Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Water and gas permeability“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Water and gas permeability" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Water and gas permeability"
Wei, Gang, Kanghao Tan, Tenglong Liang und Yinghong Qin. „A Comparative Study on Water and Gas Permeability of Pervious Concrete“. Water 14, Nr. 18 (13.09.2022): 2846. http://dx.doi.org/10.3390/w14182846.
Der volle Inhalt der QuelleCui, Shuheng, Qilin Wu und Zixuan Wang. „Estimating the Influencing Factors of Gas–Water Relative Permeability in Condensate Gas Reservoirs under High-Temperature and High-Pressure Conditions“. Processes 12, Nr. 4 (03.04.2024): 728. http://dx.doi.org/10.3390/pr12040728.
Der volle Inhalt der QuelleTanikawa, W., und T. Shimamoto. „Klinkenberg effect for gas permeability and its comparison to water permeability for porous sedimentary rocks“. Hydrology and Earth System Sciences Discussions 3, Nr. 4 (07.07.2006): 1315–38. http://dx.doi.org/10.5194/hessd-3-1315-2006.
Der volle Inhalt der QuelleLei, Gang, Cai Wang, Zisen Wu, Huijie Wang und Weirong Li. „Theory study of gas–water relative permeability in roughened fractures“. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232, Nr. 24 (08.02.2018): 4615–25. http://dx.doi.org/10.1177/0954406218755185.
Der volle Inhalt der QuelleVillar, M. V., P. L. Martín, F. J. Romero, V. Gutiérrez-Rodrigo und J. M. Barcala. „Gas and water permeability of concrete“. Geological Society, London, Special Publications 415, Nr. 1 (14.11.2014): 59–73. http://dx.doi.org/10.1144/sp415.6.
Der volle Inhalt der QuelleWei, Benchi, Xiangrong Nie, Zonghui Zhang, Jingchen Ding, Reyizha Shayireatehan, Pengzhan Ning, Ding-tian Deng und Jiao Xiong. „Zoning Productivity Calculation Method of Fractured Horizontal Wells in High-Water-Cut Tight Sandstone Gas Reservoirs under Complex Seepage Conditions“. Processes 11, Nr. 12 (27.11.2023): 3308. http://dx.doi.org/10.3390/pr11123308.
Der volle Inhalt der QuelleLi, Qi, Li You Ye und Wei Guo An. „Gas Seepage Law in Condition of Bound Water of Low Permeability and Tight Sandstone Gas Reservoir“. Advanced Materials Research 1094 (März 2015): 385–88. http://dx.doi.org/10.4028/www.scientific.net/amr.1094.385.
Der volle Inhalt der QuelleZhang, Yurong, Shengxuan Xu, Zhaofeng Fang, Junzhi Zhang und Chaojun Mao. „Permeability of Concrete and Correlation with Microstructure Parameters Determined by 1H NMR“. Advances in Materials Science and Engineering 2020 (14.05.2020): 1–11. http://dx.doi.org/10.1155/2020/4969680.
Der volle Inhalt der QuelleLi, Yilong, Hao Yang, Xiaoping Li, Mingqing Kui und Jiqiang Zhang. „Experiments on Water-Gas Flow Characteristics under Reservoir Condition in a Sandstone Gas Reservoir“. Energies 16, Nr. 1 (21.12.2022): 36. http://dx.doi.org/10.3390/en16010036.
Der volle Inhalt der QuelleWang, Huimin, Jianguo Wang, Xiaolin Wang und Bowen Hu. „An Improved Relative Permeability Model for Gas-Water Displacement in Fractal Porous Media“. Water 12, Nr. 1 (19.12.2019): 27. http://dx.doi.org/10.3390/w12010027.
Der volle Inhalt der QuelleDissertationen zum Thema "Water and gas permeability"
Mulyadi, Henny. „Determination of residual gas staturation and gas-water relative permeability in water-driven gas reserviors /“. Full text available, 2002. http://adt.curtin.edu.au/theses/available/adt-WCU20030702.131009.
Der volle Inhalt der QuelleMulyadi, Henny. „Determination of residual gas saturation and gas-water relative permeability in water-driven gas reservoirs“. Thesis, Curtin University, 2002. http://hdl.handle.net/20.500.11937/1294.
Der volle Inhalt der QuelleMulyadi, Henny. „Determination of residual gas saturation and gas-water relative permeability in water-driven gas reservoirs“. Curtin University of Technology, Department of Petroleum Engineering, 2002. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=12957.
Der volle Inhalt der Quellewere compared.The evidence suggested that steady-state displacement and co-current imbibition tests are the most representative techniques for reservoir application. Steady-state displacement also yields the complete relative permeability (RP) data but it requires long stabilisation times and is costly.In the third stage, a new technique was successfully developed for determining both Sgr and gas-water RP data. The new method consists of an initial co-current imbibition experiment followed by the newly developed correlation (Mulyadi, Amin and Kennaird correlation). Co-current imbibition is used to measure the end-point data, for example, initial water saturation (Swi) and Sgr. The MAK correlation was developed to extend the co-current imbibition test by generating gas-water relative permeability data. Unlike previous correlations, MAK correlation is unique because it incorporates and exhibits the formation properties, reservoir conditions and fluid properties (for example, permeability, porosity, interfacial tension and gas density) to generate the RP curves. The accuracy and applicability of MAK correlations were investigated with several sets of gas-water RP data measured by steady-state displacement tests for various gas reservoirs in Australia, New Zealand, South-East Asia and U.S.A. The MAK correlation proved superior to previously developed correlations to demonstrate its robustness.The purpose of the final stage was to aggressively pursue the possibility of advancing the application of the new technique beyond special core analysis (SCAL). As MAK correlation is successful in describing gas water RP in a core plug scale, it is possible to extend its application to describe the overall reservoir flow behaviour. This investigation was achieved by implementing MAK correlation into a 3-D reservoir simulator (MoReS) and performing simulations on a producing ++
field.The simulation studies were divided into two categories: pre and post upscaled application.The case studies were performed on two X gas-condensate fields: X1 (post upscaled) and X2 (pre upscaled) fields. Since MAK correlation was developed for gas-water systems, several modifications were required to account for the effect of the additional phase (oil) on gas and water RP in gas-condensate systems. In this case, oil RP data was generated by Corey's equations. Five different case studies were performed to investigate the individual and combination effect of implementing MAK correlation, alternative Swi and Sgr correlations and refining porosity and permeability clustering. Moreover, MAK correlation has proven to be effective as an approximation technique for cell by cell simulation to advance reservoir simulation technology.
Al-Kharusi, Badr Soud. „Relative permeability of gas-condensate near wellbore, and gas-condensate-water in bulk of reservoir“. Thesis, Heriot-Watt University, 2000. http://hdl.handle.net/10399/1098.
Der volle Inhalt der QuelleAl-Shajalee, Faaiz Hadi Rasheed. „Relative Permeability Modification in Gas Wells with Excessive Water Production- An Experimental Investigation“. Thesis, Curtin University, 2021. http://hdl.handle.net/20.500.11937/89365.
Der volle Inhalt der QuelleSidiq, Hiwa. „Advance water abatement in oil and gas reservoir“. Thesis, Curtin University, 2007. http://hdl.handle.net/20.500.11937/191.
Der volle Inhalt der QuelleSidiq, Hiwa. „Advance water abatement in oil and gas reservoir“. Curtin University of Technology, Department of Chemical Engineering, 2007. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=17578.
Der volle Inhalt der QuelleExperimentally confirmed, injecting chemicals sequentially provides better results for conformance control. The value of post treatment water mobility is conspicuously lowered by the method of applying injecting chemicals sequentially in comparison with the single chemical injection method. For instance, the residual resistance factor to water (Frrw) at the first cycle of brine flushing for this method is approximately five times higher than the Frrw obtained by injecting only one single chemical. Furthermore, for the second cycle of brine flushing Frrw is still higher by a ratio of about 2.5. In addition to this improvement residual resistance factor to oil Frro for this method is less than two which has been considered as the upper limit for conformance control in matrix reservoir. Accordingly injecting chemical sequentially can be applied for enhancing relative permeability modifier performance in matrix reservoir.
Sagbana, Perekaboere Ivy. „Effect of surfactant on three phase relative permeability in water-alternating-gas flooding experiment“. Thesis, London South Bank University, 2017. http://researchopen.lsbu.ac.uk/1848/.
Der volle Inhalt der QuelleCalisgan, Huseyin. „Comprehensive Modelling Of Gas Condensate Relative Permeability And Its Influence On Field Performance“. Phd thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606667/index.pdf.
Der volle Inhalt der Quelle1 gas well carbonate core plug sample, using a simple synthetic binary retrograde condensate fluid sample were conducted under reservoir conditions which corresponded to near miscible conditions. As a fluid system, the model of methanol/n-hexane system was used as a binary model that exhibits a critical point at ambient conditions. The interfacial tension by means of temperature and the flow rate were varied in the laboratory measurements. The laboratory experiments were repeated for the same conditions of interfacial tension and flow rate at immobile water saturation to observe the influence of brine saturation in gas condensate systems. The laboratory experiment results show a clear trend from the immiscible relative permeability to miscible relative permeability lines with decreasing interfacial tension and increasing velocity. So that, if the interfacial tension is high and the flow velocity is low, the relative permeability functions clearly curved, whereas the relative permeability curves straighten as a linear at lower values of the interfacial tension and higher values of the flow velocity. The presence of the immobile brine saturation in the porous medium shows the same shape of behavior for relative permeability curves with a small difference that is the initial wetting phase saturations in the relative permeability curve shifts to the left in the presence of immobile water saturation. A simple new mathematical model is developed to compute the gas and condensate relative permeabilities as a function of the three-parameter. It is called as condensate number
NK so that the new model is more sensitivity to temperature that represents implicitly the effect of interfacial tension. The new model generated the results were in good agreement with the literature data and the laboratory test results. Additionally, the end point relative permeability data and residual saturations satisfactorily correlate with literature data. The proposed model has fairly good fitness results for the condensate relative permeability curves compared to that of gas case. This model, with typical parameters for gas condensates, can be used to describe the relative permeability behavior and to run a compositional simulation study of a single well to better understand the productivity of the field.
Sole, Joshua David. „Investigation of Water Transport Parameters and Processes in the Gas Diffusion Layer of PEM Fuel Cells“. Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/27538.
Der volle Inhalt der QuellePh. D.
Bücher zum Thema "Water and gas permeability"
A, Tomazic William, und United States. National Aeronautics and Space Administration., Hrsg. Effect of water on hydrogen permeability. [Washington, D.C: National Aeronautics and Space Administration, 1987.
Den vollen Inhalt der Quelle findenPatenaude, Armand. Migration of water by capillarity. [Ottawa]: CMHC, 1993.
Den vollen Inhalt der Quelle findenPatenaude, Armand. Migration of water by capillarity. Ottawa, Ont: Canada Mortgage and Housing Corporation, 1993.
Den vollen Inhalt der Quelle findenVilma, Ortiz, Hrsg. Water: Liquid, solid, gas. Bothell, WA: Wright Group/McGraw-Hill, 2000.
Den vollen Inhalt der Quelle findenFrost, Helen. Water as a gas. Mankato, Minn: Pebble Books, 2000.
Den vollen Inhalt der Quelle findenNissen-Petersen, Erik. Water from dry riverbeds. Nairobi: ASAL Consultants Ltd. for the Danish International Development Assistance, 2006.
Den vollen Inhalt der Quelle findenEmerson, Douglas G. Documentation of a heat and water transfer model for seasonally frozen soils with application to the precipitation-runoff model. Bismarck, N.D: U.S. Dept. of the Interior, U.S. Geological Survey, 1991.
Den vollen Inhalt der Quelle findenNorth Dakota State Water Commission und Geological Survey (U.S.), Hrsg. Documentation of a heat and water transfer model for seasonally frozen soils with application to the precipitation-runoff model. Bismarck, N.D: U.S. Dept. of the Interior, U.S. Geological Survey, 1991.
Den vollen Inhalt der Quelle findenJuhani, Hartikainen, Hrsg. Helium gas methods for rock characteristics and matrix diffusion. Helsinki: Posiva Oy, 1996.
Den vollen Inhalt der Quelle findenBurns, Karen. Gas permeation measurements on small polymer specimens: Final report. Norfolk, Va: Dept. of Chemical Sciences, College of Sciences, Old Dominion University, 1989.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Water and gas permeability"
Sato, Shuichi, Sou Miyata, Shinji Kanehashi und Kazukiyo Nagai. „Gas Permeability and Electrical Properties of 6FDA-Based Polyimide Membranes“. In Sustainable Membrane Technology for Energy, Water, and Environment, 75–86. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118190180.ch7.
Der volle Inhalt der QuelleNg, Charles W. W., Chao Zhou und Junjun Ni. „Retention characteristics and permeability functions for water and gas flows“. In Advanced Unsaturated Soil Mechanics, 65–145. 2. Aufl. London: CRC Press, 2024. http://dx.doi.org/10.1201/9781003480587-3.
Der volle Inhalt der QuelleCui, Yue-hua, Yi-fei Lan, Hui-hui Liu, Jin-cheng Wang, Xiao-ling Meng und Zhun-bei Wang. „New Method of Gas and Water Layer Identification of Low Permeability Carbonate Gas Reservoir“. In Springer Series in Geomechanics and Geoengineering, 2128–43. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0761-5_200.
Der volle Inhalt der QuelleOuyang, Wei-ping, Yun-yi Zhang und Mian Zhang. „Water Production Prediction in Tight and Low Pressure Gas Wells Considering the Dynamic Change of Gas-Water Permeability Relationship“. In Springer Series in Geomechanics and Geoengineering, 1154–66. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0761-5_108.
Der volle Inhalt der QuelleKerstiens, Gerhard. „Air Pollutants and Plant Cuticles: Mechanisms of Gas and Water Transport, and Effects on Water Permeability“. In Air Pollutants and the Leaf Cuticle, 39–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-79081-2_3.
Der volle Inhalt der QuelleZhao, Le-kun, Tong-jing Liu, Juan Ni, Fu-qiang Han und Yue-dong Yao. „Research on Water Alternating Gas (WAG) Flooding Dynamic Adjustment of Water-Gas Ratio and Slug Sizes Method in Low Permeability Reservoir“. In Springer Series in Geomechanics and Geoengineering, 912–26. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0264-0_82.
Der volle Inhalt der QuelleZhang, Chun, Chang-cheng Yang, Yue-yang Li, Chang-hai Xu, Jun Jiang und Yu Pang. „Gas and Water Distribution Patterns and Development Suggestions for Low Permeability and Thick Bottom Water Gas Reservoirs with Low Amplitude Structures“. In Springer Series in Geomechanics and Geoengineering, 663–74. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0468-2_50.
Der volle Inhalt der QuelleFrenzel, H., W. Kessels, A. Hartmann, M. Lengnick, G. Zoth und K. Nolting. „Determination of Gas Permeability by Interpreting Barometric Pressure Induced Water Level Variations in Boreholes“. In Field Screening Europe, 81–84. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-1473-5_19.
Der volle Inhalt der QuelleLv, Wei, Shi-tou Wang, Ming Liu und Lei Wang. „Main Factors of Production with CO2 Water-Alternating-Gas Injection in Low Permeability Reservoirs“. In Proceedings of the International Field Exploration and Development Conference 2021, 3363–77. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2149-0_314.
Der volle Inhalt der QuelleShi, Hai-dong, Qing-sheng Wang, Sen-lin Bai, Chun-qiu Guo, Yue Zheng, Mu-wei Cheng und Yu-zhong Xing. „Length Optimization for Horizontal Interval of Low Permeability Carbonate Gas Reservoir with Bottom Water“. In Springer Series in Geomechanics and Geoengineering, 2184–91. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1964-2_186.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Water and gas permeability"
Dietzel, H. J., und G. A. Von Hantelmann. „Stimulating Water-Sensitive Formations at High Reservoir Temperature“. In SPE/DOE Low Permeability Gas Reservoirs Symposium. Society of Petroleum Engineers, 1985. http://dx.doi.org/10.2118/13875-ms.
Der volle Inhalt der QuelleWang, Shuai, Ji Tian, Xianhong Tan, Ling Wang und Shaohui Zhang. „Permeability Limits of Advanced Water Injection Technology in Low Permeability Reservoirs“. In SPE Asia Pacific Oil & Gas Conference and Exhibition. Society of Petroleum Engineers, 2016. http://dx.doi.org/10.2118/182431-ms.
Der volle Inhalt der QuelleBerry, J. F., A. J. H. Little und R. C. Skinner. „Differences in Gas/Oil and Gas/Water Relative Permeability“. In SPE/DOE Enhanced Oil Recovery Symposium. Society of Petroleum Engineers, 1992. http://dx.doi.org/10.2118/24133-ms.
Der volle Inhalt der QuelleLiu, Renjing, Huiqing Liu, Xiusheng Li, Jing Wang und Changting Pang. „Calculation of Oil and Water Relative Permeability for Extra Low Permeability Reservoir“. In International Oil and Gas Conference and Exhibition in China. Society of Petroleum Engineers, 2010. http://dx.doi.org/10.2118/131388-ms.
Der volle Inhalt der QuelleLiu, Xiaojuan, Jian Yan und Yi Liu. „Gas Slippage Effect in Low Permeability Water-bearing Gas Reservoirs“. In SPE Reservoir Characterisation and Simulation Conference and Exhibition. Society of Petroleum Engineers, 2011. http://dx.doi.org/10.2118/145803-ms.
Der volle Inhalt der QuelleZhang, Mengchuan, Yanwen Duan, Jiajun He, Leifeng Meng, Tianbo Liang, Hao Bai und Fujian Zhou. „Dynamic Characterization of Water Blockage During Water-Gas Alternated Flooding in the Underground Gas Storage“. In 56th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2022. http://dx.doi.org/10.56952/arma-2022-2327.
Der volle Inhalt der QuelleAlarifi, Sulaiman A. „Oil-Water Relative Permeability Prediction Using Machine Learning“. In Middle East Oil, Gas and Geosciences Show. SPE, 2023. http://dx.doi.org/10.2118/213336-ms.
Der volle Inhalt der QuelleGruber, N. G. „Water Block Effects In Low Permeability Gas Reservoirs“. In Annual Technical Meeting. Petroleum Society of Canada, 1996. http://dx.doi.org/10.2118/96-92.
Der volle Inhalt der QuelleMulyadi, H., R. Amin und A. F. Kennaird. „Practical Approach to Determine Residual Gas Saturation and Gas-Water Relative Permeability“. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2001. http://dx.doi.org/10.2118/71523-ms.
Der volle Inhalt der QuelleSu, Kun, Jorge Torres, Yonatan Sanz Perl, Pierre Barlet und Sandrine Vidal-Gilbert. „Tests of Fracture Water and Gas Permeability on Vaca Muerta Gas Shale“. In Unconventional Resources Technology Conference. Tulsa, OK, USA: American Association of Petroleum Geologists, 2017. http://dx.doi.org/10.15530/urtec-2017-2671318.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Water and gas permeability"
Coyner, K., T. J. Katsube, M. E. Best und M. Williamson. Gas and water permeability of tight shales from the Venture gas field, offshore Nova Scotia. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1993. http://dx.doi.org/10.4095/134279.
Der volle Inhalt der QuelleTerry Brown, Jeffrey Morris, Patrick Richards und Joel Mason. Effects of Irrigating with Treated Oil and Gas Product Water on Crop Biomass and Soil Permeability. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/1007996.
Der volle Inhalt der QuelleLacerda Silva, P., G. R. Chalmers, A. M. M. Bustin und R. M. Bustin. Gas geochemistry and the origins of H2S in the Montney Formation. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329794.
Der volle Inhalt der QuelleCarter, T. R., C. E. Logan, J K Clark, H. A. J. Russell, E. H. Priebe und S. Sun. A three-dimensional bedrock hydrostratigraphic model of southern Ontario. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/331098.
Der volle Inhalt der QuelleBrydie, Dr James, Dr Alireza Jafari und Stephanie Trottier. PR-487-143727-R01 Modelling and Simulation of Subsurface Fluid Migration from Small Pipeline Leaks. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Mai 2017. http://dx.doi.org/10.55274/r0011025.
Der volle Inhalt der QuelleLevine, J. R. Permeability changes in coal resulting from gas desorption. Office of Scientific and Technical Information (OSTI), Januar 1991. http://dx.doi.org/10.2172/6012022.
Der volle Inhalt der QuelleLevine, J. R. Permeability changes in coal resulting from gas desorption. Office of Scientific and Technical Information (OSTI), Januar 1991. http://dx.doi.org/10.2172/6012028.
Der volle Inhalt der QuelleLevine, J. R., und F. Tsay. Permeability changes in coal resulting from gas desorption. Office of Scientific and Technical Information (OSTI), Dezember 1990. http://dx.doi.org/10.2172/7273045.
Der volle Inhalt der QuelleLevine, J. R., und F. Tsay. Permeability changes in coal resulting from gas desorption. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/7080892.
Der volle Inhalt der QuelleLevine, J. R., und F. Tsay. Permeability changes in coal resulting from gas desorption. Office of Scientific and Technical Information (OSTI), Januar 1990. http://dx.doi.org/10.2172/7080900.
Der volle Inhalt der Quelle