Auswahl der wissenschaftlichen Literatur zum Thema „Wavelets (Mathematics)“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Wavelets (Mathematics)" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Wavelets (Mathematics)":

1

Battle, Guy. „Osiris wavelets and Set wavelets“. Journal of Applied Mathematics 2004, Nr. 6 (2004): 495–528. http://dx.doi.org/10.1155/s1110757x04404070.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
An alternative to Osiris wavelet systems is introduced in two dimensions. The basic building blocks are continuous piecewise linear functions supported on equilateral triangles instead of on squares. We refer to wavelets generated in this way as Set wavelets. We introduce a Set wavelet system whose homogeneous mode density is2/5. The system is not orthonormal, but we derive a positive lower bound on the overlap matrix.
2

Kathuria, Leena, Shashank Goel und Nikhil Khanna. „Fourier–Boas-Like Wavelets and Their Vanishing Moments“. Journal of Mathematics 2021 (06.03.2021): 1–7. http://dx.doi.org/10.1155/2021/6619551.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In this paper, we propose Fourier–Boas-Like wavelets and obtain sufficient conditions for their higher vanishing moments. A sufficient condition is given to obtain moment formula for such wavelets. Some properties of Fourier–Boas-Like wavelets associated with Riesz projectors are also given. Finally, we formulate a variation diminishing wavelet associated with a Fourier–Boas-Like wavelet.
3

Olphert, Sean, und Stephen C. Power. „Higher Rank Wavelets“. Canadian Journal of Mathematics 63, Nr. 3 (01.06.2011): 689–720. http://dx.doi.org/10.4153/cjm-2011-012-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract A theory of higher rank multiresolution analysis is given in the setting of abelian multiscalings. This theory enables the construction, from a higher rank MRA, of finite wavelet sets whose multidilations have translates forming an orthonormal basis in L2(ℝd). While tensor products of uniscaled MRAs provide simple examples we construct many nonseparable higher rank wavelets. In particular we construct Latin square wavelets as rank 2 variants of Haar wavelets. Also we construct nonseparable scaling functions for rank 2 variants of Meyer wavelet scaling functions, and we construct the associated nonseparable wavelets with compactly supported Fourier transforms. On the other hand we show that compactly supported scaling functions for biscaled MRAs are necessarily separable.
4

Cattani, Carlo. „Shannon Wavelets Theory“. Mathematical Problems in Engineering 2008 (2008): 1–24. http://dx.doi.org/10.1155/2008/164808.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Shannon wavelets are studied together with their differential properties (known as connection coefficients). It is shown that the Shannon sampling theorem can be considered in a more general approach suitable for analyzing functions ranging in multifrequency bands. This generalization coincides with the Shannon wavelet reconstruction ofL2(ℝ)functions. The differential properties of Shannon wavelets are also studied through the connection coefficients. It is shown that Shannon wavelets areC∞-functions and their any order derivatives can be analytically defined by some kind of a finite hypergeometric series. These coefficients make it possible to define the wavelet reconstruction of the derivatives of theCℓ-functions.
5

HOU, YU. „A COMPACTLY SUPPORTED, SYMMETRICAL AND QUASI-ORTHOGONAL WAVELET“. International Journal of Wavelets, Multiresolution and Information Processing 08, Nr. 06 (November 2010): 931–40. http://dx.doi.org/10.1142/s0219691310003900.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Based on the wavelet theory and optimization method, a class of single wavelets with compact support, symmetry and quasi-orthogonality are designed and constructed. Some mathematical properties of the wavelets, such as orthogonality, linear phase property and vanishing moments and so on, are studied. A speech compression experiment is implemented in order to investigate the performance of signal reconstruction and speech compression for the proposed wavelets. Comparison with some conventional wavelets shows that the proposed wavelets have a very good performance of signal reconstruction and speech compression.
6

ASHUROV, RAVSHAN. „CONVERGENCE OF THE CONTINUOUS WAVELET TRANSFORMS ON THE ENTIRE LEBESGUE SET OF Lp-FUNCTIONS“. International Journal of Wavelets, Multiresolution and Information Processing 09, Nr. 04 (Juli 2011): 675–83. http://dx.doi.org/10.1142/s0219691311004262.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The almost everywhere convergence of wavelets transforms of Lp-functions under minimal conditions on wavelets is well known. But this result does not provide any information about the exceptional set (of Lebesgue measure zero), where convergence does not hold. In this paper, under slightly stronger conditions on wavelets, we prove convergence of wavelet transforms everywhere on the entire Lebesgue set of Lp-functions. On the other hand, practically all the wavelets, including Haar and "French hat" wavelets, used frequently in applications, satisfy our conditions. We also prove that the same conditions on wavelets guarantee the Riemann localization principle in L1 for the wavelet transforms.
7

Benedetto, John J., Michael W. Frazier und Bruno Torrésani. „Wavelets: Mathematics and Applications“. Physics Today 47, Nr. 11 (November 1994): 90–91. http://dx.doi.org/10.1063/1.2808703.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Dremin, I. M. „Wavelets: Mathematics and applications“. Physics of Atomic Nuclei 68, Nr. 3 (März 2005): 508–20. http://dx.doi.org/10.1134/1.1891202.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

ZHAN, YINWEI, und HENK J. A. M. HEIJMANS. „NON-SEPARABLE 2D BIORTHOGONAL WAVELETS WITH TWO-ROW FILTERS“. International Journal of Wavelets, Multiresolution and Information Processing 03, Nr. 01 (März 2005): 1–18. http://dx.doi.org/10.1142/s0219691305000713.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In the literature 2D (or bivariate) wavelets are usually constructed as a tensor product of 1D wavelets. Such wavelets are called separable. However, there are various applications, e.g. in image processing, for which non-separable 2D wavelets are prefered. In this paper, we investigate the class of compactly supported orthonormal 2D wavelets that was introduced by Belogay and Wang.2 A characteristic feature of this class of wavelets is that the support of the corresponding filter comprises only two rows. We are concerned with the biorthogonal extension of this kind of wavelets. It turns out that the 2D wavelets in this class are intimately related to some underlying 1D wavelet. We explore this relation in detail, and we explain how the 2D wavelet transforms can be realized by means of a lifting scheme, thus allowing an efficient implementation. We also describe an easy way to construct wavelets with more rows and shorter columns.
10

Jiang, Zhuhan, und Xiling Guo. „A note on the extension of a family of biorthogonal Coifman wavelet systems“. ANZIAM Journal 46, Nr. 1 (Juli 2004): 111–20. http://dx.doi.org/10.1017/s1446181100013717.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
AbstractWavelet systems with a maximum number of balanced vanishing moments are known to be extremely useful in a variety of applications such as image and video compression. Tian and Wells recently created a family of such wavelet systems, called the biorthogonal Coifman wavelets, which have proved valuable in both mathematics and applications. The purpose of this work is to establish along with direct proofs a very neat extension of Tian and Wells' family of biorthogonal Coifman wavelets by recovering other “missing” members of the biorthogonal Coifman wavelet systems.

Dissertationen zum Thema "Wavelets (Mathematics)":

1

Colthurst, Thomas. „Multidimensional wavelets“. Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/43934.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kutyniok, Gitta. „Affine density in wavelet analysis /“. Berlin [u.a.] : Springer, 2007. http://www.gbv.de/dms/ilmenau/toc/529512874.PDF.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hua, Xinhou. „Dynamical systems and wavelets“. Thesis, University of Ottawa (Canada), 2002. http://hdl.handle.net/10393/6143.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The first part of this thesis is concerned with Bakers Conjecture (1984) which says that two permutable transcendental entire functions have the same Julia set. To this end, we shall exhibit that two permutable transcendental entire functions of a certain type have the same Julia set. So far, this is the best result to the conjecture. The second part relates to Newton's method to find zeros of functions. We shall look for the locations of the limits of the iterating sequence of the relaxed Newton function on its wandering domains. A relaxed Newton function with corresponding properties is constructed. The third part relates to the dynamics of ordinary differential equations and inverse problems. Given a target solution, we shall construct second-order differential equations with Legendre polynomial basis to approximate the target solution. An algorithm and numerical solutions are provided. Examples show that the approximations we have found are much better than the known results obtained by means of first-order differential equations. We shall also discuss approximation using a wavelet basis. MATLAB is used to compute the numerical results. In the fourth part, we deal with variational problems in signal and image processing. For a given signal or image represented by a function, we shall provide a good approximation to the function, which minimizes a given functional.
4

Karoui, Abderrazek. „Multidimensional wavelets and applications“. Thesis, University of Ottawa (Canada), 1995. http://hdl.handle.net/10393/9492.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In this thesis, one- as well as multi-dimensional biorthogonal wavelet filters are designed and used for the construction of compactly supported wavelet bases. In particular, an adaptation of the McClellan transformation is used to design nonseparable 2-D biorthogonal wavelet bases. Some examples of 2-D biorthogonal wavelet filters are given in the case of the quincunx sampling lattice. Some theoretical and technical results known in the one-dimensional case have been generalized to the n-dimensional case. This generalization leads to a better understanding of the theory and design of multidimensional biorthogonal wavelets. An important part of the thesis devoted to the design of fast discrete wavelet transforms. The main ingredient of the algorithms is the use of a one-point quadrature formula for approximating the nest coefficients of the signals together with a suitable design and implementation of symmetric biorthogonal filters. Special attention is given to the case where the signals have sharp transition points. In this case, a smoothing process has been used to obtain an accurate reconstruction of the signal.
5

Bowman, Christopher 1969. „Pattern formation and wavelets“. Diss., The University of Arizona, 1997. http://hdl.handle.net/10150/288741.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This thesis is a collection of results associated with pattern formation, and consists of several novel results. A multi-scale analysis is carried out near the lasing bifurcation on equations which model the free carrier semiconductor laser. This analysis produces an amplitude equation which resembles the Swift-Hohenberg equation derived for the simpler two level laser, but with extra terms arising from the more complicated semiconductor system. New results are also presented in the analysis of phase equations for patterns, showing that defects are weak solutions of the phase diffusion equation, and that the Gaussian curvature of the phase surface condenses onto point and line defects. This latter fact allows for considerable simplification of the phase diffusion equation, and this analysis is presented as well. Finally, and most importantly, an algorithm is presented, based on the continuous wavelet transform, for the extraction of local phase and amplitude information from roll patterns. This algorithm allows a precise detection of phase grain boundaries and point defects, as well as the computation of soft modes like the mean flow. Several tests are conducted on numerically generated signals to demonstrate the applicability and precision of the algorithm. The algorithm is then applied to actual experimental convection patterns, and conclusions about the nature of the wave director field in such patterns are presented.
6

Pelletier, Emile. „Instrument de-synthesis using wavelets“. Thesis, University of Ottawa (Canada), 2005. http://hdl.handle.net/10393/27008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Our point of departure is the concept of 'additive synthesis', which is the traditional explanation for the individual of 'timbre' or 'colour' of the sound of the various musical instruments. When an instrument sounds a note, one hears the note as if by itself, but this is not what is physically happening. What is in fact occurring is a complex waveform featuring a collection of harmonic frequencies, referred to as the spectrum. A synthesizer attempts to imitate the sound of a particular instrument by replicating the amplitudes of its harmonics. We use the term 'de-synthesis' to refer to the inverse procedure, computerized instrument identification. We describe an experiment that we designed and executed with M ATLAB to explore the hypothesis that a computer will be able to recognize an instrument by its characteristic timbre. The idea of applying wavelets to analyze music comes naturally since music consists of sound waves, and wavelets are wave shaped functions. We propose a mathematical model that can take certain musical instrument's attack and decay features into account that utilizes Malvar wavelets: Super Malvar wavelets. Super wavelets are superpositions of ordinary wavelets in some linear combination that can be treated as a wavelet in itself. (Abstract shortened by UMI.)
7

Shen, Jianhong 1971. „Asymptotics of wavelets and filters“. Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/47469.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hunter, Karin M. „Interpolatory refinable functions, subdivision and wavelets“. Thesis, Stellenbosch : University of Stellenbosch, 2005. http://hdl.handle.net/10019.1/1156.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Thesis (DSc (Mathematical Sciences))--University of Stellenbosch, 2005.
Subdivision is an important iterative technique for the efficient generation of curves and surfaces in geometric modelling. The convergence of a subdivision scheme is closely connected to the existence of a corresponding refinable function. In turn, such a refinable function can be used in the multi-resolutional construction method for wavelets, which are applied in many areas of signal analysis.
9

Sablik, Mathieu. „Wavelets in Abstract Hilbert Space“. Thesis, Uppsala University, Department of Mathematics, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-122553.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Yu, Lu. „Wavelets on hierarchical trees“. Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/2302.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Signals on hierarchical trees can be viewed as a generalization of discrete signals of length 2^N. In this work, we extend the classic discrete Haar wavelets to a Haar-like wavelet basis that works for signals on hierarchical trees. We first construct a specific wavelet basis and give its inverse and normalized transform matrices. As analogue to the classic case, operators and wavelet generating functions are constructed for the tree structure. This leads to the definition of multiresolution analysis on a hierarchical tree. We prove the previously selected wavelet basis is an orthogonal multiresolution. Classification of all possible wavelet basis that generate an orthogonal multiresolution is then given. In attempt to find more efficient encoding and decoding algorithms, we construct a second wavelet basis and show that it is also an orthogonal multiresolution. The encoding and decoding algorithms are given and their time complexity are analyzed. In order to link change of tree structure and encoded signal, we define weighted hierarchical tree, tree cut and extension. It is then shown that a simply relation can be established without the need for global change of the transform matrix. Finally, we apply thresholding to the transform and give an upper bound of error.

Bücher zum Thema "Wavelets (Mathematics)":

1

Burrus, C. S. Introduction to wavelets and wavelet transforms: A primer. Upper Saddle River, N.J: Prentice Hall, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Li-chih, Fang, und Thews Robert L, Hrsg. Wavelets in physics. Singapore: World Scientific, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Meyer, Yves. Wavelets and operators. Cambridge [England]: Cambridge University Press, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Louis, Alfred Karl. Wavelets: Theory and applications. Chichester: Wiley, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Anestis, Antoniadis, Oppenheim Georges und Franco-Belgian Meeting of Statisticians (15th : 1994 : Villard-de-Lans, France), Hrsg. Wavelets and statistics. New York: Springer-Verlag, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Blatter, Christian. Wavelets: A primer. Natick, Mass: A.K. Peters, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

V, Welland Grant, Hrsg. Beyond wavelets. San Diego, Calif: Academic Press, 2003.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Vidakovic, Brani. Statistical modeling by wavelets. New York: Wiley, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Berg, J. C. van den, 1944-, Hrsg. Wavelets in physics. Cambridge, UK: Cambridge University Press, 2004.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

John, Benedetto, und Frazier Michael 1956-, Hrsg. Wavelets: Mathematics and applications. Boca Raton: CRC Press, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Wavelets (Mathematics)":

1

Potter, Merle C., Jack L. Lessing und Edward F. Aboufadel. „Wavelets“. In Advanced Engineering Mathematics, 670–98. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17068-4_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Morettin, Pedro A., Aluísio Pinheiro und Brani Vidakovic. „Wavelets“. In SpringerBriefs in Mathematics, 11–35. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59623-5_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Davidson, Kenneth R., und Allan P. Donsig. „Wavelets“. In Undergraduate Texts in Mathematics, 406–48. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-98098-0_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bonneau, Georges-Pierre. „BLaC Wavelets and Non-Nested Wavelets“. In Mathematics and Visualization, 147–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04388-2_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Chui, Charles K., und Qingtang Jiang. „Compactly Supported Wavelets“. In Applied Mathematics, 433–98. Paris: Atlantis Press, 2013. http://dx.doi.org/10.2991/978-94-6239-009-6_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Cheney, Ward, und Will Light. „Wavelets, I“. In Graduate Studies in Mathematics, 272–84. Providence, Rhode Island: American Mathematical Society, 2009. http://dx.doi.org/10.1090/gsm/101/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Cheney, Ward, und Will Light. „Wavelets II“. In Graduate Studies in Mathematics, 285–311. Providence, Rhode Island: American Mathematical Society, 2009. http://dx.doi.org/10.1090/gsm/101/35.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Jensen, Arne, und Anders la Cour-Harbo. „Wavelets in Matlab“. In Ripples in Mathematics, 211–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56702-5_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hariharan, G. „Shifted Chebyshev Wavelets and Shifted Legendre Wavelets—Preliminaries“. In Forum for Interdisciplinary Mathematics, 33–50. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9960-3_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Gershtansky, Itai, und Shai Dekel. „Active Geometric Wavelets“. In Springer Proceedings in Mathematics, 95–109. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0772-0_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Wavelets (Mathematics)":

1

Sommen, F., Theodore E. Simos, George Psihoyios und Ch Tsitouras. „Haar Wavelets is a Clifford Algebra“. In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790266.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Černá, Dana, und Václav Finěk. „Optimized Construction of Biorthogonal Spline‐Wavelets“. In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2990873.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Traversoni, Leonardo, Yi Xu, Theodore E. Simos, George Psihoyios und Ch Tsitouras. „Velocity and Object Detection Using Quaternion Wavelets“. In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790268.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bernstein, Swanhild, Svend Ebert, Theodore E. Simos, George Psihoyios und Ch Tsitouras. „Spherical Wavelets, Kernels and Symmetries“. In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241585.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Majak, Jüri, Martin Eerme, Anti Haavajõe, Ramachandran Karunanidhi, Dieter Scholz und Anti Lepik. „Function approximation using Haar wavelets“. In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0026543.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Singh, Ram Chandra, und Rajeev Bhatla. „Wavelets in meteorology“. In EMERGING APPLICATIONS OF WAVELET METHODS: 7th International Congress on Industrial and Applied Mathematics - Thematic Minisymposia. AIP, 2012. http://dx.doi.org/10.1063/1.4740045.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Bahri, Syamsul, Lailia Awalushaumi und Marliadi Susanto. „The Approximation of Nonlinear Function using Daubechies and Symlets Wavelets“. In International Conference on Mathematics and Islam. SCITEPRESS - Science and Technology Publications, 2018. http://dx.doi.org/10.5220/0008521103000306.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Zahra, Noor e., Hulya Kodal Sevindir, Zafer Aslan und A. H. Siddiqi. „Wavelets in medical imaging“. In EMERGING APPLICATIONS OF WAVELET METHODS: 7th International Congress on Industrial and Applied Mathematics - Thematic Minisymposia. American Institute of Physics, 2012. http://dx.doi.org/10.1063/1.4740036.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Siddiqi, A. H. „Wavelets in oil industry“. In EMERGING APPLICATIONS OF WAVELET METHODS: 7th International Congress on Industrial and Applied Mathematics - Thematic Minisymposia. AIP, 2012. http://dx.doi.org/10.1063/1.4740041.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Černá, Dana, Václav Finěk, Theodore E. Simos, George Psihoyios und Ch Tsitouras. „Construction of Orthonormal Wavelets Using Symbolic Algebraic Methods“. In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241329.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie