposition and reconstruction algorithms are explicitly formulated, and the importance of the vanishing moments of a wavelet in practical applications is shown. We next introduce and analyze cardinal B-splines, in particular showing that these functions are refinable, and that they satisfy the criteria of Riesz stability. Thus the cardinal B-spline is an admissible choice for a scaling function, so that the previously developed wavelet construction procedure based on a MM yields an explicit formula for the minimally supported B-spline wavelet. The corresponding vanishing moment order is calculated, and the resulting ability of the B-spline wavelet to detect singularities in a given function is demonstrated by means of a numerical example. Finally, we develop an explicit procedure for the construction of minimally supported B-spline wavelets on a bounded interval. This method, as developed in work by de Villiers and Chui, is then compared with a previous boundary wavelet construction method introduced in work by Chui and Quak.
AFRIKAANSE OPSOMMING: In hierdie tesis bestudeer ons 'n golfie konstruksieprosedure wat gebaseer is op 'n multiresolusiemetode, voordat ons spesialiseer na die geval van latfunksie-golfies. Eerstens word die konsepte van skaalfunksies en hulle duale bekendgestel en geanaliseer, waarna ons die multiresolusie analise (MM) wat sodoende gegenereer word, analiseer. Die voordeel van ortonormaliteit by skaalfunksies word uitgewys en bespreek. Deur die metodes te volg wat bekendgestel is in twee standaardtekste van Chui, wys ons vervolgens hoe 'n minimaal-gesteunde golfie en die duaal daarvan eksplisiet gekonstrueer kan word vanuit 'n gegewe MM, en daarmee 'n ortogonale dekomposisie van die ruimte van kwadraties-(Lebesgue)integreerbare funksies op die reële lyn lewer. Ons wys dat ons metode toegepas op ortonormale skaalfunksies ook ortonormale golfies oplewer, insluitende as 'n spesiale geval die Daubechies golfie. Algemene dekomposisie en rekonstruksie algoritmes word eksplisiet geformuleer, en die belangrikheid in praktiese toepassings van 'n golfie met die nulmomenteienskap word aangetoon. Vervolgens word kardinale B-Iatfunksies bekendgestel, en word daar in die besonder aangetoon dat hierdie funksies verfynbaar is, en dat hulle aan die Rieszstabiliteit vereiste voldoen. Dus is die kardinale B-Iatfunksie 'n toelaatbare keuse vir 'n skaalfunksie, sodat die golfie konstruksieprosedure gebaseer op 'n MM, soos vantevore ontwikkel, 'n eksplisiete formule vir die minimaal-gesteunde Blatfunksiegolfie oplewer. Die ooreenkomstige nulmomentorde word bereken, en die gevolglike vermoë van 'n B-Iatfunksiegolfie om singulariteite in 'n gegewe funksie raak te sien en uit te wys word gedemonstreer deur middel van 'n numeriese voorbeeld. Laastens ontwikkelons 'n eksplis.iete prosedure vir die konstruksie van minimaal-gesteunde B-Iatfunksiegolfies op 'n begrensde interval. Hierdie metode, soos ontwikkel in werk deur de Villiers en Chui, word dan vergelyk met 'n vorige randgolfie konstruksie wat bekendgestel is in werk deur Chui en Quak.
Leach, Sandie Patricia. „Density conditions on Gabor frames“. Thesis, Available online, Georgia Institute of Technology, 2004:, 2003. http://etd.gatech.edu/theses/available/etd-04082004-180257/unrestricted/leach%5Fsandie%5Fp%5F200312%5Fms.pdf.
Der volle Inhalt der QuelleHoover, Kenneth R. „Dimension functions of rationally dilated wavelets /“. view abstract or download file of text, 2007. http://proquest.umi.com/pqdweb?did=1400959361&sid=1&Fmt=2&clientId=11238&RQT=309&VName=PQD.
Der volle Inhalt der QuelleTypescript. Includes vita and abstract. Includes bibliographical references (leaves 80-83) and index. Also available for download via the World Wide Web; free to University of Oregon users.
鍾鈞鎂 und Jun-mei Zhong. „Application of wavelets in image compression“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B42575667.
Der volle Inhalt der QuelleZhong, Jun-mei. „Application of wavelets in image compression“. Click to view the E-thesis via HKUTO, 2000. http://sunzi.lib.hku.hk/hkuto/record/B42575667.
Der volle Inhalt der QuelleSze, Chuen-kan, und 施泉根. „On framelets and their applications: a discrete approach“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B29803937.
Der volle Inhalt der Quelle張英傑 und Ying-kit Alan Cheung. „Some results in wavelet theory and their applications“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1997. http://hub.hku.hk/bib/B31215130.
Der volle Inhalt der Quelle黃永樑 und Wing-leung Wong. „Some results on biorthogonal wavelet matrices and their applications“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B42575370.
Der volle Inhalt der QuelleWong, Wing-leung. „Some results on biorthogonal wavelet matrices and their applications“. Click to view the E-thesis via HKUTO, 2000. http://sunzi.lib.hku.hk/hkuto/record/B42575370.
Der volle Inhalt der QuelleCheung, Ying-kit Alan. „Some results in wavelet theory and their applications /“. Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19102677.
Der volle Inhalt der QuelleCao, Jiansheng. „Construction of piecewise linear wavelets“. [Johnson City, Tenn. : East Tennessee State University], 2002. http://etd-submit.etsu.edu/etd/theses/available/etd-0715102-142035/unrestricted/CaoJ071802a.pdf.
Der volle Inhalt der QuelleWhitcher, Brandon. „Assessing nonstationary time series using wavelets /“. Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/8957.
Der volle Inhalt der QuelleMoubandjo, Desiree V. „Polynomial containment in refinement spaces and wavelets based on local projection operators“. Thesis, Stellenbosch : Stellenbosch University, 2007. http://hdl.handle.net/10019.1/16418.
Der volle Inhalt der QuelleJacobs, Denise Anne. „Multiwavelets in higher dimensions“. Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/28780.
Der volle Inhalt der QuelleStruble, Dale William. „Wavelets on manifolds and multiscale reproducing kernel Hilbert spaces“. Related electronic resource:, 2007. http://proquest.umi.com/pqdweb?did=1407687581&sid=1&Fmt=2&clientId=3739&RQT=309&VName=PQD.
Der volle Inhalt der QuelleShi, Fangmin. „Wavelet transforms for stereo imaging“. Thesis, University of South Wales, 2002. https://pure.southwales.ac.uk/en/studentthesis/wavelet-transforms-for-stereo-imaging(65abb68f-e30b-4367-a3a8-b7b3df85f566).html.
Der volle Inhalt der QuelleTieng, Quang Minh. „Wavelet transform based techniques for the recognition of objects in images“. Thesis, Queensland University of Technology, 1996.
Den vollen Inhalt der Quelle finden梁鴻鈞 und Hung-kwan Leung. „Multi-rank wavelet filters“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31224714.
Der volle Inhalt der QuelleLeung, Hung-kwan. „Multi-rank wavelet filters“. Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk/hkuto/record.jsp?B23242395.
Der volle Inhalt der QuelleWestra, Seth Pieter Civil & Environmental Engineering Faculty of Engineering UNSW. „Probabilistic forecasting of multivariate seasonal reservoir inflows: accounting for spatial and temporal variability“. Awarded by:University of New South Wales. Civil & Environmental Engineering, 2007. http://handle.unsw.edu.au/1959.4/40630.
Der volle Inhalt der QuelleDonovan, George C. „Fractal functions, splines, and wavelet“. Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/30411.
Der volle Inhalt der Quelle盧子峰 und Tsz-fung Lo. „Wavelet-based head-related transfer function analysis for audiology“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B31237472.
Der volle Inhalt der QuelleRoberson, Dawnlee June. „Correlation and wavelet analysis of the surface electromyogram, the electroneurogram and generated force /“. Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Der volle Inhalt der QuelleLo, Tsz-fung. „Wavelet-based head-related transfer function analysis for audiology /“. Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19712224.
Der volle Inhalt der QuelleHong, Tao. „Object recognition with features from complex wavelets“. Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610239.
Der volle Inhalt der QuelleLeung, King Tai. „Super-resolution image reconstruction based on wavelet-estimation : development and theoretical framework“. HKBU Institutional Repository, 2009. http://repository.hkbu.edu.hk/etd_ra/993.
Der volle Inhalt der QuelleLi, Zheng. „Approximation to random process by wavelet basis“. View abstract/electronic edition; access limited to Brown University users, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3318378.
Der volle Inhalt der QuelleLutz, Steven S. „Hokua – A Wavelet Method for Audio Fingerprinting“. Diss., CLICK HERE for online access, 2009. http://contentdm.lib.byu.edu/ETD/image/etd3247.pdf.
Der volle Inhalt der QuelleMufti, Muid Ur-Rahman. „Fault detection and identification using fuzzy wavelets“. Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/16472.
Der volle Inhalt der QuelleTabb, Jeremiah R. „Using wavelets and principle components analysis to model data from simulated sheet forming processes“. Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/10146.
Der volle Inhalt der QuelleBetaneli, Dmitri 1970. „Wavelets and PDEs : the improvement of computational performance using multi-resolution analysis“. Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/10132.
Der volle Inhalt der QuelleLavrik, Ilya A. „Novel wavelet-based statistical methods with applications in classification, shrinkage, and nano-scale image analysis“. Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-11162005-131744/.
Der volle Inhalt der QuelleHuo, Xiaoming, Committee Member ; Heil, Chris, Committee Member ; Wang, Yang, Committee Member ; Hayter, Anthony, Committee Member ; Vidakovic, Brani, Committee Chair.
Pun, Ka-shun Carson, und 潘加信. „New design and realization techniques for perfect reconstruction two-channel filterbanks and wavelets bases“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B31226632.
Der volle Inhalt der QuelleYu, Xiaojiang Gabardo Jean-Pierre. „Wavelet sets, integral self-affine tiles and nonuniform multiresolution analyses“. *McMaster only, 2005.
Den vollen Inhalt der Quelle findenNg, Brian Walter. „Wavelet based image texture segementation using a modified K-means algorithm“. Title page, table of contents and abstract only, 2003. http://web4.library.adelaide.edu.au/theses/09PH/09phn5759.pdf.
Der volle Inhalt der QuelleGarantziotis, Anastasios. „A wavelet-based prediction technique for concealment of loss-packet effects in wireless channels“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2002. http://library.nps.navy.mil/uhtbin/hyperion-image/02Jun%5FGarantziotis.pdf.
Der volle Inhalt der QuelleThesis advisor(s): Murali Tummala, Robert Ives. Includes bibliographical references (p. 89-90). Also available online.
Ahiati, Veroncia Sitsofe. „Cardinal spline wavelet decomposition based on quasi-interpolation and local projection“. Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/2580.
Der volle Inhalt der QuelleWavelet decomposition techniques have grown over the last two decades into a powerful tool in signal analysis. Similarly, spline functions have enjoyed a sustained high popularity in the approximation of data. In this thesis, we study the cardinal B-spline wavelet construction procedure based on quasiinterpolation and local linear projection, before specialising to the cubic B-spline on a bounded interval. First, we present some fundamental results on cardinal B-splines, which are piecewise polynomials with uniformly spaced breakpoints at the dyadic points Z/2r, for r ∈ Z. We start our wavelet decomposition method with a quasi-interpolation operator Qm,r mapping, for every integer r, real-valued functions on R into Sr m where Sr m is the space of cardinal splines of order m, such that the polynomial reproduction property Qm,rp = p, p ∈ m−1, r ∈ Z is satisfied. We then give the explicit construction of Qm,r. We next introduce, in Chapter 3, a local linear projection operator sequence {Pm,r : r ∈ Z}, with Pm,r : Sr+1 m → Sr m , r ∈ Z, in terms of a Laurent polynomial m solution of minimally length which satisfies a certain Bezout identity based on the refinement mask symbol Am, which we give explicitly. With such a linear projection operator sequence, we define, in Chapter 4, the error space sequence Wr m = {f − Pm,rf : f ∈ Sr+1 m }. We then show by solving a certain Bezout identity that there exists a finitely supported function m ∈ S1 m such that, for every r ∈ Z, the integer shift sequence { m(2 · −j)} spans the linear space Wr m . According to our definition, we then call m the mth order cardinal B-spline wavelet. The wavelet decomposition algorithm based on the quasi-interpolation operator Qm,r, the local linear projection operator Pm,r, and the wavelet m, is then based on finite sequences, and is shown to possess, for a given signal f, the essential property of yielding relatively small wavelet coefficients in regions where the support interval of m(2r · −j) overlaps with a Cm-smooth region of f. Finally, in Chapter 5, we explicitly construct minimally supported cubic B-spline wavelets on a bounded interval [0, n]. We also develop a corresponding explicit decomposition algorithm for a signal f on a bounded interval. ii Throughout Chapters 2 to 5, numerical examples are provided to graphically illustrate the theoretical results.