Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Wave impact“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Wave impact" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Wave impact"
Takagi, Emiko, Yasuhiko Saito und Angelique W. M. Chan. „A Longitudinal Study of the Impact of Loneliness on Personal Mastery Among Older Adults in Singapore“. Innovation in Aging 4, Supplement_1 (01.12.2020): 318. http://dx.doi.org/10.1093/geroni/igaa057.1017.
Der volle Inhalt der QuelleVerao Fernandez, Gael, Vasiliki Stratigaki, Panagiotis Vasarmidis, Philip Balitsky und Peter Troch. „Wake Effect Assessment in Long- and Short-Crested Seas of Heaving-Point Absorber and Oscillating Wave Surge WEC Arrays“. Water 11, Nr. 6 (29.05.2019): 1126. http://dx.doi.org/10.3390/w11061126.
Der volle Inhalt der QuelleGrilli, Stephan T., Jeffrey C. Harris, Fengyan Shi, James T. Kirby, Tayebeh S. Tajalli Bakhsh, Elise Estibals und Babak Tehranirad. „NUMERICAL MODELING OF COASTAL TSUNAMI IMPACT DISSIPATION AND IMPACT“. Coastal Engineering Proceedings 1, Nr. 33 (15.12.2012): 9. http://dx.doi.org/10.9753/icce.v33.currents.9.
Der volle Inhalt der QuelleLi, Zhisong, Kirti Ghia, Ye Li, Zhun Fan und Lian Shen. „Unsteady Reynolds-averaged Navier–Stokes investigation of free surface wave impact on tidal turbine wake“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 477, Nr. 2246 (Februar 2021): 20200703. http://dx.doi.org/10.1098/rspa.2020.0703.
Der volle Inhalt der QuelleGonzalez-Santamaria, Raul, Qingping Zou, Shunqi Pan und Roberto Padilla-Hernandez. „MODELLING WAVE-TIDE INTERACTIONS AT A WAVE FARM“. Coastal Engineering Proceedings 1, Nr. 32 (27.01.2011): 34. http://dx.doi.org/10.9753/icce.v32.waves.34.
Der volle Inhalt der QuelleKerpen, Nils, Talia Schoonees und Torsten Schlurmann. „Wave Impact Pressures on Stepped Revetments“. Journal of Marine Science and Engineering 6, Nr. 4 (13.12.2018): 156. http://dx.doi.org/10.3390/jmse6040156.
Der volle Inhalt der QuelleRodriguez Gandara, Ruben, und John Harris. „NEARSHORE WAVE DAMPING DUE TO THE EFFECT ON WINDS IN RESPONSE TO OFFSHORE WIND FARMS“. Coastal Engineering Proceedings 1, Nr. 33 (25.10.2012): 55. http://dx.doi.org/10.9753/icce.v33.waves.55.
Der volle Inhalt der QuelleShimura, Tomoya, Nobuhito Mori, Tomohiro Yasuda und Hajime Mase. „WAVE DYNAMICS AND ITS IMPACT TO WAVE CLIMATE PROJECTION“. Coastal Engineering Proceedings 1, Nr. 33 (25.10.2012): 24. http://dx.doi.org/10.9753/icce.v33.management.24.
Der volle Inhalt der QuelleMu, Ping, Pingyi Wang, Linfeng Han, Meili Wang, Caixia Meng, Zhiyou Cheng und Haiyong Xu. „The Propagation of Landslide-Generated Impulse Waves and Their Impacts on the Moored Ships: An Experimental Investigation“. Advances in Civil Engineering 2020 (12.05.2020): 1–13. http://dx.doi.org/10.1155/2020/6396379.
Der volle Inhalt der QuelleLindt, John W. van de, Rakesh Gupta, Daniel T. Cox und Jebediah S. Wilson. „Wave Impact Study on a Residential Building“. Journal of Disaster Research 4, Nr. 6 (01.12.2009): 419–26. http://dx.doi.org/10.20965/jdr.2009.p0419.
Der volle Inhalt der QuelleDissertationen zum Thema "Wave impact"
Md, Noar Nor. „Wave impacts on rectangular structures“. Thesis, Brunel University, 2012. http://bura.brunel.ac.uk/handle/2438/6609.
Der volle Inhalt der QuelleKatsidoniotaki, Eirini. „Extreme wave conditions and the impact on wave energy converters“. Licentiate thesis, Uppsala universitet, Elektricitetslära, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-441043.
Der volle Inhalt der QuelleTopliss, Margaret E. „Water wave impact on structures“. Thesis, University of Bristol, 1994. http://hdl.handle.net/1983/2fa7ba69-7867-4cd0-8b3a-de4de97f98db.
Der volle Inhalt der QuelleWood, Deborah Jane. „Pressure-impulse impact problems and plunging wave jet impact“. Thesis, University of Bristol, 1997. http://hdl.handle.net/1983/c3dbd4c5-5082-4c71-a16e-3daa969e22ee.
Der volle Inhalt der QuelleCox, Simon John. „Pressure impulses caused by wave impact“. Thesis, University of East Anglia, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266731.
Der volle Inhalt der QuelleAbdolmaleki, Kourosh. „Modelling of wave impact on offshore structures“. University of Western Australia. School of Mechanical Engineering, 2007. http://theses.library.uwa.edu.au/adt-WU2008.0055.
Der volle Inhalt der QuelleAbraham, Aliza Opila. „Extreme wave impact on a flexible plate“. Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104117.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 99-102).
This thesis describes the use of a combination of various visual techniques to characterize the flow-structure interaction of a breaking wave impacting a flexible vertically mounted plate. Several experiments were conducted on a simulated dam break in which water was rapidly released from a reservoir to generate a wave, which impinged on a cantilevered stainless steel plate downstream. Two high speed cameras collected data on the water and the plate simultaneously. Manual tracking of the wave front and Particle Image Velocimetry (PIV) were used to gather water height, wave speed, crest speed, vorticity, and particle speed, which were used to determine the pressure exerted by the water on the plate. An algorithm was written to track the edge of the plate to find plate deflection over time. The dynamic beam bending equation was used to find the forces experienced by the plate, which were compared to the pressure results. A series of waves of different heights and breaking locations were tested, controlled by the ratio of the height of water initially in the tank and the height of water in the dam break reservoir, for two different plate locations. The properties of the wave varied depending on these parameters, as did the deflection of the plate. The plate deformed more and the recorded velocities in the wave were higher when the depth ratio decreased and when the plate was moved farther from the reservoir. These results shed light on the effect of breaking wave impacts on offshore structures and ship hulls, taking into account the elasticity of these structures. They also provide a test case for future numerical fluid-structure interaction simulation techniques.
by Aliza Opila Abraham.
S.M.
Schöpfer, Philipp. „Non-linear Wave Impact on Monopile Structures“. Thesis, KTH, Lättkonstruktioner, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-203342.
Der volle Inhalt der QuelleRimal, Nischal. „Impact Localization Using Lamb Wave and Spiral FSAT“. University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1388672483.
Der volle Inhalt der QuelleBradshaw, Douglas Robert Saunders. „Linear wave propagation in traumatic brain injury“. Thesis, University of Southampton, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341646.
Der volle Inhalt der QuelleBücher zum Thema "Wave impact"
Samra, J. S. Cold wave of 2002-03: Impact on agriculture. New Delhi: Natural Resource Management Division, Indian Council of Agricultural Research, 2003.
Den vollen Inhalt der Quelle finden1937-, Shen Jinwei, und Song Jingzheng 1945-, Hrsg. Chuan bo bo lang zai he: Ship wave loads. Beijing: Guo fang gong ye chu ban she, 2007.
Den vollen Inhalt der Quelle findenT, Balasubramanian. Wave in bay: Impact of Tsunami on coastal resources. Parangipettai: Environmental Information System Centre, Centre of Advanced Study in Marine Biology, Annamalai University, 2005.
Den vollen Inhalt der Quelle findenCoops, Hugo. Helophyte zonation: Impact of water depth and wave exposure. Nijmegen: Katholieke Universiteit Nijmegen, 1996.
Den vollen Inhalt der Quelle findenJelliman, Carol. Wave climate change and its impact on UK coastal management. Wallingford: Hydraulics Research Limited, 1991.
Den vollen Inhalt der Quelle findenNarendra, Jain. The wave of bliss: Impact of Chitrabhanu on the Western world. Ahmedabad: Swadhyay Mandir Charitable Trust, 1995.
Den vollen Inhalt der Quelle findenInternational Symposium on Explosion, Shock Wave & High-Energy Reaction Phenomena (3rd 2010 Seoul, Korea). Explosion, shock wave and high energy reaction phenomena: Selected, peer reviewed papers from International Symposium on Explosion, Shock wave & High-energy reaction Phenomena 2010 (3rd ESHP Symposium), 1-3 September 2010, Seoul National University, Seoul, Korea. Stafa-Zurich, Switzerland: Trans Tech Publications, 2011.
Den vollen Inhalt der Quelle findenDaidola, John C. Hydrodynamic impact on displacement ship hulls: An assessment of the state of the art. Washington, D.C: Ship Structure Committee, 1995.
Den vollen Inhalt der Quelle findenFawcett, Jo. Foot and Mouth disease: Business impact tracking survey Scotland September 2001 Third wave. Edinburgh: Stationary Office, 2001.
Den vollen Inhalt der Quelle findenAllnutt, J. E. Satellite-to-ground radiowave propagation: Theory, practice, and system impact at frequencies above 1GHz. London, U.K: P. Peregrinus on behalf of the Institution of Electrical Engineers, 1989.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Wave impact"
Sperhake, Ulrich. „Gravitational Recoil and Astrophysical Impact“. In Gravitational Wave Astrophysics, 185–202. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10488-1_16.
Der volle Inhalt der QuelleRein, Martin. „Wave Phenomena During Droplet Impact“. In IUTAM Symposium on Waves in Liquid/Gas and Liquid/Vapour Two-Phase Systems, 171–90. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0057-1_14.
Der volle Inhalt der QuelleMardan, Ali H., Stefan A. Loening und David M. Lubaroff. „Impact of Extracorporeal Shock Wave Treatment on Dunning Prostate Tumors“. In Shock Wave Lithotripsy, 333–39. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4757-1977-2_69.
Der volle Inhalt der QuelleEtienne, Zachariah B., Vasileios Paschalidis und Stuart L. Shapiro. „Advanced Models of Black Hole–Neutron Star Binaries and Their Astrophysical Impact“. In Gravitational Wave Astrophysics, 59–74. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10488-1_6.
Der volle Inhalt der QuelleSkews, B. W. „Shock Wave Impact on Porous Materials“. In Shock Waves @ Marseille III, 11–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-78835-2_2.
Der volle Inhalt der QuelleHartmann, C. S. „Systems Impact of Modern Rayleigh Wave Technology“. In Springer Series on Wave Phenomena, 238–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82621-4_17.
Der volle Inhalt der QuelleCollins, Gareth S., Kevin R. Housen, Martin Jutzi und Akiko M. Nakamura. „Planetary Impact Processes in Porous Materials“. In Shock Wave and High Pressure Phenomena, 103–36. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23002-9_4.
Der volle Inhalt der QuelleHu, B., P. Eberhard und W. Schiehlen. „Solving wave propagation problems symbolically using computer algebra“. In Dynamics of Vibro-Impact Systems, 231–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60114-9_26.
Der volle Inhalt der QuelleHieronymus, Hartmut. „Single Bubble Ignition After Shock Wave Impact“. In The Micro-World Observed by Ultra High-Speed Cameras, 303–17. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61491-5_14.
Der volle Inhalt der QuelleChen, H., M. V. Barnhart, Y. Y. Chen und G. L. Huang. „Elastic Metamaterials for Blast Wave Impact Mitigation“. In Blast Mitigation Strategies in Marine Composite and Sandwich Structures, 357–75. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7170-6_19.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Wave impact"
Stansberg, Carl Trygve. „A Wave Impact Parameter“. In ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/omae2008-57801.
Der volle Inhalt der QuelleBanton, Rohan, Thuvan Piehler, Nicole Zander, Richard Benjamin, Josh Duckworth und Oren Petel. „Investigating Pressure Wave Impact on a Surrogate Head Model Using Numerical Simulation Techniques“. In 2019 15th Hypervelocity Impact Symposium. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/hvis2019-113.
Der volle Inhalt der QuelleTian, Zhigang. „An Evaluation of Wave Impact Indicators“. In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-79732.
Der volle Inhalt der QuelleSchellin, Thomas E., und Ould El Moctar. „Numerical Prediction of Impact-Related Wave Loads on Ships“. In 25th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/omae2006-92133.
Der volle Inhalt der QuelleScharnke, Jule, Rene Lindeboom und Bulent Duz. „Wave-in-Deck Impact Loads in Relation With Wave Kinematics“. In ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/omae2017-61406.
Der volle Inhalt der QuelleGuo, Yinghao, Longfei Xiao, Handi Wei, Lei Li und Yanfei Deng. „Wave Impact Load and Corresponding Nonlinear Response of a Semi-Submersible“. In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-95693.
Der volle Inhalt der QuellePeng, Zhong, Tim Raaijmakers und Peter Wellens. „Nonlinear Wave Group Impact on a Cylindrical Monopile“. In ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-10838.
Der volle Inhalt der QuelleLi, K. C., Jay C. Y. Huang, J. L. Ku und Synger Lee. „Investigate the Performance of SnCuNi (SCN) Alloy for Wave Soldering“. In Circuits Technology Conference (IMPACT). IEEE, 2008. http://dx.doi.org/10.1109/impact.2008.4783821.
Der volle Inhalt der QuelleThomas, Sarah A., Robert S. Hixson, M. Cameron Hawkins und Oliver T. Strand. „Wave speeds in single-crystal and polycrystalline copper“. In 2019 15th Hypervelocity Impact Symposium. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/hvis2019-007.
Der volle Inhalt der QuelleKalogirou, A., und O. Bokhove. „Mathematical and Numerical Modelling of Wave Impact on Wave-Energy Buoys“. In ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/omae2016-54937.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Wave impact"
Fullerton, Anne M., Ann Marie Powers, Don C. Walker und Susan Brewton. The Distribution of Breaking and Non-Breaking Wave Impact Forces. Fort Belvoir, VA: Defense Technical Information Center, März 2009. http://dx.doi.org/10.21236/ada495574.
Der volle Inhalt der QuelleMcElroy, Michael B., und Hans R. Schneider. The impact of tropospheric planetary wave variability on stratospheric ozone. Office of Scientific and Technical Information (OSTI), Juni 2002. http://dx.doi.org/10.2172/809126.
Der volle Inhalt der QuelleFullerton, Anne M., David Drazen, Don Walker und Eric Terrill. Full Scale Measurements of Wave Impact on a Flat Plate. Fort Belvoir, VA: Defense Technical Information Center, Mai 2013. http://dx.doi.org/10.21236/ada585475.
Der volle Inhalt der QuelleDing, J. L., und Y. M. Gupta. Layering Concept for Wave Shaping and Lateral Distribution of Stresses During Impact. Fort Belvoir, VA: Defense Technical Information Center, Mai 2001. http://dx.doi.org/10.21236/ada394098.
Der volle Inhalt der QuelleRiley, Michael R., und Timothy W. Coats. Quantifying Mitigation Characteristics of Shock Isolation Seats in a Wave Impact Environment. Fort Belvoir, VA: Defense Technical Information Center, Januar 2015. http://dx.doi.org/10.21236/ada622526.
Der volle Inhalt der QuelleKrall, J., und C. M. Tang. The Impact of the Three-Wave Instability on the Spiral Line Induction Accelerator. Fort Belvoir, VA: Defense Technical Information Center, November 1990. http://dx.doi.org/10.21236/ada229758.
Der volle Inhalt der QuelleRiley, Michael R., Timothy W. Coats und Heidi Murphy. Acceleration Response Mode Decomposition for Quantifying Wave Impact Load in High-Speed Planing Craft. Fort Belvoir, VA: Defense Technical Information Center, April 2014. http://dx.doi.org/10.21236/ada621230.
Der volle Inhalt der QuelleStrassburger, Elmar. High-Speed Photographic Study of Wave Propagation and Impact Damage in Transparent Aluminum Oxynitride (AION). Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada457205.
Der volle Inhalt der QuelleWang, Shouping. High-Resolution Coupled Ocean-Wave-Atmosphere Prediction of Typhoons and Their Impact on the Upper Ocean. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada590344.
Der volle Inhalt der QuelleBhatt, Mihir R., Shilpi Srivastava, Megan Schmidt-Sane und Lyla Mehta. Key Considerations: India's Deadly Second COVID-19 Wave: Addressing Impacts and Building Preparedness Against Future Waves. Institute of Development Studies (IDS), Juni 2021. http://dx.doi.org/10.19088/sshap.2021.031.
Der volle Inhalt der Quelle