Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Wavelet Scattering Transform“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Wavelet Scattering Transform" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Wavelet Scattering Transform"
Yaou, M. H., und W. T. Chang. „Wavelet transform in scattering data interpolation“. Electronics Letters 29, Nr. 21 (1993): 1835. http://dx.doi.org/10.1049/el:19931221.
Der volle Inhalt der QuelleWang, Juan, Jiangshe Zhang und Jie Zhao. „Texture Classification Using Scattering Statistical and Cooccurrence Features“. Mathematical Problems in Engineering 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/3946312.
Der volle Inhalt der QuelleLiu, Zhishuai, Guihua Yao, Qing Zhang, Junpu Zhang und Xueying Zeng. „Wavelet Scattering Transform for ECG Beat Classification“. Computational and Mathematical Methods in Medicine 2020 (09.10.2020): 1–11. http://dx.doi.org/10.1155/2020/3215681.
Der volle Inhalt der QuelleMarzog, Heyam A., und Haider J. Abd. „Machine Learning ECG Classification Using Wavelet Scattering of Feature Extraction“. Applied Computational Intelligence and Soft Computing 2022 (19.09.2022): 1–8. http://dx.doi.org/10.1155/2022/9884076.
Der volle Inhalt der QuelleShi, Jun, Yanan Zhao, Wei Xiang, Vishal Monga, Xiaoping Liu und Ran Tao. „Deep Scattering Network With Fractional Wavelet Transform“. IEEE Transactions on Signal Processing 69 (2021): 4740–57. http://dx.doi.org/10.1109/tsp.2021.3098936.
Der volle Inhalt der QuelleLone, Ab Waheed, und Nizamettin Aydin. „Wavelet Scattering Transform based Doppler signal classification“. Computers in Biology and Medicine 167 (Dezember 2023): 107611. http://dx.doi.org/10.1016/j.compbiomed.2023.107611.
Der volle Inhalt der QuelleD. S. Aabdalla, Islam, und D. Vasumathi. „Wavelet Scattering Transform for ECG Cardiovascular Disease Classification“. International Journal of Artificial Intelligence & Applications 15, Nr. 1 (29.01.2024): 101–13. http://dx.doi.org/10.5121/ijaia.2024.15107.
Der volle Inhalt der QuelleKhemani, Varun, Michael H. Azarian und Michael G. Pecht. „Learnable Wavelet Scattering Networks: Applications to Fault Diagnosis of Analog Circuits and Rotating Machinery“. Electronics 11, Nr. 3 (02.02.2022): 451. http://dx.doi.org/10.3390/electronics11030451.
Der volle Inhalt der QuelleVelicheti, Phani Datta, John F. Wu und Andreea Petric. „Quantifying Roman WFI Dark Images with the Wavelet Scattering Transform“. Publications of the Astronomical Society of the Pacific 135, Nr. 1050 (01.08.2023): 084502. http://dx.doi.org/10.1088/1538-3873/acf073.
Der volle Inhalt der QuelleOmer, Osama A., Mostafa Salah, Ammar M. Hassan, Mohamed Abdel-Nasser, Norihiro Sugita und Yoshifumi Saijo. „Blood Pressure Estimation from Photoplythmography Using Hybrid Scattering–LSTM Networks“. BioMedInformatics 4, Nr. 1 (09.01.2024): 139–57. http://dx.doi.org/10.3390/biomedinformatics4010010.
Der volle Inhalt der QuelleDissertationen zum Thema "Wavelet Scattering Transform"
Waldspurger, Irène. „Wavelet transform modulus : phase retrieval and scattering“. Thesis, Paris, Ecole normale supérieure, 2015. http://www.theses.fr/2015ENSU0036/document.
Der volle Inhalt der QuelleAutomatically understanding the content of a natural signal, like a sound or an image, is in general a difficult task. In their naive representation, signals are indeed complicated objects, belonging to high-dimensional spaces. With a different representation, they can however be easier to interpret. This thesis considers a representation commonly used in these cases, in particular for theanalysis of audio signals: the modulus of the wavelet transform. To better understand the behaviour of this operator, we study, from a theoretical as well as algorithmic point of view, the corresponding inverse problem: the reconstruction of a signal from the modulus of its wavelet transform. This problem belongs to a wider class of inverse problems: phase retrieval problems. In a first chapter, we describe a new algorithm, PhaseCut, which numerically solves a generic phase retrieval problem. Like the similar algorithm PhaseLift, PhaseCut relies on a convex relaxation of the phase retrieval problem, which happens to be of the same form as relaxations of the widely studied problem MaxCut. We compare the performances of PhaseCut and PhaseLift, in terms of precision and complexity. In the next two chapters, we study the specific case of phase retrieval for the wavelet transform. We show that any function with no negative frequencies is uniquely determined (up to a global phase) by the modulus of its wavelet transform, but that the reconstruction from the modulus is not stable to noise, for a strong notion of stability. However, we prove a local stability property. We also present a new non-convex phase retrieval algorithm, which is specific to the case of the wavelet transform, and we numerically study its performances. Finally, in the last two chapters, we study a more sophisticated representation, built from the modulus of the wavelet transform: the scattering transform. Our goal is to understand which properties of a signal are characterized by its scattering transform. We first prove that the energy of scattering coefficients of a signal, at a given order, is upper bounded by the energy of the signal itself, convolved with a high-pass filter that depends on the order. We then study a generalization of the scattering transform, for stationary processes. We show that, in finite dimension, this generalized transform preserves the norm. In dimension one, we also show that the generalized scattering coefficients of a process characterize the tail of its distribution
Rahmani, Maryam. „On the calculation of time-domain impulse-response of systems from band-limited scattering-parameters using wavelet transform“. Thesis, Mississippi State University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10270053.
Der volle Inhalt der QuelleIn the aspect of electric-ship grounding, the time-domain behavior of the ship hull is needed. The grounding scheme impacts the nature of voltage transients during switching events and faults, identifiability and locatability of ground faults, fault current levels, and power quality. Due to the large size of ships compared with the wavelengths of the desired signals, time-domain measurement or simulation is a time-consuming process. Therefore, it is preferred that the behavior be studied in the frequency-domain. In the frequency-domain one can break down the whole ship hull into small blocks and find the frequency behavior of each block (scattering parameters) in a short time and then con- nect these blocks and find the whole ship hull scattering parameters. Then these scattering parameters should be transferred to the time-domain. The problem with this process is that the measured frequency-domain data (or the simulated data) is band-limited so, while calculating time-domain solutions, due to missing DC and low frequency content the time-domain response encounters causality, passivity and time-delay problems. Despite availability of several software and simulation packets that convert frequency-domain information to time-domain, all are known to suffer from the above mentioned problems. This dissertation provides a solution for computing the Time-Domain Impulse-Response for a system by using its measured or simulated scattering parameters. In this regard, a novel wavelet computational approach is introduced.
Moufidi, Abderrazzaq. „Machine Learning-Based Multimodal integration for Short Utterance-Based Biometrics Identification and Engagement Detection“. Electronic Thesis or Diss., Angers, 2024. http://www.theses.fr/2024ANGE0026.
Der volle Inhalt der QuelleThe rapid advancement and democratization of technology have led to an abundance of sensors. Consequently, the integration of these diverse modalities presents an advantage for numerous real-life applications, such as biometrics recognition and engage ment detection. In the field of multimodality, researchers have developed various fusion ar chitectures, ranging from early, hybrid, to late fusion approaches. However, these architec tures may have limitations involving short utterances and brief video segments, necessi tating a paradigm shift towards the development of multimodal machine learning techniques that promise precision and efficiency for short-duration data analysis. In this thesis, we lean on integration of multimodality to tackle these previous challenges ranging from supervised biometrics identification to unsupervised student engagement detection. This PhD began with the first contribution on the integration of multiscale Wavelet Scattering Transform with x-vectors architecture, through which we enhanced the accuracy of speaker identification in scenarios involving short utterances. Going through multimodality benefits, a late fusion architecture combining lips depth videos and audio signals further improved identification accuracy under short utterances, utilizing an effective and less computational methods to extract spatiotemporal features. In the realm of biometrics challenges, there is the threat emergence of deepfakes. There-fore, we focalized on elaborating a deepfake detection methods based on, shallow learning and a fine-tuned architecture of our previous late fusion architecture applied on RGB lips videos and audios. By employing hand-crafted anomaly detection methods for both audio and visual modalities, the study demonstrated robust detection capabilities across various datasets and conditions, emphasizing the importance of multimodal approaches in countering evolving deepfake techniques. Expanding to educational contexts, the dissertation explores multimodal student engagement detection in classrooms. Using low-cost sensors to capture Heart Rate signals and facial expressions, the study developed a reproducible dataset and pipeline for identifying significant moments, accounting for cultural nuances. The analysis of facial expressions using Vision Transformer (ViT) fused with heart rate signal processing, validated through expert observations, showcased the potential for real-time monitoring to enhance educational outcomes through timely interventions
Westermark, Pontus. „Wavelets, Scattering transforms and Convolutional neural networks : Tools for image processing“. Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-337570.
Der volle Inhalt der QuellePike, Christopher James. „High resolution acoustic investigations of sub-seabed soils : relationship of wavelet transformed acoustic image to soil properties and some geotechnical parameters“. Thesis, Bangor University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265234.
Der volle Inhalt der QuelleStrömbom, Johannes. „Natural Fingerprinting of Steel“. Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-85531.
Der volle Inhalt der QuelleHuang, Jiunn-Ming, und 黃俊銘. „On the Application of Wavelet Transform to Wave Scattering Problems“. Thesis, 2000. http://ndltd.ncl.edu.tw/handle/65878253962566121085.
Der volle Inhalt der Quelle國立交通大學
電信工程系
88
The fundamental principles and characteristics of wavelet transform are discussed and applied to solve electromagnetic integral equations (IE). The major drawback of conventional method of moments (MoM) is the full matrix generation and huge computation time. Since different wavelets will results in diverse sparsity and computation time depends on the number of non-zero elements. The purposes of this dissertation are focus on the design of different wavelets to sparsify MoM impedance matrix without sacrificing much accuracy. We also present the concept of visible energy (VE) as a criterion to select a more suitable wavelet. The VE index is useful in designing new wavelets for electromagnetic IE. The lower VE index is, the more sparsity is the impedance matrix. In this dissertation, we first introduce the mathematical preliminaries of wavelets and conventional MoM for the sake of completeness. The VE concept is introduced thereafter and applied to Daubechies wavelet design. Daubechies wavelet is a minimum-phase one. However, we found that mix-phase wavelets are more useful in numerical solution of IE for their lower VE index. To acquire more sparsity and verify the validity of VE, we design another type of wavelet by optimization technique. That is the lattice-structure quadrature mirror filter (QMF) which is widely used in digital signal processing community. Much more sparsity is arrived by the QMF and best basis selection algorithm of wavelet packet. For example, the impedance matrix of a cylindrical scatterer is almost diagonalized. This result suggested that more wavelts from different fields could contribute to solve scattering IE efficiently by VE selection. This approach also extends the degree of freedom. Last but not least, we pinpointed several possible extensions and applications for further studied in electromagnetic field.
„Fast Numerical Algorithms for 3-D Scattering from PEC and Dielectric Random Rough Surfaces in Microwave Remote Sensing“. Doctoral diss., 2016. http://hdl.handle.net/2286/R.I.38433.
Der volle Inhalt der QuelleDissertation/Thesis
Doctoral Dissertation Electrical Engineering 2016
Buchteile zum Thema "Wavelet Scattering Transform"
Szczęsna, Agnieszka, Dariusz Augustyn, Henryk Josiński, Adam Świtoński, Paweł Kasprowski und Katarzyna Harężlak. „Novel Photoplethysmographic Signal Analysis via Wavelet Scattering Transform“. In Computational Science – ICCS 2022, 641–53. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08757-8_53.
Der volle Inhalt der QuelleMoufidi, Abderrazzaq, David Rousseau und Pejman Rasti. „Wavelet Scattering Transform Depth Benefit, An Application for Speaker Identification“. In Artificial Neural Networks in Pattern Recognition, 97–106. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-20650-4_8.
Der volle Inhalt der QuelleDestouet, Gabriel, Cécile Dumas, Anne Frassati und Valérie Perrier. „Wavelet Scattering Transform and Ensemble Methods for Side-Channel Analysis“. In Constructive Side-Channel Analysis and Secure Design, 71–89. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68773-1_4.
Der volle Inhalt der QuelleAl-Taee, Ahmad A., Rami N. Khushaba, Tanveer Zia und Adel Al-Jumaily. „Feature Extraction Using Wavelet Scattering Transform Coefficients for EMG Pattern Classification“. In Lecture Notes in Computer Science, 181–89. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97546-3_15.
Der volle Inhalt der QuelleIsmael, Mustafa R., Haider J. Abd und Mohammed Taih Gatte. „Recognition of APSK Digital Modulation Signal Based on Wavelet Scattering Transform“. In Lecture Notes in Networks and Systems, 469–78. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0825-5_51.
Der volle Inhalt der QuelleOommen, Deepthi, und J. Arunnehru. „Early Diagnosis of Alzheimer’s Disease from MRI Images Using Scattering Wavelet Transforms (SWT)“. In Soft Computing and its Engineering Applications, 249–63. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05767-0_20.
Der volle Inhalt der QuelleWang, Ziyu, Feifei Liu, Shengxiang Xia, Shuhua Shi, Lin Wang, Zheng Xu, Sen Ai und Zhengyong Huang. „A New Method for Human Activity Recognition of Photoplethysmography Signals Using Wavelet Scattering Transform“. In Machine Learning and Artificial Intelligence. IOS Press, 2023. http://dx.doi.org/10.3233/faia230780.
Der volle Inhalt der Quelle„Deep Learning-Based Texture Classification by Scattering Transform with Wavelet“. In Series in Machine Perception and Artificial Intelligence, 465–73. 3. Aufl. WORLD SCIENTIFIC, 2024. http://dx.doi.org/10.1142/9789811284052_0014.
Der volle Inhalt der QuelleYang, Ziang, Biyu Zhou, Xuehai Tang, Ruixuan Li und Songlin Hu. „Breaking the Weak Semantics Bottleneck of Transformers in Time Series Forecasting“. In Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240645.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Wavelet Scattering Transform"
Kong, Fantong, Yongxiang Liu, Hanchang Xu und Biao Wang. „Underwater Acoustic Classification Using Wavelet Scattering Transform and Convolutional Neural Network“. In 2024 OES China Ocean Acoustics (COA), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/coa58979.2024.10723696.
Der volle Inhalt der QuelleZhao, Heng, Yanyan Zhang, Qiujuan Lyu, Jiamin Fang, Jie Zhang, Sipu Zhang und Shiyu Ge. „Feature extraction and attribute recognition of particle light scattering signals based on wavelet scattering transform and long and short term memory network“. In Eleventh International Symposium on Precision Mechanical Measurements, herausgegeben von Liandong Yu, Lianqing Zhu, Zai Luo und Haojie Xia, 120. SPIE, 2024. http://dx.doi.org/10.1117/12.3033121.
Der volle Inhalt der QuelleGuven, Oguzhan, Bryan Y. Wang und Yildiz Bayazitoglu. „Solving Radiative Transfer Equation in Scattering Plane-Parallel Medium Using Wavelets Approximation“. In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33887.
Der volle Inhalt der QuelleAlBader, Mesaad, und Hamid A. Toliyat. „Wavelet Scattering Transform Based Induction Motor Current Signature Analysisa“. In 2020 International Conference on Electrical Machines (ICEM). IEEE, 2020. http://dx.doi.org/10.1109/icem49940.2020.9270810.
Der volle Inhalt der QuelleSaranraj S, Padmapriya V, Sudharsan S, Piruthiha D und Venkateswaran N. „Palm print biometric recognition based on Scattering Wavelet Transform“. In 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). IEEE, 2016. http://dx.doi.org/10.1109/wispnet.2016.7566183.
Der volle Inhalt der QuelleShen, Shi’an, Xiaokai Wang, Yanhui Zhou, Zhensheng Shi, Wenchao Chen und Cheng Wang. „3D scattering wavelet transform CNN for seismic fault detection“. In First International Meeting for Applied Geoscience & Energy. Society of Exploration Geophysicists, 2021. http://dx.doi.org/10.1190/segam2021-3594177.1.
Der volle Inhalt der QuelleRomanenko, S. N., L. M. Karpukov und R. D. Pulov. „Application of wavelet transform to the solution of scattering problems“. In 2007 6th International Conference on Antenna Theory and Techniques. IEEE, 2007. http://dx.doi.org/10.1109/icatt.2007.4425153.
Der volle Inhalt der QuelleGHEZAIEL, Wajdi, Luc BRUN und Olivier LEZORAY. „Wavelet Scattering Transform and CNN for Closed Set Speaker Identification“. In 2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP). IEEE, 2020. http://dx.doi.org/10.1109/mmsp48831.2020.9287061.
Der volle Inhalt der QuelleWang, Yajing, und Hui Yang. „Simulation of dynamic light scattering signal based on wavelet transform“. In 2010 International Conference on Educational and Information Technology (ICEIT). IEEE, 2010. http://dx.doi.org/10.1109/iceit.2010.5607795.
Der volle Inhalt der QuelleBarbolla, Dora Francesca, Lara De Giorgi und Giovanni Leucci. „Discrete Wavelet Transform to reduce surface scattering in GPR sections“. In 2023 IMEKO TC4 International Conference on Metrology for Archaeology and Cultural Heritage. Budapest: IMEKO, 2023. http://dx.doi.org/10.21014/10.21014/tc4-arc-2023.031.
Der volle Inhalt der Quelle