Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Wastewater“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Wastewater" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Wastewater"
Gulyas, H., R. von Bismarck und L. Hemmerling. „Treatment of industrial wastewaters with ozone/hydrogen peroxide“. Water Science and Technology 32, Nr. 7 (01.10.1995): 127–34. http://dx.doi.org/10.2166/wst.1995.0217.
Der volle Inhalt der QuelleToczyłowska-Mamińska, Renata, und Mariusz Ł. Mamiński. „Wastewater as a Renewable Energy Source—Utilisation of Microbial Fuel Cell Technology“. Energies 15, Nr. 19 (21.09.2022): 6928. http://dx.doi.org/10.3390/en15196928.
Der volle Inhalt der QuelleAasim, Muhammad Tayyab, Muhammad Shaheer Tariq, Muhammad Danish, Iqra Abbasi, Ali Raza und Hammad Haider. „Durability Assessment of Recycled Aggregate Geopolymer Concrete Mixed with Wastewater“. MATEC Web of Conferences 398 (2024): 01032. http://dx.doi.org/10.1051/matecconf/202439801032.
Der volle Inhalt der QuelleUtomo, Joseph Christian, Young Mo Kim, Hyun Uk Cho und Jong Moon Park. „Evaluation of Scenedesmus rubescens for Lipid Production from Swine Wastewater Blended with Municipal Wastewater“. Energies 13, Nr. 18 (18.09.2020): 4895. http://dx.doi.org/10.3390/en13184895.
Der volle Inhalt der QuelleVerburg, Ilse, H. Pieter J. van Veelen, Karola Waar, John W. A. Rossen, Alex W. Friedrich, Lucia Hernández Leal, Silvia García-Cobos und Heike Schmitt. „Effects of Clinical Wastewater on the Bacterial Community Structure from Sewage to the Environment“. Microorganisms 9, Nr. 4 (31.03.2021): 718. http://dx.doi.org/10.3390/microorganisms9040718.
Der volle Inhalt der QuelleCséfalvay, Edit, Péter Imre und Péter Mizsey. „Applicability of nanofiltration and reverse osmosis for the treatment of wastewater of different origin“. Open Chemistry 6, Nr. 2 (01.06.2008): 277–83. http://dx.doi.org/10.2478/s11532-008-0026-3.
Der volle Inhalt der QuelleShi, X. L., X. B. Hu, Z. Wang, L. L. Ding und H. Q. Ren. „Effect of reflux ratio on COD and nitrogen removals from coke plant wastewaters“. Water Science and Technology 61, Nr. 12 (01.06.2010): 3017–25. http://dx.doi.org/10.2166/wst.2010.266.
Der volle Inhalt der QuelleAlalam, Sabine, Farah Ben-Souilah, Marie-Hélène Lessard, Julien Chamberland, Véronique Perreault, Yves Pouliot, Steve Labrie und Alain Doyen. „Characterization of Chemical and Bacterial Compositions of Dairy Wastewaters“. Dairy 2, Nr. 2 (01.04.2021): 179–90. http://dx.doi.org/10.3390/dairy2020016.
Der volle Inhalt der QuelleMahendraker, V., und T. Viraraghavan. „Respirometric Evaluation of Comparative Biodegradability of Municipal and Petroleum Refinery Wastewaters“. Water Quality Research Journal 31, Nr. 2 (01.05.1996): 283–304. http://dx.doi.org/10.2166/wqrj.1996.017.
Der volle Inhalt der QuelleMatsui, S., Y. Okawa und R. Ota. „Experience of 16 Years' Operation and Maintenance of the Fukashiba Industrial Wastewater Treatment Plant of the Kashima Petrochemical Complex – II. Biodegradability of 37 Organic Substances and 28 Process Wastewaters“. Water Science and Technology 20, Nr. 10 (01.10.1988): 201–10. http://dx.doi.org/10.2166/wst.1988.0138.
Der volle Inhalt der QuelleDissertationen zum Thema "Wastewater"
Atayol, Ahmet Avni Sofuoğlu Aysun. „Anaerobic co-treatability of olive mill wastewaters and domestic wastewater/“. [s.l.]: [s.n.], 2003. http://library.iyte.edu.tr/tezler/master/cevremuh/T000239.pdf.
Der volle Inhalt der QuelleWang, Y. „Wastewater minimisation and the design of wastewater treatment systems“. Thesis, University of Manchester, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.488391.
Der volle Inhalt der QuellePan, Xiaodi. „Radioisotopes in Domestic Wastewater and Their Fate in Wastewater Treatment“. Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-theses/1247.
Der volle Inhalt der QuelleFain, Norm. „Wastewater - A Resource“. Arizona-Nevada Academy of Science, 1991. http://hdl.handle.net/10150/296459.
Der volle Inhalt der QuelleAs the Southwest United States grows and develops, one basic resource becomes a primary necessity for survival: Water. Currently, accepted sources are being consumed at a higher rate than nature replenishes them. This is necessitating the need to find and develop new water resources. In conjunction with the proper treatment and management, wastewater is a water resource, known as reuse. Properly managed, reused water can augment the available water supply. Primary applications include irrigation of agricultural and landscaped areas, surface water recreational areas, and groundwater recharge. These uses relieve the demands on the generally accepted water resources, thus increasing the net water supply. The required level of treatment varies with the intended reuse application. Treatment levels for reuse range from secondary to tertiary treatment systems. Some reuse applications provide additional treatment to the water. The reuser must assure that the treatment system and reuse application provide an equal or improved water quality to that of the receiving body of water. Regardless of the application, stringent operation and maintenance of the reuse system is essential. A well planned management program will minimize hazards associated with reuse of wastewater. This program is required to keep the liabilities of both the treatment plant and reuse site owners to a minimum. Without this, reuse is not a viable option. The underlying questions remain to determine the feasibility of reuse for a community: Does the water supply require augmentation to meet the demands of the future? Is the Owner willing to address and implement a diligent system management program?
Palmquist, Helena. „Hazardous substances in wastewater systems : a delicate issue for wastewater management“. Licentiate thesis, Luleå tekniska universitet, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-17510.
Der volle Inhalt der QuelleGodkänd; 2001; 20070225 (ysko)
Heimel, Daniel Eric. „Anaerobic Co-digestion of Wastewater Treatment Pond Algae with Wastewater Sludge“. DigitalCommons@CalPoly, 2010. https://digitalcommons.calpoly.edu/theses/440.
Der volle Inhalt der QuelleBurgess, Joanna E. „Micronutrients for wastewater treatment“. Thesis, Cranfield University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323932.
Der volle Inhalt der QuelleMalandra, Lida 1975. „Biodegradation of winery wastewater“. Thesis, Stellenbosch : University of Stellenbosch, 2003. http://hdl.handle.net/10019.1/16385.
Der volle Inhalt der QuelleENGLISH ABSTRACT: Large volumes of wastewater are generated annually during the grape harvest season from various processing and cleaning operations at wineries, distilleries and other wine-related industries. South African regulatory bodies dictate that wastewater should have a pH of 5.5 to 7.5 and a chemical oxygen demand (COD) lower than 75 mg/L. However, winery wastewater has a typical pH of 4 to 5 and a COD varying between 2 000 and 12 000 mg/L. Urban wineries channel the wastewater to local sewage treatment facilities and are often heavily fined for exceeding governmental requirements. Rural wineries usually have little or no treatment operations for their wastewater and it is often irrigated onto crops, which may result in environmental pollution and contamination of underground water resources. Various criteria are important in choosing a wastewater treatment system, such as an ecofriendly process that is flexible to withstand various concentration loads and characteristics, requiring low capital and operating costs, minimal personal attention and do not require too much land. In this study, a large variation in COD, pH and chemical composition of the winery wastewater was observed that could be related to varying factors such as the harvest load, operational procedures and grape variety. Wastewater from destemming and pressing operations contained higher concentrations of glucose, fructose and malic acid, which originated from the grape berries. The fermentable sugars (glucose and fructose) contributed to almost half of the COD with a smaller contribution from ethanol and acetic acid. The low pH can be ascribed to relative high concentrations of organic acids in the wastewater. The efficacy of biological treatment systems depends strongly on the ability of microorganisms to form biofilm communities that are able to degrade the organic compounds in the wastewater. Preliminary identification of microorganisms that naturally occur in winery wastewater indicated the presence of various bacterial and yeast species that could be effective in the biological treatment of the wastewater. When evaluated as pure cultures under aerobic conditions, some of the yeast isolates effectively reduced the COD of a synthetic wastewater, whereas the bacterial isolates were ineffective. The most effective yeast isolates were identified as Pichia rhodanensis, Kloeckera apiculata, Candida krusei and Saccharomyces cerevisiae. Our search for cost-effective biological treatment systems led to the evaluation of a Rotating Biological Contactor (RBC) for the treatment of winery wastewater. The RBC was evaluated on a laboratory scale with 10% (v/v) diluted grape juice and inoculated with a mixed microbial community isolated from winery wastewater. The results showed a reduction in the COD that improved with an extended retention time. Evaluation of the RBC on-site at a local winery during the harvest season resulted on average in a 41% decrease in COD and an increase of 0,75 pH units. RFLP analysis of the biofilm communities within the RBC confirmed a population shift in both the bacterial and fungal species during the evaluation period. The most dominant yeast isolates were identified with 18S rDNA sequencing as Saccharomyces cerevisiae, Candida intermedia, Hanseniaspora uvarum and Pichia membranifaciens. All these species are naturally associated with grapes and/or water and with the exception of Hanseniaspora uvarum, they are able to form either simple or elaborate pseudohyphae.
AFRIKAANSE OPSOMMING: Groot hoeveelhede afloopwater word jaarliks gedurende die druiwe-oestyd deur verskeie prosessering- en skoonmaakoperasies deur wynkelders, distilleer- en ander wynverwante industrieë gegenereer. Suid-Afrikaanse beheerliggame vereis dat afloopwater ‘n pH van 5.5 tot 7.5 en ‘n chemiese suurstofbehoefte (COD) van minder as 75 mg/l moet hê. Kelderafloopwater het egter gewoonlik ‘n pH van 4 tot 5 en ‘n COD van 2 000 tot 12 000 mg/L. Stedelike wynkelders voer die afloopwater na ń plaaslike rioolsuiweringsaanleg wat dikwels tot swaar boetes vir oortreding van die wetlike vereistes lei. Plattelandse wynkelders het gewoonlik min of geen behandelingsprosesse vir hul afloopwater nie en gebruik die water dikwels vir gewasbesproeiing, wat tot omgewingsbesoedeling en kontaminasie van ondergrondse waterbronne kan lei. Verskeie kriteria is belangrik in die keuse van ‘n waterbehandelingstelsel, byvoorbeeld ‘n omgewingsvriendelike proses wat verskillende konsentrasieladings en samestellings kan hanteer, ‘n lae kapitaal- en bedryfskoste en minimale persoonlike aandag vereis en min ruimte benodig. Hierdie studie het getoon dat kelderafloopwater ‘n groot variasie in COD, pH en chemiese samestelling het wat met wisselende faktore soos die oeslading, operasionele prosesse en selfs die druifkultivar verband kan hou. Afloopwater van ontstingeling- en parsoperasies het hoër konsentrasies glukose, fruktose en appelsuur wat van die druiwekorrels afkomstig is. Die fermenteerbare suikers (glukose en fruktose) dra tot amper 50% van die COD by, met ‘n kleiner bydrae deur etanol en asynsuur. Die lae pH kan grootliks aan organiese sure in die afloopwater toegeskryf word. Die effektiwiteit van biologiese behandelingstelsels steun sterk op die vermoë van mikroorganismes om biofilmgemeenskappe te vorm wat die organiese verbindings in die afloopwater kan afbreek. Voorlopige identifikasie van mikro-organismes wat natuurlik in wynafloopwater voorkom, het die teenwoordigheid van verskeie bakteriese en gisspesies aangedui. Evaluering van hierdie isolate onder aërobiese toestande het getoon dat sommige van die gis-isolate die COD van ‘n sintetiese afloopwater effektief kon verlaag, terwyl die bakteriese isolate oneffektief was. Die mees effektiewe gis-isolate is as Pichia rhodanensis, Kloeckera apiculata, Candida krusei en Saccharomyces cerevisiae geïdentifiseer. Ons soektog na ‘n koste-effektiewe biologiese behandelingsisteem het tot die evaluering van ‘n ‘Rotating Biological Contactor’ (RBC) vir die behandeling van afloopwater gelei. Die RBC is op laboratoriumskaal met 10% (v/v) verdunde druiwesap geëvalueer en met ‘n gemengde mikrobiese gemeenskap wat uit afloopwater geïsoleer is, innokuleer. Die resultate het ‘n verlaging in die COD getoon wat met ‘n langer retensietyd verbeter het. Evaluering van die RBC by ‘n plaaslike wynkelder gedurende die oesseisoen het gemiddeld ‘n verlaging van 41% in die COD en ‘n verhoging van 0,75 pH eenhede getoon. RPLP analise van die biofilmgemeenskappe in die RBC het ‘n bevolkingsverskuiwing in beide die bakteriese en swamspesies aangetoon. Die mees dominante gisspesies is met 18S rDNA volgordebepaling as Saccharomyces cerevisiae, Candida intermedia, Hanseniaspora uvarum en Pichia membranifaciens geïdentifiseer. Al hierdie spesies word gewoonlik met druiwe en/of water geassosieer en is, met die uitsondering van Hanseniaspora uvarum, in staat om òf eenvoudige òf komplekse pseudohife te vorm.
Veijola, T. (Tommi). „Domestic wastewater heat recovery“. Bachelor's thesis, University of Oulu, 2017. http://urn.fi/URN:NBN:fi:oulu-201704271600.
Der volle Inhalt der QuelleAbdel-Halim, Walid Sayed. „Anaerobic municipal wastewater treatment /“. Hannover : Inst. für Siedlungswasserwirtschaft und Abfalltechnik, 2005. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=014189251&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Der volle Inhalt der QuelleBücher zum Thema "Wastewater"
Agency, Ireland Environmental Protection. Wastewater treatment manuals: Characterisation of industrial wastewaters. Wexford: Environmental Protection Agency, 1998.
Den vollen Inhalt der Quelle findenDrechsel, Pay, Manzoor Qadir und Dennis Wichelns, Hrsg. Wastewater. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9545-6.
Der volle Inhalt der QuelleSally, Morgan. Wastewater. Norh Mankato, MN: Smart Apple Media, 2008.
Den vollen Inhalt der Quelle findenWastewater bacteria. Hoboken, NJ: Wiley, 2006.
Den vollen Inhalt der Quelle findenBitton, Gabriel. Wastewater microbiology. 4. Aufl. Hoboken, N.J: Wiley-Blackwell, 2011.
Den vollen Inhalt der Quelle findenShah, Maulin P. Wastewater Treatment. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003165057.
Der volle Inhalt der QuelleBitton, Gabriel. Wastewater microbiology. New York: Wiley-Liss, 1994.
Den vollen Inhalt der Quelle findenGerardi, Michael H. Wastewater Bacteria. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/0471979910.
Der volle Inhalt der QuelleGerardi, Michael H., und Mel C. Zimmerman. Wastewater Pathogens. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2004. http://dx.doi.org/10.1002/0471710431.
Der volle Inhalt der QuelleBitton, Gabriel. Wastewater Microbiology. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471717967.
Der volle Inhalt der QuelleBuchteile zum Thema "Wastewater"
Kim, In S., Byung Soo Oh, Seokmin Yoon, Hokyong Shon, Sangho Lee und Seungkwan Hong. „Wastewater Wastewater Reclamation wastewater reclamation“. In Encyclopedia of Sustainability Science and Technology, 11873–91. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_263.
Der volle Inhalt der QuelleVesley, Donald. „Wastewater“. In Human Health and the Environment, 33–39. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-5434-6_4.
Der volle Inhalt der QuelleHossain, Md Faruque. „Wastewater“. In Global Sustainability in Energy, Building, Infrastructure, Transportation, and Water Technology, 237–324. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62376-0_13.
Der volle Inhalt der QuelleBurroughs, Richard. „Wastewater“. In Coastal Governance, 30–42. Washington, DC: Island Press/Center for Resource Economics, 2011. http://dx.doi.org/10.5822/978-1-61091-016-3_3.
Der volle Inhalt der QuelleKumar Gupta, Ashok, Venkatesh Uddameri, Abhradeep Majumder und Shripad K. Nimbhorkar. „Wastewater“. In Wastewater Engineering, 21–49. New York: CRC Press, 2023. http://dx.doi.org/10.1201/9781003364450-2.
Der volle Inhalt der QuelleIslam, Md Didarul, Meem Muhtasim Mahdi, Md Arafat Hossain und Md Minhazul Abedin. „Biological Wastewater Treatment Plants (BWWTPs) for Industrial Wastewaters“. In Wastewater Treatment, 139–56. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003165057-12.
Der volle Inhalt der QuelleWichelns, Dennis, Pay Drechsel und Manzoor Qadir. „Wastewater: Economic Asset in an Urbanizing World“. In Wastewater, 3–14. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9545-6_1.
Der volle Inhalt der QuelleOtoo, Miriam, Javier Mateo-Sagasta und Ganesha Madurangi. „Economics of Water Reuse for Industrial, Environmental, Recreational and Potable Purposes“. In Wastewater, 169–92. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9545-6_10.
Der volle Inhalt der QuelleRao, Krishna, Munir A. Hanjra, Pay Drechsel und George Danso. „Business Models and Economic Approaches Supporting Water Reuse“. In Wastewater, 195–216. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9545-6_11.
Der volle Inhalt der QuelleGebrezgabher, Solomie, Krishna Rao, Munir A. Hanjra und Francesc Hernández-Sancho. „Business Models and Economic Approaches for Recovering Energy from Wastewater and Fecal Sludge“. In Wastewater, 217–45. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9545-6_12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Wastewater"
Ziganshina, E. E., S. S. Bulynina und A. M. Ziganshin. „PRODUCTIVITY OF CHLORELLA DURING GROWTH IN DOMESTIC WASTEWATER“. In X Международная конференция молодых ученых: биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-80.
Der volle Inhalt der QuelleWu, Yongming, Mi Deng, Lizhen Liu, Jianyong Wang, Jie Zhang und Jinbao Wan. „Wastewater treatment processes for industrial organosilicon wastewater“. In 2016 International Conference on Innovative Material Science and Technology (IMST 2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/imst-16.2016.9.
Der volle Inhalt der QuelleOnaizi, Sagheer A. „Enzymatic Treatment of Phenolic Wastewater: Effects of Salinity and Biosurfactant Addition“. In International Petroleum Technology Conference. IPTC, 2021. http://dx.doi.org/10.2523/iptc-21349-ms.
Der volle Inhalt der QuelleVasiliu, Cornelia Cretiu, Dale Pierce und Kelly Bertrand. „Challenging Wastewater Treatment“. In International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production. Society of Petroleum Engineers, 2012. http://dx.doi.org/10.2118/157615-ms.
Der volle Inhalt der QuelleSchutze, M. „XML in wastewater“. In Developments in Control in the Water Industry. IEE, 2003. http://dx.doi.org/10.1049/ic:20030258.
Der volle Inhalt der QuelleAlmeida, Antonio V. „Wastewater Rehabilitation in a NIMBY Environment: The Lake Arlington Wastewater Interceptor“. In Pipeline Division Specialty Conference 2006. Reston, VA: American Society of Civil Engineers, 2006. http://dx.doi.org/10.1061/40854(211)93.
Der volle Inhalt der QuelleDauknys, Regimantas, und Aušra Mažeikienė. „Research of Wastewater Tertiary Treatment“. In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.075.
Der volle Inhalt der QuelleBilstad, T., E. Espedal, A. H. Haaland und M. Madland. „Ultrafiltration of Oily Wastewater“. In SPE Health, Safety and Environment in Oil and Gas Exploration and Production Conference. Society of Petroleum Engineers, 1994. http://dx.doi.org/10.2118/27136-ms.
Der volle Inhalt der QuelleMustata, Dragos. „ADIPUR WASTEWATER TREATMENT OPTIMIZATION“. In 17th International Multidisciplinary Scientific GeoConference SGEM2017. Stef92 Technology, 2017. http://dx.doi.org/10.5593/sgem2017/51/s20.006.
Der volle Inhalt der QuelleRoper, Alexander M., und Shannon L. Isovitsch Parks. „Phosphorus Removal from Wastewater“. In World Environmental and Water Resources Congress 2019. Reston, VA: American Society of Civil Engineers, 2019. http://dx.doi.org/10.1061/9780784482360.024.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Wastewater"
Torrey, David A. Hydropower from Wastewater. Office of Scientific and Technical Information (OSTI), Dezember 2011. http://dx.doi.org/10.2172/1032379.
Der volle Inhalt der QuellePedersen, Joel A., Moshe Shenker, Krishnapuram G. Karthikeyan, Benny Chefetz, Jorge Tarchitzky und Curtis Hedman. Uptake of wastewater-derived micropollutants by plants irrigated with reclaimed wastewater. United States Department of Agriculture, Januar 2014. http://dx.doi.org/10.32747/2014.7600011.bard.
Der volle Inhalt der QuelleHirzel, D. R. PFP Wastewater Sampling Facility. Office of Scientific and Technical Information (OSTI), Mai 1995. http://dx.doi.org/10.2172/80949.
Der volle Inhalt der QuelleOgden, K. L. Bioremediation of wastewater containing RDX. Office of Scientific and Technical Information (OSTI), Oktober 1994. http://dx.doi.org/10.2172/369676.
Der volle Inhalt der Quellevon Sperling, Marcos. Urban Wastewater Treatment in Brazil. Herausgegeben von Alejandra Perroni. Inter-American Development Bank, August 2016. http://dx.doi.org/10.18235/0000397.
Der volle Inhalt der QuelleCoppola, Edward N., und Jeffery Rine. Deployable Wastewater Treatment Technology Evaluation. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada416250.
Der volle Inhalt der QuelleHolland, Robert C. Site Sustainability Plan- wastewater input. Office of Scientific and Technical Information (OSTI), November 2019. http://dx.doi.org/10.2172/1574247.
Der volle Inhalt der QuelleGrow, Ann E., Michael S. Deal, Johanna L. Claycomb und Laurie L. Wood. Navy Wastewater MOP-UP (trademark). Fort Belvoir, VA: Defense Technical Information Center, Dezember 2003. http://dx.doi.org/10.21236/ada419363.
Der volle Inhalt der QuelleLopez-Ruiz, Juan, Nickolas Riedel, Bhanupriya Boruah, Swanand Sadashiv Bhatwadekar, Lyndi Strange und Shuyun Li. Low-temperature electrochemical wastewater oxidation. Office of Scientific and Technical Information (OSTI), Oktober 2023. http://dx.doi.org/10.2172/2332860.
Der volle Inhalt der QuelleTang, CheeYee. Water and Wastewater Project Architecture:. Gaithersburg, MD: National Institute of Standards and Technology, 2024. http://dx.doi.org/10.6028/nist.tn.2283.ipd.
Der volle Inhalt der Quelle