Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Water-fat MRI“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Water-fat MRI" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Water-fat MRI"
Schick, Fritz. „Fat and water selective MRI“. Zeitschrift für Medizinische Physik 27, Nr. 1 (März 2017): 1–3. http://dx.doi.org/10.1016/j.zemedi.2017.01.003.
Der volle Inhalt der QuelleVasanawala, Shreyas S., Ananth J. Madhuranthakam, Ramesh Venkatesan, Arvind Sonik, Peng Lai und Anja C. S. Brau. „Volumetric fat-water separated T2-weighted MRI“. Pediatric Radiology 41, Nr. 7 (18.01.2011): 875–83. http://dx.doi.org/10.1007/s00247-010-1963-5.
Der volle Inhalt der QuelleTaviani, Valentina, Diego Hernando, Christopher J. Francois, Ann Shimakawa, Karl K. Vigen, Scott K. Nagle, Mark L. Schiebler, Thomas M. Grist und Scott B. Reeder. „Whole-heart chemical shift encoded water-fat MRI“. Magnetic Resonance in Medicine 72, Nr. 3 (01.11.2013): 718–25. http://dx.doi.org/10.1002/mrm.24982.
Der volle Inhalt der QuelleAndersson, Thord, Thobias Romu, Anette Karlsson, Bengt Norén, Mikael F. Forsgren, Örjan Smedby, Stergios Kechagias et al. „Consistent intensity inhomogeneity correction in water-fat MRI“. Journal of Magnetic Resonance Imaging 42, Nr. 2 (30.10.2014): 468–76. http://dx.doi.org/10.1002/jmri.24778.
Der volle Inhalt der QuelleJacob, M., und B. P. Sutton. „Algebraic Decomposition of Fat and Water in MRI“. IEEE Transactions on Medical Imaging 28, Nr. 2 (Februar 2009): 173–84. http://dx.doi.org/10.1109/tmi.2008.927344.
Der volle Inhalt der QuellePicaud, Julien, Guylaine Collewet und Jérôme Idier. „Quantification of mass fat fraction in fish using water–fat separation MRI“. Magnetic Resonance Imaging 34, Nr. 1 (Januar 2016): 44–50. http://dx.doi.org/10.1016/j.mri.2015.10.004.
Der volle Inhalt der QuelleSalvati, Roberto, Eric Hitti, Jean-Jacques Bellanger, Hervé Saint-Jalmes und Giulio Gambarota. „Fat ViP MRI: Virtual Phantom Magnetic Resonance Imaging of water–fat systems“. Magnetic Resonance Imaging 34, Nr. 5 (Juni 2016): 617–23. http://dx.doi.org/10.1016/j.mri.2015.12.002.
Der volle Inhalt der QuelleJoshi, Anand A., Houchun H. Hu, Richard M. Leahy, Michael I. Goran und Krishna S. Nayak. „Automatic intra-subject registration-based segmentation of abdominal fat from water-fat MRI“. Journal of Magnetic Resonance Imaging 37, Nr. 2 (25.09.2012): 423–30. http://dx.doi.org/10.1002/jmri.23813.
Der volle Inhalt der QuelleNardo, Lorenzo, Dimitrios C. Karampinos, Drew A. Lansdown, Julio Carballido-Gamio, Sonia Lee, Roberto Maroldi, C. Benjamin Ma, Thomas M. Link und Roland Krug. „Quantitative assessment of fat infiltration in the rotator cuff muscles using water-fat MRI“. Journal of Magnetic Resonance Imaging 39, Nr. 5 (24.09.2013): 1178–85. http://dx.doi.org/10.1002/jmri.24278.
Der volle Inhalt der QuelleGifford, Aliya, Joel Kullberg, Johan Berglund, Filip Malmberg, Katie C. Coate, Phillip E. Williams, Alan D. Cherrington, Malcolm J. Avison und E. Brian Welch. „Canine body composition quantification using 3 tesla fat-water MRI“. Journal of Magnetic Resonance Imaging 39, Nr. 2 (17.04.2013): 485–91. http://dx.doi.org/10.1002/jmri.24156.
Der volle Inhalt der QuelleDissertationen zum Thema "Water-fat MRI"
Cui, Chen. „MRI fat-water separation using graph search based methods“. Diss., University of Iowa, 2017. https://ir.uiowa.edu/etd/5740.
Der volle Inhalt der QuelleSaputra, Michael Wijaya. „Water and Fat Image Reconstruction from MRI Raw Multi Coil Data“. Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-372138.
Der volle Inhalt der QuelleMendoza, Michael A. „Water Fat Separation with Multiple-Acquisition Balanced Steady-State Free Precession MRI“. BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/4304.
Der volle Inhalt der QuelleHuang, Fangping. „Water and Fat Image Reconstruction in Magnetic Resonance Imaging“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1309791802.
Der volle Inhalt der QuelleMehemed, Taha Mohamed M. „Fat-Water Interface on Susceptibility-Weighted Imaging and Gradient-Echo Imaging: Comparison of Phantoms to Intracranial Lipomas“. Kyoto University, 2014. http://hdl.handle.net/2433/193572.
Der volle Inhalt der QuelleSalvati, Roberto. „Development of Magnetic Resonance Imaging (MRI) methods for in vivo quantification of lipids in preclinical models“. Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1B026/document.
Der volle Inhalt der QuelleObesity is associated with increased morbidity and mortality linked to many diseases, including type 2 diabetes, hypertension and disease nonalcoholic fatty liver. Recently, 1H magnetic resonance imaging (MRI) has emerged as the method of choice for non-invasive fat quantification. In this thesis, MRI methodologies were investigated for in vitro (MR phantoms) and in vivo (mice) measurements on a 4.7T preclinical scanner. Two algorithms of fat quantifications – the Dixon’s method and IDEAL algorithm – were considered. The performances of the IDEAL algorithm were analyzed as a function of tissue properties (T2*, fat fraction and fat spectral model), MRI acquisition parameters (echo times, number of echoes) and experimental parameters (SNR and field map). In phantoms, the standard approach of single-T2* IDEAL showed some limitations that could be overcome by optimizing the number of echoes. A novel method to determine the ground truth values of T2* of water and T2* of fat was here proposed. For in vivo measurements, different analyses were performed using the IDEAL algorithm in liver and muscle. Statistical analysis on ROI measurements showed that the optimal choice of the number of echoes was equal to three for fat quantification and six or more for T2* quantification. The fat fraction values, calculated with IDEAL algorithm, were statistically similar to the values obtained with Dixon’s method. Finally, a method for generating reference signals mimicking fat-water systems (Fat Virtual Phantom MRI), without using physical objects, was proposed. These virtual phantoms, which display realistic noise characteristics, represent an attractive alternative to physical phantoms for providing a reference signal in MRI measurements
Palosaari, K. (Kari). „Quantitative and semiquantitative imaging techniques in detecting joint inflammation in patients with rheumatoid arthritis:phase-shift water-fat MRI method for fat suppression at 0.23 T, contrast-enhanced dynamic and static MRI, and quantitative 99mTc-nanocolloid scintigraphy“. Doctoral thesis, University of Oulu, 2008. http://urn.fi/urn:isbn:9789514288623.
Der volle Inhalt der QuelleBerglund, Johan. „Separation of Water and Fat Signal in Magnetic Resonance Imaging : Advances in Methods Based on Chemical Shift“. Doctoral thesis, Uppsala universitet, Enheten för radiologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-158111.
Der volle Inhalt der QuelleBelbaisi, Adham. „Deep Learning-Based Skeleton Segmentation for Analysis of Bone Marrow and Cortical Bone in Water-Fat Magnetic Resonance Imaging“. Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297528.
Der volle Inhalt der QuelleJohnson, David Herbert. „Phenotyping Rodent Models of Obesity Using Magnetic Resonance Imaging“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1250086728.
Der volle Inhalt der QuelleBuchteile zum Thema "Water-fat MRI"
Horowitz, Alfred L. „Fat and Water“. In MRI Physics for Radiologists, 161–70. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-0785-6_19.
Der volle Inhalt der QuelleHorowitz, Alfred L. „Fat and Water“. In MRI Physics for Radiologists, 166–77. New York, NY: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4684-0428-9_17.
Der volle Inhalt der QuelleGlocker, Ben, Ender Konukoglu, Ioannis Lavdas, Juan Eugenio Iglesias, Eric O. Aboagye, Andrea G. Rockall und Daniel Rueckert. „Correction of Fat-Water Swaps in Dixon MRI“. In Lecture Notes in Computer Science, 536–43. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46726-9_62.
Der volle Inhalt der QuelleZhao, Liang, Yiqiang Zhan, Dominik Nickel, Matthias Fenchel, Berthold Kiefer und Xiang Sean Zhou. „Identification of Water and Fat Images in Dixon MRI Using Aggregated Patch-Based Convolutional Neural Networks“. In Patch-Based Techniques in Medical Imaging, 125–32. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47118-1_16.
Der volle Inhalt der QuelleLee, Christine U., und James F. Glockner. „Case 11.8“. In Mayo Clinic Body MRI Case Review, herausgegeben von Christine U. Lee und James F. Glockner, 544. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199915705.003.0286.
Der volle Inhalt der QuelleLee, Christine U., und James F. Glockner. „Case 17.31“. In Mayo Clinic Body MRI Case Review, herausgegeben von Christine U. Lee und James F. Glockner, 847–48. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199915705.003.0449.
Der volle Inhalt der QuelleLee, Christine U., und James F. Glockner. „Case 17.17“. In Mayo Clinic Body MRI Case Review, herausgegeben von Christine U. Lee und James F. Glockner, 821–22. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199915705.003.0435.
Der volle Inhalt der QuelleLee, Christine U., und James F. Glockner. „Case 15.8“. In Mayo Clinic Body MRI Case Review, herausgegeben von Christine U. Lee und James F. Glockner, 741. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199915705.003.0391.
Der volle Inhalt der QuelleLee, Christine U., und James F. Glockner. „Case 15.6“. In Mayo Clinic Body MRI Case Review, herausgegeben von Christine U. Lee und James F. Glockner, 739. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199915705.003.0389.
Der volle Inhalt der QuelleLee, Christine U., und James F. Glockner. „Case 15.7“. In Mayo Clinic Body MRI Case Review, herausgegeben von Christine U. Lee und James F. Glockner, 740. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199915705.003.0390.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Water-fat MRI"
Xu, Jing, Xiaofei Hu, Haiying Tang, Richard Kennan und Karim Azer. „Water-Fat Decomposition by IDEAL-MRI With Phase Estimation: A Method to Determine Chemical Contents In Vivo“. In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19296.
Der volle Inhalt der QuelleTisdall, M. Dylan, und M. Stella Atkins. „Fat/water separation in a single MRI image with arbitrary phase shift“. In Medical Imaging, herausgegeben von Michael J. Flynn und Jiang Hsieh. SPIE, 2006. http://dx.doi.org/10.1117/12.655128.
Der volle Inhalt der QuelleShen, Chenfei, Huajun She und Yiping Du. „Improved Robustness in Water-Fat Separation in MRI using Conditional Adversarial Networks“. In ICBBE '20: 2020 7th International Conference on Biomedical and Bioinformatics Engineering. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3444884.3444891.
Der volle Inhalt der QuellePicaud, Julien, Guylaine Collewet und Jerome Idier. „Correction of RF inhomogeneities for high throughput water and fat quantification by MRI“. In 2015 International Conference on Image Processing Theory, Tools and Applications (IPTA). IEEE, 2015. http://dx.doi.org/10.1109/ipta.2015.7367176.
Der volle Inhalt der QuellePirogov, Yuri A., Nikolai V. Anisimov und Leonid V. Gubski. „3D visualization of pathological forms from MRI data obtained with simultaneous water and fat signal suppression“. In Medical Imaging 2003, herausgegeben von Martin J. Yaffe und Larry E. Antonuk. SPIE, 2003. http://dx.doi.org/10.1117/12.479767.
Der volle Inhalt der QuelleDing, J., PA Thompson, Y. Gao, MT Marron, BC Wertheim, MI Altbach, J.-P. Galons et al. „Abstract P3-02-03: Accurate and reliable automated breast density measurements with no ionizing radiation using fat-water decomposition MRI“. In Abstracts: 2016 San Antonio Breast Cancer Symposium; December 6-10, 2016; San Antonio, Texas. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.sabcs16-p3-02-03.
Der volle Inhalt der QuelleOng, Henry H., Corey D. Webb, Marnie L. Gruen, Alyssa H. Hasty, John C. Gore und E. B. Welch. „Fat-water MRI is sensitive to local adipose tissue inflammatory changes in a diet-induced obesity mouse model at 15T“. In SPIE Medical Imaging, herausgegeben von Barjor Gimi und Robert C. Molthen. SPIE, 2015. http://dx.doi.org/10.1117/12.2082333.
Der volle Inhalt der QuelleDing, J., PA Thompson, BC Wertheim, DJ Roe, MT Marron, MI Altbach, J.-P. Galons et al. „Abstract P6-09-19: Breast density change at 6 months is associated with change at 12 months as measured by fat-water decomposition MRI in women on tamoxifen“. In Abstracts: 2016 San Antonio Breast Cancer Symposium; December 6-10, 2016; San Antonio, Texas. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.sabcs16-p6-09-19.
Der volle Inhalt der Quelle