Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Water vapor profile“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Water vapor profile" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Water vapor profile"
Mariani, Zen, Noah Stanton, James Whiteway und Raisa Lehtinen. „Toronto Water Vapor Lidar Inter-Comparison Campaign“. Remote Sensing 12, Nr. 19 (27.09.2020): 3165. http://dx.doi.org/10.3390/rs12193165.
Der volle Inhalt der QuelleMillán, Luis, Matthew Lebsock, Nathaniel Livesey und Simone Tanelli. „Differential absorption radar techniques: water vapor retrievals“. Atmospheric Measurement Techniques 9, Nr. 6 (21.06.2016): 2633–46. http://dx.doi.org/10.5194/amt-9-2633-2016.
Der volle Inhalt der QuellePetrova, T. M., A. M. Solodov, A. P. Shcherbakov, V. M. Deichuli, A. A. Solodov und Yu N. Ponomarev. „Comparison of Profile Models for Water Vapor Absorption Lines“. Atmospheric and Oceanic Optics 34, Nr. 4 (Juli 2021): 283–87. http://dx.doi.org/10.1134/s1024856021040096.
Der volle Inhalt der QuelleLivingston, J. M., B. Schmid, P. B. Russell, J. R. Podolske, J. Redemann und G. S. Diskin. „Comparison of Water Vapor Measurements by Airborne Sun Photometer and Diode Laser Hygrometer on the NASA DC-8“. Journal of Atmospheric and Oceanic Technology 25, Nr. 10 (01.10.2008): 1733–43. http://dx.doi.org/10.1175/2008jtecha1047.1.
Der volle Inhalt der QuelleRoy, Richard J., Matthew Lebsock, Luis Millán, Robert Dengler, Raquel Rodriguez Monje, Jose V. Siles und Ken B. Cooper. „Boundary-layer water vapor profiling using differential absorption radar“. Atmospheric Measurement Techniques 11, Nr. 12 (06.12.2018): 6511–23. http://dx.doi.org/10.5194/amt-11-6511-2018.
Der volle Inhalt der QuelleDai, Guangyao, Dietrich Althausen, Julian Hofer, Ronny Engelmann, Patric Seifert, Johannes Bühl, Rodanthi-Elisavet Mamouri, Songhua Wu und Albert Ansmann. „Calibration of Raman lidar water vapor profiles by means of AERONET photometer observations and GDAS meteorological data“. Atmospheric Measurement Techniques 11, Nr. 5 (08.05.2018): 2735–48. http://dx.doi.org/10.5194/amt-11-2735-2018.
Der volle Inhalt der QuelleWu, You, Feng Zhang, Kun Wu, Min Min, Wenwen Li und Renqiang Liu. „Best Water Vapor Information Layer of Himawari-8-Based Water Vapor Bands over East Asia“. Sensors 20, Nr. 8 (23.04.2020): 2394. http://dx.doi.org/10.3390/s20082394.
Der volle Inhalt der QuelleHe, Jie Ying, Feng Lin Sun, Sheng Wei Zhang und Yu Zhang. „The Analysis of Atmospheric Water Vapor Based on Ground-Based Microwave Radiometer“. Key Engineering Materials 500 (Januar 2012): 335–40. http://dx.doi.org/10.4028/www.scientific.net/kem.500.335.
Der volle Inhalt der QuelleTurner, David D., und Ulrich Löhnert. „Ground-based temperature and humidity profiling: combining active and passive remote sensors“. Atmospheric Measurement Techniques 14, Nr. 4 (26.04.2021): 3033–48. http://dx.doi.org/10.5194/amt-14-3033-2021.
Der volle Inhalt der QuelleXu, Wen Jing, und Hong Yan Liu. „Ground-Based Microwave Radiometer Profiler Observations before a Heavy Rainfall“. Applied Mechanics and Materials 137 (Oktober 2011): 312–15. http://dx.doi.org/10.4028/www.scientific.net/amm.137.312.
Der volle Inhalt der QuelleDissertationen zum Thema "Water vapor profile"
Skoglund, Emil. „A NUMERICAL MODEL OF HEAT- AND MASS TRANSFER IN POLYMER ELECTROLYTE FUEL CELLS : A two-dimensional 1+1D approach to solve the steady-state temperature- and mass- distributions“. Thesis, Mälardalens högskola, Framtidens energi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-55223.
Der volle Inhalt der QuelleHancock, Jay Brian 1976. „Passive microwave and hyperspectral infrared retrievals of atmospheric water vapor profiles“. Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/8573.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 231-234).
Two clear-air relative humidity profile estimators were designed and implemented using neural networks. The microwave estimator is the first to utilize 54-, 118-, and 183-GHz channels for simultaneously retrieving a relative humidity profile. It utilizes 2 separate instruments simultaneously. The first instrument is a medium-resolution dual-band radiometer with one set of 8 double-sideband 118-GHz channels and a second set of 8 single-sideband 54-GHz channels. The other instrument is a high-resolution double-sideband radiometer with a set of 3 183-GHz channels, and additional channels at 89, 220, and 150 GHz. The infrared estimator is among the first to utilize a hyperspectral infrared aircraft instrument for relative humidity profile retrievals. The infrared instrument is a 9000-channel interferometer operative over the wavelength range of 3.8-16.2 microns. Both estimators utilized neural networks of comparable topology and training methods. The training data was generated from the SATIGR set of 1761 RAOBs using a different implementation of the discrete radiative transfer equation for each estimator. The test data were from two clear-air ER-2 aircraft flights during the tropical CAMEX-3 mission near Andros Island. The retrievals were robust in the face of unknown instrument bias and noise, which introduced a difference between the training data and the flight data. A noise-averaging technique achieved robustness in exchange for a degradation in sensitivity of the retrieval algorithms. Robustness was demonstrated by the retrieval agreement between the microwave and infrared instruments. The theoretical average rms error in relative humidity for the various techniques on the training set was 12% for the microwave estimator, 11% for the infrared, and 10% for a linear regression of the two. In application to two flights, the rms error was 9.4% for the microwave, 7.7% for the infrared, and 7.7% for the combination, based on comparisons with nearby radiosondes.
by Jay Brian Hancock.
S.M.
Grippa, Manuela. „Retrieval of tropospheric temperature and composition profiles from infrared radiance measurements“. Thesis, Heriot-Watt University, 2000. http://hdl.handle.net/10399/527.
Der volle Inhalt der QuelleWilson, Christopher Brant. „Measurement of chemical composition and pH profiles near the liquid-vapor interface of aqueous solutions using a unique confocal microscope system /“. Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/9840.
Der volle Inhalt der QuelleFollette, Melanie Beth. „Classification of northern hemisphere stratospheric ozone and water vapor profiles by meteorological regime validation, climatology, and trends /“. College Park, Md. : University of Maryland, 2007. http://hdl.handle.net/1903/6675.
Der volle Inhalt der QuelleThesis research directed by: Atmospheric and Oceanic Sciences. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Wassenberg, Chris Alan 1959. „Development of a multi-frequency microwave radiometer for the measurement of atmospheric water vapor and temperature profiles“. Thesis, The University of Arizona, 1990. http://hdl.handle.net/10150/277271.
Der volle Inhalt der QuelleLacour, Jean Lionel. „Estimations du profil du rapport isotopique de la vapeur d'eau dans la troposphère à partir de spectres mesurés dans l'infrarouge thermique par le sondeur IASI: méthodologie d'inversion et analyses des premières distributions spatiales“. Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209151.
Der volle Inhalt der QuelleDans cette perspective, les mesures de radiances du système terre-atmosphère dans l’infrarouge thermique par l’Interféromètre Atmosphérique de Sondage Infrarouge (IASI) à bord de la plateforme météorologique MetOp, peuvent fournir des observations du rapport isotopique δD (rapport HDO/H216O), à l’échelle globale et à haute résolution spatio-temporelle, pour autant que la restitution du rapport puisse être obtenue avec une précision suffisante.
Dans ce travail, nous présentons une méthodologie robuste et précise pour la restitution du profil de δD à partir des spectres IASI. Basée sur la méthode d’estimation optimale, elle consiste à appliquer des contraintes d’inversion adaptées afin d’obtenir des profils de δD fiables. Nous décrivons le choix de celles-ci et nous montrons que la méthode mise en place permet de fournir des profils de δD qui présentent un maximum de sensibilité dans la troposphère libre. L’adéquation de la méthode mise en place est ensuite évaluée grâce à une étude d’inter-comparaison avec des mesures dérivées de l’instrument spatial TES (Tropospheric Emission Spectrometer sur AURA) et FTIR localisés au sol. L’exactitude des profils IASI a aussi pu être déterminée grâce à des comparaisons avec des mesures in situ.
Dans une autre partie du travail, nous nous attachons à préciser les applications liées à l’utilisation des nouvelles mesures dans le domaine des géosciences. Nous documentons ainsi les capacités du sondeur IASI à fournir des mesures de δD à une résolution spatio-temporelle inégalée et décrivons les diverses distributions obtenues. Nous montrons et analysons notamment les premières cartes globales à haute résolution de δD dans la troposphère. Les mesures de δD et de l’humidité sont analysées conjointement à l’aide de modèles simples et permettent de démontrer la plus-value mesures de δD depuis les satellites. Parmi les résultats les plus significatifs, citons la mise en évidence de la signature isotopique des différentes sources de la vapeur d’eau (évaporation continentale/océanique), et celle de l’empreinte des différents processus hydrologiques qui contrôlent l’humidification de l’atmosphère (convection, mélange de masse d’air, ré-évaporation des gouttes de pluie).
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Li, Chieh, und 李杰. „The Effect of the Water Vapor and Carbon Dioxide on the Radiation Absorption and Temperature Profile in Troposphere“. Thesis, 2013. http://ndltd.ncl.edu.tw/handle/z42rd3.
Der volle Inhalt der Quelle國立中山大學
機械與機電工程學系研究所
101
The work on this paper focus on the effect of the water vapor and carbon dioxide on the absorption of atmospheric radiation and the temperature within the troposphere (10km above the ground), which is based on the realistic temperature- and pressure- or concentration-dependent radiative properties. And for simplicity, this model is assumed one-dimension and only concerning about the conduction and radiation. As we know, the earth receives energy from the sun in the form UV, visible light, and near infrared radiation. And virtually all wave below 290 nm is absorbed at tropopause (top of the troposphere), and the wave between 300 nm and 800 nm is weakly absorbed and transmitted into the troposphere. Some of them are absorbed by the land and ocean, about 50%. Then the earth surface radiates the energy back in the form of far infrared thermal radiation, which is mostly absorbed by the atmosphere. Those absorbed far IR thermal radiation is re-radiated both upwards and downwards, and the downwards part is absorbed by the earth surface, which leads to a raising temperature. As a result, the influence of water vapor and carbon dioxide on global warming is growing day by day. Although the water vapor absorbs most of the infrared emitted by the ground, yet it got a shorter period about 8 days. Comparing to that, the concentration of carbon dioxide is increasing gradually since the industry revolution due to the anthropogenic emission like burning fossil fuel and deforestation .That’s why recent surveys of global warming all list Carbon dioxide as the main greenhouse gases. The computed results in this work quantitatively show that water vapor and carbon dioxide play an important role on affecting the temperature difference about 2 to 5 Celsius degree and therefore remind us of taking notice of the global warming.
Wu, Xiaohua. „Short-range precipitation forecasts using assimilation of simulated satellite water vapor profiles and cloud liquid water“. 1993. http://catalog.hathitrust.org/api/volumes/oclc/31455677.html.
Der volle Inhalt der QuelleCarlson, Grant Stuart. „Mesoscale water vapor profiles from VAS an evaluation of two physical retrieval methods /“. 1988. http://catalog.hathitrust.org/api/volumes/oclc/18365299.html.
Der volle Inhalt der QuelleTypescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 96-102).
Bücher zum Thema "Water vapor profile"
Oltmans, Samuel J. Water vapor profiles for Washington, DC; Boulder, CO; Palestine, TX; Laramie, WY; and Fairbanks, AK; during the period 1974 to 1985. Silver Spring, Md: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Air Resources Laboratory, 1986.
Den vollen Inhalt der Quelle findenOltmans, Samuel J. Water vapor profiles for Washington, DC; Boulder, CO; Palestine, TX; Laramie, WY; and Fairbanks, AK; during the period 1974 to 1985. Silver Spring, Md: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Air Resources Laboratory, 1986.
Den vollen Inhalt der Quelle findenOltmans, Samuel J. Water vapor profiles for Washington, DC; Boulder, CO; Palestine, TX; Laramie, WY; and Fairbanks, AK; during the period 1974 to 1985. Silver Spring, Md: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Air Resources Laboratory, 1986.
Den vollen Inhalt der Quelle findenEnvironmental Research Laboratories (U.S.), Hrsg. Water vapor profiles for Boulder, Colorado, and Pago Pago, American Samoa during the period 1986-1989. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1990.
Den vollen Inhalt der Quelle findenEnvironmental Research Laboratories (U.S.), Hrsg. Water vapor profiles for Boulder, Colorado, and Pago Pago, American Samoa during the period 1986-1989. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1990.
Den vollen Inhalt der Quelle findenWater vapor profiles for Boulder, Colorado, and Pago Pago, American Samoa during the period 1986-1989. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1990.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Water vapor profile"
Nakanishi, Tomoko M. „Water-Specific Imaging“. In Novel Plant Imaging and Analysis, 3–37. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4992-6_1.
Der volle Inhalt der QuelleBalin, Ioan, Gilles Larchevêque, Philippe Quaglia, Valentin Simeonov, Hubert Van Den Bergh und Bertrand Calpini. „Water vapor vertical profile by Raman lidar in the free troposphere from the Jungfraujoch Alpine Station“. In Advances in Global Change Research, 123–38. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/0-306-47983-4_7.
Der volle Inhalt der QuelleMapes, Brian, Arunchandra S. Chandra, Zhiming Kuang und Paquita Zuidema. „Importance Profiles for Water Vapor“. In Space Sciences Series of ISSI, 183–97. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-77273-8_9.
Der volle Inhalt der QuelleMurcray, D. G., A. Goldman, J. Kosters, R. Zander, W. Evans, N. Louisnard, C. Alamichel et al. „Intercomparison of Stratospheric Water Vapor Profiles Obtained During the Balloon Intercomparison Campaign“. In Atmospheric Ozone, 144–48. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5313-0_29.
Der volle Inhalt der QuelleGerding, Michael, und Antje Weisheimer. „Validation of Water Vapour Profiles from GPS Radio Occultations in the Arctic“. In First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, 441–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-38366-6_60.
Der volle Inhalt der QuelleNehrir, Amin R., Christoph Kiemle, Mathew D. Lebsock, Gottfried Kirchengast, Stefan A. Buehler, Ulrich Löhnert, Cong-Liang Liu, Peter C. Hargrave, Maria Barrera-Verdejo und David M. Winker. „Emerging Technologies and Synergies for Airborne and Space-Based Measurements of Water Vapor Profiles“. In Space Sciences Series of ISSI, 273–310. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-77273-8_13.
Der volle Inhalt der QuelleStiller, Gabriele Petra, Tilman Steck, Mathias Milz, Thomas von Clarmann, Udo Grabowski und Herbert Fischer. „Approach to the Cross-Validation of MIPAS and CHAMP Temperature and Water Vapour Profiles“. In First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, 551–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-38366-6_75.
Der volle Inhalt der QuellePalm, Stephen P., Denise Hagan, Geary Schwemmer und S. H. Melfi. „Inference of Atmospheric Boundary Layer Water Vapor and Temperature Profiles over the Ocean Using Airborne Lidar Data“. In Advances in Atmospheric Remote Sensing with Lidar, 39–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60612-0_10.
Der volle Inhalt der QuelleKaimal, J. C., und J. J. Finnigan. „Flow Over Plant Canopies“. In Atmospheric Boundary Layer Flows. Oxford University Press, 1994. http://dx.doi.org/10.1093/oso/9780195062397.003.0006.
Der volle Inhalt der QuelleKandra, Ranju, und Sunil Bajpai. „Wound Dressing Application of Ch/CD Nanocomposite Film“. In Chitin and Chitosan - Physicochemical Properties and Industrial Applications [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95107.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Water vapor profile"
De Feis, Italia, Alberta M. Lubrano, Guido Masiello und Carmine Serio. „Simultaneous temperature and water vapor profile from IASI radiances“. In Europto Remote Sensing, herausgegeben von Jaqueline E. Russell, Klaus Schaefer und Olga Lado-Bordowsky. SPIE, 2001. http://dx.doi.org/10.1117/12.413855.
Der volle Inhalt der QuelleValtr, Pavel, Pavel Pechac und Martin Grabner. „Water vapor density profile statistics in the atmospheric boundary layer“. In 2017 11th European Conference on Antennas and Propagation (EUCAP). IEEE, 2017. http://dx.doi.org/10.23919/eucap.2017.7928173.
Der volle Inhalt der Quelle„Profile of ammonia and water vapor in an Irish broiler production house“. In 2016 ASABE International Meeting. American Society of Agricultural and Biological Engineers, 2016. http://dx.doi.org/10.13031/aim.20162461252.
Der volle Inhalt der QuellePougatchev, Nikita, Thomas August, Xavier Calbet, Tim Hultberg, Osoji Oduleye, Peter Schlüssel, Bernd Stiller, Karen St. Germain und Gail Bingham. „Validation of the IASI temperature and water vapor profile retrievals by correlative radiosondes“. In Optical Engineering + Applications, herausgegeben von James J. Butler und Jack Xiong. SPIE, 2008. http://dx.doi.org/10.1117/12.795382.
Der volle Inhalt der QuelleMigliorini, Stefano, Stefano Nativi und Dino Giuli. „Water vapor and cloud liquid water effective profile retrievals over the sea using TRMM microwave imager (TMI)“. In Remote Sensing, herausgegeben von Jaqueline E. Russell. SPIE, 1999. http://dx.doi.org/10.1117/12.373058.
Der volle Inhalt der QuelleCuccoli, Fabrizio, Simone Tanelli, Luca Facheris, Stefano Migliorini und Dino Giuli. „Microwave attenuation measurements in satellite-ground links: spectral analysis for water vapor profile retrieval“. In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, herausgegeben von Michael C. Roggemann und Luc R. Bissonnette. SPIE, 1999. http://dx.doi.org/10.1117/12.363618.
Der volle Inhalt der QuelleZhao, Yili, Yubao Chen, Bai Li, Chuntao Chen, Jianhua Zhu und Xiaoqi Huang. „A study on detecting water vapor profile using ground based microwave radiometer and cloud radar“. In 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2017. http://dx.doi.org/10.1109/igarss.2017.8128044.
Der volle Inhalt der QuelleDi Paola, F., A. Cersosimo, D. Cimini, D. Gallucci, S. Gentile, E. Geraldi, S. T. Nilo, E. Ricciardelli, F. Romano und M. Viggiano. „Retrieval of Temperature and Water Vapor Vertical Profile from ATMS Measurements with Random Forests Technique“. In IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2018. http://dx.doi.org/10.1109/igarss.2018.8518198.
Der volle Inhalt der QuelleBlankenship, Clay B. „Validation of AMSU-B water vapor profile retrievals with GOES infrared observations in the 6.5-micron band“. In Fourth International Asia-Pacific Environmental Remote Sensing Symposium 2004: Remote Sensing of the Atmosphere, Ocean, Environment, and Space, herausgegeben von Gail Skofronick Jackson und Seiho Uratsuka. SPIE, 2004. http://dx.doi.org/10.1117/12.578956.
Der volle Inhalt der QuelleCuccol, Fabrizio, und Luca Facheris. „Multi-band NDSA measurements between two counter-rotating LEO satellites for estimating the tropospheric water vapor profile“. In IGARSS 2010 - 2010 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2010. http://dx.doi.org/10.1109/igarss.2010.5649261.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Water vapor profile"
Jensen, M., und D. Troyan. Continuous Water Vapor Profiles for the Fixed Atmospheric Radiation Measurement Sites. Office of Scientific and Technical Information (OSTI), Januar 2006. http://dx.doi.org/10.2172/948517.
Der volle Inhalt der QuelleEdgeworth R. Westwater und Yong Han. Progress report of FY 1998 activities: The application of Kalman filtering to derive water vapor profiles from combined ground-based sensors: Raman lidar, microwave radiometers, GPS, and radiosondes. Office of Scientific and Technical Information (OSTI), Oktober 1999. http://dx.doi.org/10.2172/762790.
Der volle Inhalt der QuelleEdgeworth R. Westwater und Yong Han. Progress report of FY 1997 activities: The application of Kalman filtering to derive water vapor profiles from combined ground-based sensors: Raman lidar, microwave radiometers, GPS, and radiosondes. Office of Scientific and Technical Information (OSTI), Oktober 1997. http://dx.doi.org/10.2172/762791.
Der volle Inhalt der QuelleEdgeworth R. Westwater und Yong Han. Progress report of FY 1999 activities: The application of Kalman filtering to derive water vapor profiles from combined ground-based sensors: Raman lidar, microwave radiometers, GPS, and radiosondes. Office of Scientific and Technical Information (OSTI), September 1999. http://dx.doi.org/10.2172/762789.
Der volle Inhalt der Quelle