Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Water column“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Water column" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Water column"
Jasron, Jahirwan Ut, Sudjito Soeparmani, Lilis Yuliati und Djarot B. Darmadi. „Comparison of the performance of oscillating water column devices based on arrangements of water columns“. Journal of Mechanical Engineering and Sciences 14, Nr. 3 (28.09.2020): 7082–93. http://dx.doi.org/10.15282/jmes.14.3.2020.10.0555.
Der volle Inhalt der QuelleIgra, D., und K. Takayama. „Experimental Investigation of Two Cylindrical Water Columns Subjected to Planar Shock Wave Loading“. Journal of Fluids Engineering 125, Nr. 2 (01.03.2003): 325–31. http://dx.doi.org/10.1115/1.1538628.
Der volle Inhalt der QuelleDurkee, John B. „The Water Column“. Metal Finishing 105, Nr. 9 (September 2007): 57–59. http://dx.doi.org/10.1016/s0026-0576(07)80221-2.
Der volle Inhalt der QuelleBauer, Rachel, Paul Pitzel, Emily Johnson und Catherine Johnson. „Water-Cased Kicker Charges for Use in Explosive Demolition“. Buildings 13, Nr. 2 (29.01.2023): 378. http://dx.doi.org/10.3390/buildings13020378.
Der volle Inhalt der QuelleTakahashi, Hisayuki, und Masayasu Tanaka. „Statistical Analysis for Comparison of the Results Obtained by Capillary Columns and Packed Columns in the Determination of Water Yield in Smoke Condensates Analyzed in Cigarettes for the 24th Asia Collaborative Study“. Beiträge zur Tabakforschung International/Contributions to Tobacco Research 29, Nr. 2 (25.09.2020): 97–118. http://dx.doi.org/10.2478/cttr-2020-0010.
Der volle Inhalt der QuelleZhang, Zhen Peng, Jin Qiu Shao, Xue Yan Sun und Hui Jun Liu. „Simulation of Soil Water and Salt Transport with Sand Column in Coastal Saline Soil Based on COMSOL“. Applied Mechanics and Materials 614 (September 2014): 668–71. http://dx.doi.org/10.4028/www.scientific.net/amm.614.668.
Der volle Inhalt der QuelleMaimon, Dan. „Oscillating water column plant“. Analele Universităţii "Dunărea de Jos" din Galaţi Fascicula XI Construcţii navale/ Annals of "Dunărea de Jos" of Galati Fascicle XI Shipbuilding 44 (03.12.2021): 47–50. http://dx.doi.org/10.35219/annugalshipbuilding/2021.44.07.
Der volle Inhalt der QuelleWinton, Michael. „Polar Water Column Stability“. Journal of Physical Oceanography 29, Nr. 6 (Juni 1999): 1368–71. http://dx.doi.org/10.1175/1520-0485(1999)029<1368:pwcs>2.0.co;2.
Der volle Inhalt der QuelleBader, Amjed M., Dhia A. Alazawi, Hussain J. M. Al-Alkawi und Saad T. Faris. „Effect of shot peening on the critical buckling load of stainless steel 304 columns immersed in sea water“. Curved and Layered Structures 9, Nr. 1 (01.01.2022): 442–50. http://dx.doi.org/10.1515/cls-2022-0181.
Der volle Inhalt der QuelleRaeva, V. M., und O. V. Gromova. „Separation of water – formic acid – acetic acid mixtures in the presence of sulfolane“. Fine Chemical Technologies 14, Nr. 4 (15.09.2019): 24–32. http://dx.doi.org/10.32362/2410-6593-2019-14-4-24-32.
Der volle Inhalt der QuelleDissertationen zum Thema "Water column"
Verspecht, Florence. „Temporal dynamics of the coastal water column“. University of Western Australia. School of Environmental Systems Engineering, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0097.
Der volle Inhalt der QuelleColtman, Kenna Maria. „Water table management effects on water quality: a soil column study“. The Ohio State University, 1992. http://rave.ohiolink.edu/etdc/view?acc_num=osu1195165287.
Der volle Inhalt der QuelleColtman, Kenna Marie. „Water table management effects on water quality : a soil column study /“. Connect to resource, 1992. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1195165287.
Der volle Inhalt der QuelleDiedrich, Hannes [Verfasser]. „Observation of Total Column Water Vapour / Hannes Diedrich“. Berlin : Freie Universität Berlin, 2016. http://d-nb.info/1109790406/34.
Der volle Inhalt der QuelleMunson, Kathleen M. (Kathleen May). „Transformations of mercury in the marine water column“. Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/87513.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references.
Methylation of mercury (Hg) in the marine water column has been hypothesized to serve as the primary source of the bioaccumulating chemical species monomethylmercury (MMHg) to marine food webs. Despite decades of research describing mercury methylation in anoxic sediments by anaerobic bacteria, mechanistic studies of water column methylation are severely limited. These essential studies have faced analytical challenges associated with quantifying femtomolar concentrations of the methylated Hg species dimethylmercury (DMHg) and MMHg in marine systems. In addition, the complex biogeochemical cycling of Hg in natural systems require consideration of gaseous, dissolved, and particulate species of Hg in order to probe potential controls on its ultimate transfer into marine food webs. The presented work provides a comprehensive study of Hg chemical speciation and transformations in Tropical Pacific waters. We developed an analytical method for MMHg determination from seawater that has the potential to ease measurements of MMHg distributions, as well as mechanistic studies of Hg species transformations. We used this method, in addition to previously established methods, to measure dissolved and particulate Hg species distributions and fluxes along a transect of the Pacific Ocean. Over significant gradients in oxygen utilization and primary productivity, we observed a region of methylated Hg species focused in the Equatorial Pacific that appeared spatially separated from higher concentrations in North Pacific Intermediate Waters. From the first full water column depth profiles of this region, we also observed the intrusion of elevated Hg into deep waters of the Equatorial and South Pacific Ocean. In addition we observed substantial potential rates of mercury methylation in subsurface and low oxygen waters along the Pacific transect as well as the Sargasso Sea using Hg isotope tracers. We observed dynamic production and decomposition of methylated Hg in low productivity waters, despite low ambient methylated Hg concentrations. From the addition of bulk organic matter as well as individual compounds important for methylation in anaerobic bacteria, we observe no simple limitation of Hg methylation in marine waters but highly dynamic conversion of Hg between methylated and inorganic species.
by Kathleen M. Munson.
Ph. D.
Magagna, Davide. „Oscillating water column wave pump : a wave energy converter for water delivery“. Thesis, University of Southampton, 2011. https://eprints.soton.ac.uk/349009/.
Der volle Inhalt der QuelleWheeler, Jeanette Danielle. „Behavioral responses of invertebrate larvae to water column cues“. Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/103337.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 139-150).
Many benthic marine invertebrates have two-phase life histories, relying on planktonic larval stages for dispersal and exchange of individuals between adult populations. Historically, larvae were considered passive drifters in prevailing ocean currents. More recently, however, the paradigm has shifted toward active larval behavior mediating transport in the water column. Larvae in the plankton encounter a variety of physical, chemical, and biological cues, and their behavioral responses to these cues may directly impact transport, survival, settlement, and successful recruitment. In this thesis, I investigated the effects of turbulence, light, and conspecific adult exudates on larval swimming behavior. I focused on two invertebrate species of distinct morphologies: the purple urchin Arbacia punctulata, which was studied in pre-settlement planktonic stages, and the Eastern oyster Crassostrea virginica, which was studied in the competent-to-settle larval stage. From this work, I developed a conceptual framework within which larval behavior is understood as being driven simultaneously by external environmental cues and by larval age. As no a priori theory for larval behavior is derivable from first principles, it is only through experimental work that we are able to access behaviors and tie them back to specific environmental triggers. In this work, I studied the behavioral responses of larvae at the individual level, but those dynamics are likely playing out at larger scales in the ocean, impacting population connectivity, community structure, and resilience. In this way, my work represents progress in understanding how the ocean environment and larval behavior couple to influence marine ecological processes.
by Jeanette Danielle Wheeler.
Ph. D.
Kooverji, Bavesh. „Pneumatic power measurement of an oscillating water column converter“. Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86662.
Der volle Inhalt der QuelleENGLISH ABSTRACT: A measurement device was developed to accurately determine the pneumatic power performance of an Oscillating Water Column (OWC) model in a wave flume. The analysis of the pneumatic power is significant due to the wave-topneumatic energy being the primary energy conversion process and where the most energy losses can be expected. The aim of the research study is to address the accurate pneumatic power measurement of unsteady and bidirectional airflow in OWC model experiments. The two fundamental measurements required for the pneumatic power measurement are the pressure difference over an orifice on the OWC model and the volumetric flow rate of air through the outlet. The designed, constructed and assembled measurement device comprised of a venturi flow meter, containing a hot-film anemometer, which could measure the pressure drop and the volumetric flow rate in one device. The assembled pneumatic power measurement device was calibrated in a vertical wind tunnel at steady state. The results from the calibration tests showed that the volumetric flow rate measurements from the pneumatic power measurement device was accurate to within 3 % of the wind tunnel’s readings. The pneumatic power measurement device was incorporated onto a constructed Perspex physical model of a simple OWC device. This assembled system was used as the test unit in the wave flume at Stellenbosch University (SUN). The results from the experimental tests underwent comparative analysis with three analytical OWC air-flow models which were simulated as three scenarios using Matlab Simulink. These results showed that the measurement device has the ability to measure the pneumatic power but there is difficulty in modelling the complex air-flow system of the OWC device. This results in varying levels of agreement between the experimental and simulated pneumatic power results. The research study has revealed that there is difficulty in designing an accurate device for a wide range of test parameters due to the variance in output values. The unsteady and bidirectional nature of the air flow is also difficult to accurately simulate using a one-dimensional analytical model. Recommendations for further investigation are for CFD systems to be used for the analysis of the air-flow in an OWC system and to be used to validate future pneumatic power measurement devices.
AFRIKAANSE OPSOMMING: ‘n Meetinstrument was ontwikkel om die pneumatiese kraglewering van ‘n model van die Ossillerende Water Kolom (OWK) golfenergie omsetter in ‘n golf tenk akkuraat te meet. Dit is belangrik om die omskakeling van golf na pneumatiese energie te analiseer siende dat die grootste energieverlies in dié proses plaasvind. Die doel van hierdie navorsingsprojek was om die akkurate pneumatiese kragmeting van variërende en twee-rigting vloei van lug in ‘n OWK model na te vors. Die twee fundamentele metings wat benodig word vir die pneumatiese kragbepaling is die drukverskil oor die vloei vernouing en die volumetriese vloeitempo van lug deur die uitlaat van die toetstoestel. Die spesiaal ontwerpte meettoestel wat gebruik is in die eksperiment het bestaan uit ‘n venturi vloeimeter wat ‘n verhitte-film anemometer bevat het wat die drukverandering en die volumetriese vloeitempo kan meet in ‘n enkele instrument. Die pneumatiese kragmeting was gekalibreer in ‘n vertikale windtonnel waarin ‘n konstante vloei tempo geïnduseer was. Die kalibrasieproses het bevestig dat die meettoestel metings lewer met ‘n fout van minder as 3 % wanneer dit vergelyk word met die bekende konstante vloei tempo soos bepaal in die windtonnel. ‘n Fisiese model van ‘n vereenvoudigde OWK golfenergie omsetter was ontwerp en gebou uit Perspex om as toetstoestel te gebruik vir die evaluering van die ontwerpte pneumatiese kraglewering meettoestel. Die toetse was uitgevoer in ‘n golftenk by die Universiteit Stellenbosch (SUN). The toetsresultate was vergelyk met drie ander OWK lugvloei modelle wat gesimuleer was deur om die analitiese modelle op te stel en te simuleer in Matlab Simulink. Die vergelyking van modellering resultate het gewys dat die meettoestel die vermoë het om pneumatiese krag te meet. Daar was wel komplikasies met die modellering van die komplekse lugvloei in die OWK toestel, die resultate het geen definitiewe ooreenstemming gewys tussen die eksperimentele en gesimuleerde pneumatiese krag resultate nie. Die navorsingsprojek het gewys dat daar komplikasies is om ‘n enkel toestel te ontwerp wat oor ‘n wye bereik kan meet weens die variasie van die verskillende parameters. Die variërende en twee-rigting lugvloei is ook moeilik om akkuraat te simuleer met ‘n een-dimensionele analitiese simulasie model. Aanbevelings vir verdere navorsing sluit in om die lugvloei in die OWK stelsel te modelleer en te analiseer in ‘n drie-dimensionele model om die lesings van ‘n pneumatiese krag meettoestel te bevestig.
Perdigão, José Nuno Bebiano Mesquita de Azeredo. „Reactive-control strategies for an oscillating-water-column device“. Phd thesis, Instituições portuguesas -- UTL-Universidade Técnica de Lisboa -- IST-Instituto Superior Técnico -- -Departamento de Engenharia Mecânica, 1998. http://dited.bn.pt:80/29667.
Der volle Inhalt der QuelleFalconer, Haley Ryanne Watson. „Column filter studies phosphorus removal using biogenic iron oxides /“. Pullman, Wash. : Washington State University, 2009. http://www.dissertations.wsu.edu/Thesis/Fall2009/H_Falconer_100709.pdf.
Der volle Inhalt der QuelleTitle from PDF title page (viewed on Jan. 12, 2010). "Department of Civil and Environmental Engineering." Includes bibliographical references (p. 52-53).
Bücher zum Thema "Water column"
Neretin, Lev N., Hrsg. Past and Present Water Column Anoxia. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4297-3.
Der volle Inhalt der QuelleJanzen, Carol D. Marine water column ambient monitoring plan: Final report. Olympia, Wash: Washington State Dept. of Ecology, Environmental Investigations and Laboratory Services Program, Ambient Monitoring Section, 1992.
Den vollen Inhalt der Quelle findenJanzen, Carol D. Marine water column ambient monitoring plan: Final report. Olympia, Wash: Washington State Dept. of Ecology, Environmental Investigations and Laboratory Services Program, Ambient Monitoring Section, 1992.
Den vollen Inhalt der Quelle findenNewton, J. A. Marine water column ambient monitoring program: Wateryear 1993 data report. Olympia, Wash: Washington State Dept. of Ecology, Environmental Investigations and Laboratory Services Program, Ambient Monitoring Program, 1994.
Den vollen Inhalt der Quelle findenNewton, J. A. Marine water column ambient monitoring program: Wateryear 1993 data report. Olympia, Wash: Washington State Dept. of Ecology, Environmental Investigations and Laboratory Services Program, Ambient Monitoring Program, 1994.
Den vollen Inhalt der Quelle findenKing, Linda L. Chlorophyll diagenesis in the water column and sediments of the Black Sea. Woods Hole, Ma: Woods Hole Oceanographic Institution, 1993.
Den vollen Inhalt der Quelle findenJanzen, Carol D. Marine water column ambient monitoring program: Annual report for wateryear 1991 : final report. Olympia, Wash: Washington State Dept. of Ecology, Environmental Investigations and Laboratory Services Program, Ambient Monitoring Section, 1993.
Den vollen Inhalt der Quelle findenJanzen, Carol D. Marine water column ambient monitoring program: Annual report for wateryear 1991 : final report. Olympia, Wash: Washington State Dept. of Ecology, Environmental Investigations and Laboratory Services Program, Ambient Monitoring Section, 1993.
Den vollen Inhalt der Quelle findenNeretin, Lev N. Past and Present Water Column Anoxia. Springer, 2008.
Den vollen Inhalt der Quelle findenEnel-Cris, Milan. Hydraulic Transients with Water Column Separation. IAHR Secretariat, 2000.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Water column"
Lurton, Xavier. „Water column applications“. In An Introduction to Underwater Acoustics, 271–322. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13835-5_7.
Der volle Inhalt der QuelleCooney, Robert T., und Kenneth O. Coyle. „Water column production“. In Environmental Studies in Port Valdez, Alaska: A Basis for Management, 93–115. Washington, D. C.: American Geophysical Union, 1988. http://dx.doi.org/10.1029/ln024p0093.
Der volle Inhalt der QuelleLung, Wu-Seng. „Water Column Kinetics II: Toxic Substances“. In Water Quality Modeling, 103–31. New York: CRC Press, 2021. http://dx.doi.org/10.1201/9781003208969-5.
Der volle Inhalt der QuelleChester, Roy. „Descriptive oceanography: water column parameters“. In Marine Geochemistry, 195–232. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-010-9488-7_7.
Der volle Inhalt der QuelleLung, Wu-Seng. „Water Column Kinetics I: Dissolved Oxygen and Eutrophication“. In Water Quality Modeling, 43–102. New York: CRC Press, 2021. http://dx.doi.org/10.1201/9781003208969-4.
Der volle Inhalt der QuelleZhang, Zh. „Rigid Water Column Theory and Applications“. In Hydraulic Transients and Computations, 77–102. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40233-4_4.
Der volle Inhalt der QuelleZhang, Zh. „Elastic Water Column Theory and Fundamentals“. In Hydraulic Transients and Computations, 125–29. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40233-4_6.
Der volle Inhalt der QuelleKiørboe, Thomas. „Material flux in the water column“. In Eutrophication in Coastal Marine Ecosystems, 67–94. Washington, D. C.: American Geophysical Union, 1996. http://dx.doi.org/10.1029/ce052p0067.
Der volle Inhalt der QuelleWang, Rongquan, Dezhi Ning und Robert Mayon. „Oscillating water column wave energy converters“. In Modelling and Optimisation of Wave Energy Converters, 233–58. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003198956-7.
Der volle Inhalt der QuelleAlligant, Soline, Johnny Gasperi, Aline Gangnery, Frank Maheux, Benjamin Simon, Marie-Pierre Halm-Lemille, Maria El Rakwe, Catherine Dreanno, Jérôme Cachot und Bruno Tassin. „Microplastic Contamination of Sediment and Water Column in the Seine River Estuary“. In Springer Water, 4–9. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45909-3_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Water column"
Morrison, Iain G., und Clive A. Greated. „Oscillating Water Column Modelling“. In 23rd International Conference on Coastal Engineering. New York, NY: American Society of Civil Engineers, 1993. http://dx.doi.org/10.1061/9780872629332.037.
Der volle Inhalt der QuelleIgra, D., und K. Takayama. „Study of Two Cylindrical Water Columns Subjected to Planar Shock Wave Loading“. In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2044.
Der volle Inhalt der QuelleMINZATU, VASILE, ADINA NEGREA, CORNELIU MIRCEA DAVIDESCU, CORINA SEIMAN DUDA, MIHAELA CIOPEC, NARCIS DUŢEANU, PETRU NEGREA, DANIEL DUDA SEIMAN und BOGDAN IOAN PASCU. „ARSENIC ADSORPTION INTO THE FIXED BED COLUMN FROM DRINKING GROUNDWATER“. In WATER POLLUTION 2018. Southampton UK: WIT Press, 2018. http://dx.doi.org/10.2495/wp180111.
Der volle Inhalt der QuelleGarrido, Izaskun, Aitor J. Garrido, Jon Lekube, Erlantz Otaola und Edorta Carrascal. „Oscillating water column control and monitoring“. In OCEANS 2016 MTS/IEEE Monterey. IEEE, 2016. http://dx.doi.org/10.1109/oceans.2016.7761420.
Der volle Inhalt der QuellePradeep, Arjun, Anil Kumar Sharma, M. P. Rajiniganth, N. Malathi, M. Sivaramakrishna, D. Ponraju, B. K. Nashine und P. Selvaraj. „BUBBLE RISE DYNAMICS IN WATER COLUMN“. In Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017). Connecticut: Begellhouse, 2018. http://dx.doi.org/10.1615/ihmtc-2017.990.
Der volle Inhalt der QuelleFalcão, A. F. O. „Overview on Oscillating Water Column Devices“. In Floating Offshore Energy Devices. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901731-1.
Der volle Inhalt der QuelleOlivero, S., S. G. J. Heijman, J. P. A. Custers, G. Dascola und L. C. Rietveld. „Thermosensitive demineralization hydrogel for water softening: preliminary batch and column experiments“. In WATER AND SOCIETY 2011. Southampton, UK: WIT Press, 2011. http://dx.doi.org/10.2495/ws110301.
Der volle Inhalt der QuelleMarouchos, Andreas, Brett Muir, Russ Babcock und Matthew Dunbabin. „A shallow water AUV for benthic and water column observations“. In OCEANS 2015 - Genova. IEEE, 2015. http://dx.doi.org/10.1109/oceans-genova.2015.7271362.
Der volle Inhalt der QuelleLi, Y., C. h. Huang, L. Zhu und Y. Zhang. „Evaluating Soil Compaction on Leaching of Water and Nitrogen: Column Experiments and Simulation“. In Water Resource Management. Calgary,AB,Canada: ACTAPRESS, 2010. http://dx.doi.org/10.2316/p.2010.686-067.
Der volle Inhalt der QuelleBright, D., C. E. Jones und J. I. Selvage. „Solving Water Column Statics with Seismic Oceanography“. In 77th EAGE Conference and Exhibition 2015. Netherlands: EAGE Publications BV, 2015. http://dx.doi.org/10.3997/2214-4609.201412959.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Water column"
Gang, C. Y., J. Y. Lee und T. W. Ko. Water column study. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2016. http://dx.doi.org/10.4095/297875.
Der volle Inhalt der QuelleKim, M., T. S. Rhee und Y. S. Choi. Water column study. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2018. http://dx.doi.org/10.4095/308406.
Der volle Inhalt der QuelleMaassel, Paul W., Richard Schaffer, Sean Cullen, Gerry Stueve, Chris Scannell, Joseph Collins und Nicholas Kim. Improving the Water Column Representation. Fort Belvoir, VA: Defense Technical Information Center, Januar 2006. http://dx.doi.org/10.21236/ada444555.
Der volle Inhalt der QuelleCopeland, Guild, Diana L. Bull, Richard Alan Jepsen und Margaret Ellen Gordon. Oscillating water column structural model. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1323379.
Der volle Inhalt der QuelleKester, Dana R. Water Column Variability in Coastal Regions. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada627825.
Der volle Inhalt der QuelleKester, Dana R. Water Column Variability in Coastal Regions. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada630867.
Der volle Inhalt der QuelleKester, Dana R. Water Column Variability in Coastal Regions. Fort Belvoir, VA: Defense Technical Information Center, Juni 2001. http://dx.doi.org/10.21236/ada389745.
Der volle Inhalt der QuelleHunter, J. A., P. J. Kurfurst und S. M. Birk. Water - Column Temperature, Salinity and Conductivity Measurements. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/132224.
Der volle Inhalt der QuelleGeyer, W. R., und Philip M. Gschwend. Sediment-Water Column Exchange of Toxic Organic Compounds. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada630295.
Der volle Inhalt der QuelleStallings, M. E. Influence of Water Addition on Crystalline Silicotitanate Column Operation. Office of Scientific and Technical Information (OSTI), September 2001. http://dx.doi.org/10.2172/786595.
Der volle Inhalt der Quelle