Dissertationen zum Thema „Waste heat recovery boiler“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Waste heat recovery boiler" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Rezaie, Navaie Ali [Verfasser], George [Akademischer Betreuer] Tsatsaronis, George [Gutachter] Tsatsaronis und Udo [Gutachter] Hellwig. „Thermal design and optimization of heat recovery steam generators and waste heat boilers / Ali Rezaie Navaie ; Gutachter: George Tsatsaronis, Udo Hellwig ; Betreuer: George Tsatsaronis“. Berlin : Technische Universität Berlin, 2017. http://d-nb.info/1156187052/34.
Der volle Inhalt der QuellePrimes, Alois. „Modularní horizontální kotel – HRSG“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443235.
Der volle Inhalt der QuelleDlouhá, Kristýna. „Návrh HRSG kotle“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-401508.
Der volle Inhalt der QuelleRojas, Tena Fernando, und Reber Kadir. „Waste Heat Recovery Modellering“. Thesis, KTH, Förbränningsmotorteknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-39923.
Der volle Inhalt der QuelleAbstractIn a previous project, made in the spring of 2010, a steam generator was modelled and simulated in GT-SUITE, in order to analyze and compare with engine measurements. This was made at the Royal Institute of Technology in Stockholm, on behalf of the company that introduced this idea, Ranotor. The concept was to replace the EGR-cooler in a heavy duty engine and with help of the Rankine cycle, try to improve its efficiency. The steam generator consists of 48 micro tubes, all containing high pressured water, which in turn is heated by the warm exhausts that are led into the steam generator. This causes the water in the tubes to evaporate which propels an expander that will unload the engine.The main focus of this thesis is to model, study and analyze the performance of the steam generator built in the simulation program GT-SUITE. The steam generator, called Heat Recovery Steam Generator (HRSG), is modelled from scratch with the specifications of the manufacturer. An elementary model was initially made to highlight the behaviour of the flow inside the micro tubes and what parameters affect the outcome of the simulations. Finally a complete identical model was made of the actual steam generator. The model was used in an ESC-cycle and also for a transient cycle, where all the input data is gathered on engine measurements of the actual HRSG, mounted on a DS1301, 6-cylinder 12 litre Scania diesel engine. In order to improve the simulation of the complete model a downsized model, only containing two tubes, was made. This model has the same dimensions and properties as the complete model but the advantage of this double-tube model is the shortened simulation time.The inlet parameters to the model such as water mass flow, steam pressure, exhaust mass flow and exhaust temperature were taken from actual engine measurements. All the parameters vary due to time; this makes a comparison possible between the real steam generator and the modelled one. Steam temperature, exhaust temperature and pressure drop along the HRSG are the main parameters from the simulations that are compared to the actual measurements. The engine measurements are made based on the ESC-cycle, European Stationary Cycle, which contains twelve load points and one idle point. During comparison between the complete model and the engine measurements following is observed, in the best case the steam temperature differs ~ 5 %, equalling 10°C. In the worst case the temperature difference is ~20 %, which is approximately 40°C, the rest of the load points shows a margin of error between 5-10 % equalling 10-35 °C. Pressure drop along the HRSG is less accurate;this is due to an error during the measurement where some filters where clogged. Disparity in pressure drop is ~1% in best case, which is almost identical and ~70% in worst case, corresponding to approximately 10 bar, where rest of the load points shows a margin of error between 10-15% equalling 1-4 bar.The double-tube model behaves like the complete model; the difference between the models is 1-5 % in most cases ~5-15°C, where the difference is mostly closer to the measurements. Heat transfer, Reynolds number and steam power are taken and studied from the double tube model. Analyses of the models reviles that ~40-55 % of the heat transfer is in the transition phase, which is surprisingly much and Reynolds number increases by ~450% in the same region, from 1500 to ~6500 which indicates a flow transition phase. Steam power varies between 5-23 kW depending on load point.The final model shows satisfying result and therefore assumed to be good enough for further analyse.
Razavinia, Nasimalsadat. „Waste heat recovery with heat pipe technology“. Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=94983.
Der volle Inhalt der QuelleL'énergie d'haut grade de nos jours est produite principalement à base de combustion d'hydrocarbure et les réserves de cette énergie deviennent de plus en plus rare, mais certaines énergies alternatives connues gagnent des forces parmi les marchés incluant les sources d'énergie renouvelables et recyclées. Les usines pyrométallurgiques sont des consommateurs significatifs d'énergie d'haut grade. Ces procédés industriels relâches un montant important de chaleurs (perte) à l'environnement sans aucune récupération. Le but du projet est de concentrer, capturer et convertir cette chaleur résiduelle de basse qualité en énergie valable. Par contre, l'objectif principal du projet comme tel est de développer et de perfectionner un caloduc capable d'extraire cette chaleur parvenant des gaz effluents. Le point d'ébullition d'une substance (vapeur) est utilisé comme moyen de concentrer l'énergie contenu dans les effluents avec la technologie des caloducs. Pour maximiser les gains énergétiques, la conception de ce caloduc en particulier utilise des canaux de retour indépendant ainsi qu'un modificateur de débit dans l'évaporateur, lui permettant d'extraire un niveau supérieur de chaleur. Pendant les essais lors du projet, les éléments limitants des systèmes de caloducs ont été identifiés. Les configurations du système ont été ajustées et modifiés dans la phase expérimentale d'essai pour surmonter ces limitations et maximiser l'extraction de chaleur.
Hua, Lihong. „Heat exchanger development for waste water heat recovery“. Thesis, University of Canterbury. Mechanical Engineering, 2005. http://hdl.handle.net/10092/6459.
Der volle Inhalt der QuelleAguilar, Alex. „Harnessing thermoacoustics for waste heat recovery“. Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/130213.
Der volle Inhalt der QuelleCataloged from student-submitted PDF of thesis.
Includes bibliographical references (pages 25-26).
Environmental concerns and economic incentives have created a push for a reduction in emissions and an increase in efficiency. The U.S. Department of Energy estimates that 20 to 50% of the energy consumed in manufacturing processes is lost in some form to waste heat. The purpose of this study is to review the waste heat recovery technologies currently available in both commercial and research applications to determine how thermoacoustics may serve a role in furthering the use of waste heat recovery units. A literary review of the most common waste heat recovery units was compiled to determine the advantages and disadvantages of the different technologies by comparing components and their governing processes. An existing model of a thermoacoustic converter (TAC) was reviewed and a conceptual analysis written to suggest improvements for future experimental designs.
by Alex Aguilar.
S.B.
S.B. Massachusetts Institute of Technology, Department of Mechanical Engineering
Lemaire, Lacey-Lynne. „Miniaturized stirling engines for waste heat recovery“. Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=107690.
Der volle Inhalt der QuelleLes appareils électroniques portatifs ont définitivement laissé un impact sur notre société et économie par leur utilisation fréquente pour le calcul, les communications et le divertissement. La performance et l'autonomie de ces appareils peuvent s'améliorer grandement si leur exploitation fonctionne en utilisant l'énergie récoltée de l'environnement. Pour s'orienter vers ce but, cette thèse a exploré si le développement d'un moteur Stirling fonctionnant sur l'énergie résiduelle était faisable. Un moteur Stirling de configuration 'gamma', de la grandeur d'une paume de main, avec un volume d'environ 165 centimètres cubes, a été fabriqué en utilisant des techniques conventionnelles d'usinage. Ce moteur a été capable de soutenir l'opération constante et stable à des différences en température relativement basses (entre 20 degrés Celsius et 100 degrés Celsius). De plus, il a produit quelques milli-Joules d'énergie mécanique à des fréquences entre 200 et 500 révolutions par minute. Par la suite, le moteur Stirling de configuration 'gamma' a été transformé en un moteur Ringbom. Par après, l'opération de ce moteur a été comparée à des prédictions basées sur un modèle analytique disponible dans la littérature. Les informations recueillies durant cette étude ont fourni certaines directives pour la miniaturisation éventuelle d'un moteur Stirling en utilisant des techniques de microfabrication.
Gibbons, Jonathan S. (Jonathan Scott) 1979, und Stephen V. 1982 Samouhos. „Mobile power plants : waste body heat recovery“. Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/32814.
Der volle Inhalt der QuelleIncludes bibliographical references.
Novel methods to convert waste metabolic heat into useful and useable amounts of electricity were studied. Thermoelectric, magneto hydrodynamic, and piezo-electric energy conversions at the desired scope were evaluated to understand their role and utility in the efficient conversion of waste body heat. The piezo-electric generator holds the most promise for the efficient conversion of waste body heat into electricity. In the future, this same device could be easily extended into a combustion based power plant. An experimental apparatus investigating the use of magneto hydrodynamics was designed, built, and tested. A room temperature liquid inetal was propelled through a magneto hydrodynamic channel of 4 inches by 0.1875 inches at a rate of 10 mL/s. A 2 T induction field was applied within the channel. However, the results of the analysis did not find the magneto hydrodynamic device to be an effective electric generator at the scale tested.
by Jonathan S. Gibbons and Stephen V. Samouhos.
S.B.
Sapa, Ihor. „Waste heat recovery in the ceramic industry“. Master's thesis, Universidade de Aveiro, 2013. http://hdl.handle.net/10773/11827.
Der volle Inhalt der QuelleEste trabalho tem como objetivo principal constituir um contributo para a sistematização e análise das diferentes opções disponíveis para a recuperação de calor residual na indústria cerâmica, através do desenvolvimento e aplicação de uma metodologia para a incorporação eficiente de tecnologias de recuperação de calor residual. Com base na revisão da literatura, a metodologia proposta fornece bases para a identificação e caracterização das fontes de calor residual presentes na indústria cerâmica, bem como apresenta a revisão e análise de aplicabilidade das tecnologias de recuperação de calor mais comuns e inerentes a este sector. A demonstração e aplicação da metodologia proposta foi desenvolvida no âmbito de um estágio extracurricular numa unidade fabril portuguesa do setor cerâmico - TopCer - integrado no programa Galp 202020@UA. O estudo de caso desenvolvido revelou a importância da recuperação de calor como uma das ferramentas para a melhoria da eficiência energética no sector cerâmico no sentido de obter uma vantagem competitiva. A revisão bibliográfica sobre recuperação de calor demonstrou que esta área do conhecimento tem apresentado um crescimento significativo em termos de número de publicações quase duplicando em número de 2011 para 2012, o que ilustra o crescente interesse da comunidades científica e tecnológica por este tema. A metodologia proposta tendo o setor da indústria cerâmica como ponto de partida, é suficientemente robusta para poder ser facilmente adaptada a outras indústrias que procuram soluções de poupança de energia através da valorização de calor residual.
This work aims to be a contribution to the systematization and analysis of the different options available for waste heat recovery in the ceramic industry, through the development and application of a methodology for incorporating efficient technologies in waste heat recovery in the industrial process. Based on a review of the literature, the proposed methodology provides the bases for the identification and characterization of waste heat sources in the ceramics industry, and presents a review and analysis of the applicability of the available technologies for heat recovery, most common and inherent in this sector. The demonstration and application of the proposed methodology was developed at a Portuguese ceramic manufacturing unit – TopCer – as part of an extracurricular internship under Galp 202020@UA program. The undertaken case study revealed the importance of heat recovery as a tool for improving energy efficiency in the ceramic sector in order to gain competitive advantage. The literature review on the waste heat recovery has demonstrated that this area has suffered a significant increase in terms of number of publications in 2012, illustrating the growing interest of scientific communities and practitioners in the heat recovery problems. The elaborated methodology for waste heat recovery incorporation is a rather robust instrument and, therefore, it can be easily tailored to other industries looking for energy saving solutions though consideration of waste heat recovery options.
Harman, Thomas David V. „Waste heat recovery in data centers ejector heat pump analysis /“. Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26594.
Der volle Inhalt der QuelleCommittee Chair: Dr. Yogendra Joshi; Committee Member: Dr. S. Mostafa Ghiaasiaan; Committee Member: Dr. Sheldon Jeter. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Nourozi, Behrouz. „Sustainable building ventilation solutions with heat recovery from waste heat“. Licentiate thesis, KTH, Hållbara byggnader, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-256567.
Der volle Inhalt der QuelleQC 20190830
Oluleye, Oluwagbemisola Olarinde. „Integration of waste heat recovery in process sites“. Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/integration-of-waste-heat-recovery-in-process-sites(ebbc2669-2c9b-40be-9eae-8d2252f0286f).html.
Der volle Inhalt der QuelleBlanquart, Fanny. „Perspectives for Power Generation fromIndustrial Waste Heat Recovery“. Thesis, KTH, Skolan för industriell teknik och management (ITM), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215985.
Der volle Inhalt der QuelleChowdhury, Jahedul Islam. „Modelling and control of waste heat recovery system“. Thesis, Queen's University Belfast, 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725593.
Der volle Inhalt der QuelleBorgström, Fredrik, und Jonas Coyet. „Waste heat recovery system with new thermoelectric materials“. Thesis, Linköpings universitet, Mekanisk värmeteori och strömningslära, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-125716.
Der volle Inhalt der QuelleDe, Waal Devin. „Feasibility study of heat pumps for waste heat recovery in industry“. Master's thesis, University of Cape Town, 2012. http://hdl.handle.net/11427/10324.
Der volle Inhalt der QuelleA case study was thus carried out at an applicable local industry (brewery) to assess the feasibility of implementing the heat pump for waste heat recovery. Through analysis, the focus was narrowed down from a site wide audit, to a departmental breakdown and then eventually to a specific process; the wort boiler. Three different alternatives were investigated and the performance and economic viability compared; a simple waste heat recovery solution involving a vapour condenser (vq, a mechanical vapour recompression (MVR) heat pump and a thermal vapour recompression (TVR) heat pump. It was found that the MVR system yielded the greatest energy savings, followed by the VC and then the TVR system. All three systems had positive rates of return, with the VC and TVR systems being tied for first place.
Mateu, Royo Carlos. „Development of High Temperature Heat Pumps for Industrial Waste Heat Recovery“. Doctoral thesis, Universitat Jaume I, 2021. http://dx.doi.org/10.6035/14107.2021.744033.
Der volle Inhalt der QuelleUno de los mayores desafíos de esta década recae en el desarrollo de sistemas energéticos más sostenibles que contribuyan a la preocupación medioambiental, especialmente la mitigación del cambio climático. Extender las condiciones de funcionamiento de la tecnología de bomba de calor a temperaturas más elevadas permitirá descarbonizar el sector industrial desde dos vertientes: recuperando calor de fuentes de calor residual, actualmente disipado al ambiente y producir calor a los niveles térmicos requeridos, útiles para los procesos industriales, reduciendo así las emisiones de CO2 equivalentes del sector industrial y contribuyendo al desarrollo sostenible. Esta tesis pretende abordar el desarrollo de bombas de calor de alta temperatura a través de un análisis teórico y experimental, para abordar diferentes desafíos tecnológicos: arquitectura, refrigerantes, prototipo experimental, aplicaciones avanzadas e integración de sistemas, generando nuevos conocimientos que representan un paso adelante en la tecnología de bombas de calor de alta temperatura.
Programa de Doctorat en Tecnologies Industrials i Materials
Finger, Erik J. „Two-stage heat engine for converting waste heat to useful work“. online access from Digital Dissertation Consortium, 2005. http://libweb.cityu.edu.hk/cgi-bin/er/db/ddcdiss.pl?3186905.
Der volle Inhalt der QuelleEngelke, Kylan Wynn. „Novel thermoelectric generator for stationary power waste heat recovery“. Thesis, Montana State University, 2010. http://etd.lib.montana.edu/etd/2010/engelke/EngelkeK0510.pdf.
Der volle Inhalt der QuelleKishore, Ravi Anant. „Low-grade Thermal Energy Harvesting and Waste Heat Recovery“. Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/103650.
Der volle Inhalt der QuellePHD
Williams, Christopher Lloyd. „A waste heat recovery strategy for an integrated steelworks“. Thesis, Cardiff University, 2015. http://orca.cf.ac.uk/87146/.
Der volle Inhalt der QuelleAbbas, Sohani Amir. „Waste heat recovery from SSAB’s Steel plant in Oxelösund using a Heat Pump“. Thesis, KTH, Energiteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-193047.
Der volle Inhalt der QuelleThis project was focused on waste heat potentials in the iron and steel industry. High temperature industrial heat pumps (HTIHP) for medium temperature, waste heat recovery were modelled. The SSAB iron and steel plant in Oxelösund was used as an example. The iron and steel industry in Sweden is a large energy consumer, together with the pulp and paper industry. There is also a large potential for waste heat recovery in the steel industry. This is already done in for instance Luleå [1]. Iron and steel production methods and waste heat recovery in the world, especially in the US and Sweden, have been reviewed in a literature study. Current methods and potentials of waste heat recovery in the iron and steel industry of Sweden were especially reviewed. The SSAB iron and steel plant in Oxelösund has been planning for decades, not only to heat the city of Oxelösund as today, but also to expand to the nearby city of Nyköping 12 km away [2]. Typically the maximum temperature entering the district heating network of Nyköping would be 110 °C on the coldest day. The heat pump output from a waste heat recovery plant generally does not have to reach such a high temperature. However, 80 °C maximum forward temperature would surely be enough to use recovered heat all the time. Even a lower temperature like 75 °C would probably be sufficient – as only a few heat exchangers in individual houses then would have to be changed, to accept that lower temperature. The extra degrees between 80 °C (75 °C) and 110 °C can be taken with heat from e.g. existing biofuel furnaces locally in Nyköping. Using heat pumps in this context is not self-evident. Generally the heat flows from a steel plant are available at such high temperatures that no heat pump ideally is needed. However collecting the heat at those high temperatures, in an old plant, can get very expensive and interfere with the processes. Therefore the study is focusing on medium temperature (30 – 40 °C) waste heat potentials implementing High Temperature Industrial Heat Pumps (HTIHP). The heat is now being rejected by a cooling tower. That way, easily available waste heat, can cover 50% of the total need from Nyköping. Assuming a COP of around 5 and adding the electricity needed to run the heat pump, the total will result in totally 62% of the energy need for Nyköping. The Oxelösund Plant is just an example and the study is really focusing on HITIHP for this and similar purposes. Appropriate components and refrigerants have been evaluated and the general layouts of proper HITIHP types are suggested. A literature study on the best choice of refrigerant in the high temperature heat pump has been done. A two stage high temperature heat pump has been modeled and simulated using the available heat sink capacity and temperature, together with the demanded temperatures in the district heating network. The simulation has mainly been performed using the EES software. R245fa is e.g. a good candidate as refrigerant in a second stage (high temperature stage) of a two stage cascade heat pump. With R245fa even higher temperatures than 90°C to the district heating can be achieved. Earlier, R134a would be used in this application but R245fa has e.g. a lower GWP (around 1000 instead of around 1300) [3]. Many different refrigerants have been simulated in the first of two stages of a smaller screw compressor driven cascade heat pump. Also a two stage turbo compressor throttling heat pump, using a flash tank, has been simulated, showing a good performance. In the latter case both, refrigerants R1234ze(z) and R245fa have good characteristics but R1234ze(z) has a much lower GWP. All COPs, compressor energy consumptions, condenser pressures, pressure ratios were compared. R245fa-R245fa and R600-R245fa were studied in the two stage cascade systems. They came out with the best results. R717-R245fa also showed a very good performance, but had other limitations. In two stage flash tank systems, R1234ze(z) had the best performance (COP) and no temperature loss between the two stages (like in the cascade systems). If SSAB Oxelösund’s blast furnace and cooling tower water would not be available, the turbo heat pump can produce the demanded heat, using sea water as heat source instead. The CO2 emission reduction is very hard to calculate. That will be more of a political conviction problem. A very rough cost estimation of the projects investment cost is also done. It will cost between 420 and 450 MSEK. This cost estimation includes a heat pump and 12 km pipe to Nyköping. The cost of heat delivered in Nyköping will vary between 0,2 and 0,65 SEK/kWh when the cost of electricity is varied between 0,5 and 2 SEK/kWh (include taxes). In that price the capital costs for the heat pump and pipe is included. The high cost level 0, 65 SEK/kWh assumes that sea water is used as heat source. A cooling towers waste heat can be recovered, using a high temperature heat pump. This heat can thus be delivered from Oxelösund to Nyköping. The economic viability of this idea is only superficially covered. Factors like if the old furnace in Nyköping needs upgrading, which could be postponed, could possibly tip the project into go. Maitenance cost, of the existing cooling tower, is another such factor, initiating the project. A waste heat pipe between Oxelösund and Nyköping has been studied at least since the middle of the 1970:s by e.g. Lars Åke Cronholm [4]. Could it be the right time now?
Koh, Chuan Heng Erik. „Performance and reliability of exhaust gas waste heat recovery units“. Thesis, Monterey, California: Naval Postgraduate School, 2014. http://hdl.handle.net/10945/43942.
Der volle Inhalt der QuelleThis thesis presents the effect of exhaust tube length-to-diameter (L/d) ratio, jacket-to-tube diameter (D/d) ratio, coolant inlet and outlet placements, exhaust gas swirling conditions, and tube materials (steel, copper, Inconel, and ceramic) on heat recovery performance, exhaust side pressure drop, and temperature profile in the exhaust gas Waste Heat Recovery Unit (WHRU). Non-dimensional parametric studies of a selected counter-flow Water Jacket WHRU was conducted using analytical and Computational Fluid Dynamic (CFD) models. Exhaust gas Reynolds numbers between 20,000 and 400,000, representative of exhaust gas flow in the exhaust stacks of U.S.Marine Corps’ MEP803A diesel generators and the U.S.Navy's 501-K17 gas turbine generators, were used. Results indicate heat recovery increases with higher L/d, D/d, and swirling exhaust gases conditions but with a severe pressure drop penalty. Addition of a solid heat spreader at the exhaust gas inlet and the use of suitable tube materials were also found to influence temperature profiles in the WHRU and mitigate adverse temperature gradients to some extent without any additional pressure drop penalty. Optimal laterally shifted placement of coolant inlet and outlet was found to improve heat recovery by up to 19% and was very effective at mitigating adverse temperature profiles, which improves the reliability of exhaust gas WHRU.
Ruiz, Joaquin G. 1981. „Waste heat recovery in automobile engines : potential solutions and benefits“. Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32832.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 32-33).
Less than 30% of the energy in a gallon of gasoline reaches the wheels of a typical car; most of the remaining energy is lost as heat. Since most of the energy consumed by an internal combustion engine is wasted, capturing much of that wasted energy can provide a large increase in energy efficiency. For example, a typical engine producing 100 kilowatts of driveshaft power expels 68 kilowatts of heat energy through the radiator and 136 kilowatts through the exhaust. The possibilities of where and how to capture this lost energy are examined in this paper. The solution of recovering heat energy from the exhaust through the catalytic converter with a Stirling engine was examined due to its practicality. A novel approach for combining a Stirling engine and a catalytic converter that would be effective was designed. The power output and efficiency of the Stirling Engine were analyzed and it was found that the average overall car efficiency could be raised 7% with the new design.
by Joaquin G. Ruiz.
S.B.
Adams, Michael J. „Thermoelectricity for Waste Heat Recovery, Thermal Switching, and Active Cooling“. The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1546257704236741.
Der volle Inhalt der QuelleOlanders, Linn. „Modeling of waste heat recovery system and outdoor swimming pool : Waste heat from hotel kitchen recovered by heat exchanger transferred to pool“. Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-171880.
Der volle Inhalt der QuelleBoissevain, Brett. „Waste Heat Utilization in an Anaerobic Digestion System“. DigitalCommons@USU, 2012. https://digitalcommons.usu.edu/etd/1266.
Der volle Inhalt der QuelleMiró, Laia. „Industrial waste heat: mapping, estimations and recovery by means of TES“. Doctoral thesis, Universitat de Lleida, 2016. http://hdl.handle.net/10803/399633.
Der volle Inhalt der QuelleEn el actual contexto energético, el uso del calor residual industrial (CRI) representa una oportunidad atractiva de sustituir el consumo de energía primaria por un medio de bajo nivel de emisiones y de bajo coste. Este calor se puede recuperar y reutilizar en otros procesos, ser transformado en electricidad o en calor. A pesar de su prometedor potencial, este CRI está actualmente en desuso. El objetivo de esta tesis doctoral es el de superar algunas de las barreras tecnológicas y de información que existen actualmente en la utilización de esta fuente de energía. En primer lugar, se ha identificado el potencial mundial actual de CRI a escala de país. En segundo lugar, se generaron nuevas evaluaciones de estimación del potencial de CRI: en la industria de la manufactura española y en la industria de minerales no metálicos Europea. Finalmente, se trató la recuperación y reutilización de este calor mediante almacenamiento de energía térmica y se evaluó exhaustivamente los casos prácticos donde esta tecnología ha sido implementada.
In the current energy context, the use of industrial waste heat (IWH) provides an attractive opportunity to substitute primary energy consumption by a low-emission and low-cost energy carrier. Despite its potential, IWH is largely untapped. This heat can be recovered and reused in other processes, transformed into electricity or heat. The aim of this PhD is to overcome some of the current technological and information barriers and to provide the literature and the researchers with more knowledge of the topic and supporting its widespread development. First, current IWH potential worldwide at country scale was identified. Second, new assessments to estimate the regional IWH potential were generated: in the Spanish manufacture industry as well as in the European non-metallic mineral industry. Finally, its reuse by means of thermal energy storage (TES) was analysed and an exhaustive research of current case studies was performed.
Hedström, Sofia. „Thermal energy recovery of low grade waste heat in hydrogenation process“. Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-32335.
Der volle Inhalt der QuelleHenderson, Erik. „Metal Thermoelectrics: An Economical Solution to Large Scale Waste Heat Recovery“. University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1512038554977884.
Der volle Inhalt der QuelleChabo, Alexander, und Peter Tysk. „Maximum Net-power Point Tracking of a waste heat recovery system“. Thesis, KTH, Maskinkonstruktion (Inst.), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-202206.
Der volle Inhalt der QuelleAbout 30% of the released energy of a truck’s fuel is waste heat in the exhaustsystem. It is possible to recover some of the energy with a waste heat recovery system that generates electricity from a temperature difference by utilising the Seebeck-effect. Two thermoelectric generators are implemented on a truck and utilises the exhaust gas as a heat source and the coolant fluid as a cold source to accomplish a temperature difference in the generators. The electricity is reintroduced to the truck’s electrical system and thus reducing the load on the electrical generator in the engine which results in lower fuel consumption. This thesis includes the construction of a function that maximises the netpowerderived from the system. The function developed is named Maximum Net Power Point Tracking (MNPT) and has the task of calculating reference values that the controllers of the system must achieve in order to obtain maximumnet-power. A simulation environment has been developed in Matlab/Simulink in order to design a control strategy to three valves and one pump. The system has been implemented on a engine control unit that has been mounted on a test rack. The engine control unit communicates through CAN to connected devices. The system has not been implemented on the truck due that all the physical components were not completed during the time of the thesis. A case study has been conducted and the results proves that the use of an MNPT-function allows up to 300% increase in regenerated net power into the trucks electrical system compared with no control algorithms, and up to 50% compared with static reference values.
Gonzalez, Salazar Miguel Angel. „System analysis of waste heat applications with LNG regasification“. Thesis, KTH, Kraft- och värmeteknologi, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-176444.
Der volle Inhalt der QuelleNamakian, Mohsen. „Mild Hybrid System in Combination with Waste Heat Recovery for Commercial Vehicles“. Thesis, Linköpings universitet, Maskinkonstruktion, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-93997.
Der volle Inhalt der QuelleBohning, Ryan S. „Optimal placement of non-intrusive waste heat recovery devices in exhaust ducts“. Thesis, Monterey, California: Naval Postgraduate School, 2015. http://hdl.handle.net/10945/45816.
Der volle Inhalt der QuelleThe Secretary of the Navy has ordered the U.S. Navy and Marine Corps to reduce energy usage. This study explores how to optimize placement and size of a non-intrusive waste heat recovery device for energy recovery in exhaust ducts. Additionally, it explores the effect that a device has on the exhaust infrared signature by analyzing the change in the bulk temperature at the exhaust outlet. Optimal device placement and size is dependent on duct geometry, external heat transfer coefficient, and flow characteristics, namely Reynolds number. Infrared signature intensity reductions of 1–14% are only achievable with unpractically long thermoelectric generator devices and high external heat transfer coefficients. Doubling the external heat transfer coefficient increases heat recovery by 15–30% for low Reynolds number flows (104) and 75–90% for high Reynolds number flows (105~106). In low Reynolds number flows (~104), device position can account for a 75% change in energy recovery whereas high Reynolds number flows (~106) have unexpected areas of higher heat transfer. Position changes can increase heat recovery 10–70%, while increasing device size may only marginally improve results. Identifying local maxima for heat transfer, especially in high Reynolds number flows (~106), is counterintuitive because of unexpected recirculation zone effects.
Panesar, Angad Singh. „Waste heat recovery using fluid bottoming cycles for heavy duty diesel engines“. Thesis, University of Brighton, 2015. https://research.brighton.ac.uk/en/studentTheses/2e7faf1c-93fc-47b7-90f7-a6704ea95230.
Der volle Inhalt der QuelleAbabatin, Yasser. „RECOVERY OF EXHAUST WASTE HEAT FOR A HYBRID CAR USING STEAM TURBINE“. OpenSIUC, 2015. https://opensiuc.lib.siu.edu/theses/1653.
Der volle Inhalt der QuelleGustafsson, Filip. „Waste heat recovery systems : Fuel energy utilisation for a marine defence platform“. Thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-19681.
Der volle Inhalt der QuelleDenna rapport är ett examensarbete för BTH i samarbete med företaget Saab Kockums AB. Arbetet utforskar möjligheterna att möta framtida miljömässiga och ekonomiska krav genom att låta fartyg minska sin bränsleförbrukning. System för återvinning av spillvärme (WHRS) fångar upp värmeenergi som vanligtvis kyls ner eller släpps ut i naturen och för den tillbaka till systemet. Termisk energilagring (TES) är metoder för lagring av värme som gör det möjligt att använda termisk energi när det behövs. Vissa applikationer av TES är säsongslagring, där sommarvärme lagras för användning på vintern eller när is produceras under vintern och används för kylning senare. Syftet med denna studie är att undersöka möjligheterna att utnyttja ett fartygs spillvärme genom att omvandla termisk energi till elektrisk energi. Detta examensarbete syftar också till att undersöka förhållandena för hur SaltX Technology’s nanobelagda salt kan användas som en potentiell lösning för lagring av termisk energi. Inledningsvis undersöktes WHRS:s förväntningar och krav i en funktionsanalys. Fortsättningsvis bestod metoden av en kombination av en litteraturstudie och dialoger med intressenter. Litteraturstudien användes som ett verktyg för att identifiera, välja och studera intressanta koncept baserade på vetenskapligt beprövade fakta. Dialoger hölls som ett komplement till litteraturstudien för att hitta information. Studien visade att en organisk Rankine-cykel har den högsta verkningsgraden för låg-medelhög temperatur och därför är bäst lämpad för att återvinna energi buren i kylvattnet samt att en ång-Rankine-cykel är bäst lämpad för att utnyttja energin från avgaserna för direkt användning. Studien erhöll förhållanden för termisk energilagring i salt samt viktiga parametrar för systemet. Slutligen visade resultatet att en Stirlingmotor är det mest effektiva konceptet för omvandling av lagrad energi till elektrisk energi. Slutsatserna är att det finns stora möjligheter för återvinning av restvärme på marina försvarsplattformar. En Stirlingmotor för energiomvandling i kombination med termisk energilagring visar störst potential som ett framtida system för återvinning av spillvärme på denna typen av plattformar.
Royo, Pascual Lucía. „Study of Organic Rankine Cycles for Waste Heat Recovery in Transportation Vehicles“. Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/84013.
Der volle Inhalt der QuelleLas normativas anticontaminantes para el transporte propulsado por motores de combustión interna alternativos en la Unión Europea muestran límites de emisión menores a 95 g CO2/km para el año 2020. Con el fin de cumplir estos límites, deberán ser realizadas mejoras en el consumo de combustible en los vehículos. Una de las principales pérdidas en los Motores de Combustión Interna Alternativos (MCIA) ocurre en la línea de escape. Los MCIA transforman la energía química en energía mecánica a través de la combustión; sin embargo, únicamente el 15-32% de esta energía es eficazmente usada para producir trabajo, mientras que la mayor parte es desperdiciada a través de los gases de escape y el agua de refrigeración del motor. Por ello, estas fuentes de energía pueden ser utilizadas para mejorar la eficiencia global del vehículo. De estas fuentes, los gases de escape muestran un potencial mayor de recuperación de energía residual debido a su mayor contenido exergético. De todos los tipos de Sistemas de Recuperación de Energía Residual, los Ciclos Rankine son considerados como los candidatos más prometedores para mejorar la eficiencia de los MCIA. Sin embargo, la implementación de esta tecnología en los vehículos de pasajeros modernos requiere nuevas características para conseguir una integración compacta y una buena controlabilidad del motor. Mientras que las aplicaciones industriales normalmente operan en puntos de operación estacionarios, en el caso de los vehículos con MCIA existen importantes retos teniendo en cuenta su impacto en el modo de conducción cotidianos. Esta Tesis contribuye al conocimiento y caracterización de un Ciclo Rankine Orgánico acoplado con un Motor de Combustión Interna Alternativo utilizando etanol como fluido de trabajo y un expansor tipo Swash-plate como máquina expansora. El principal objetivo de este trabajo de investigación es obtener y cuantificar el potencial de los Ciclos Rankine Orgánicos (ORC) para la recuperación de la energía residual en motores de automoción. Para ello, una instalación experimental con un Ciclo Rankine Orgánico fue diseñada y construida en el Instituto Universitario "CMT - Motores Térmicos" (Universidad Politécnica de Valencia), que puede ser acoplada a diferentes tipos de motores de combustión interna alternativos. Usando esta instalación, una estimación de las principales variables del ciclo fue obtenida tanto en puntos estacionarios como en transitorios. Un potencial de mejora en torno a un 3.7 % puede ser alcanzada en puntos de alta carga instalando un ORC en un motor gasolina turboalimentado. Respecto a las condiciones transitorias, un control sencillo y robusto basado en PIDs adaptativos permite el control del ORC en perfiles de conducción reales. Las condiciones ideales para testear y validar el control del ORC son alta carga en el motor comenzando con el motor en caliente para conseguir altas temperaturas en el escape que justifiquen la viabilidad de estos ciclos. Para tratar de profundizar en la viabilidad y características de esta aplicación particular, diversos estudios teóricos fueron realizados. Un modelo 1D fue desarrollado usando el software LMS Imagine.Lab Amesim. Un potencial de mejora en torno a un 2.5% en el rendimiento efectivo del motor fue obtenido en condiciones transitorias en los puntos de alta carga como una consecuencia directa de la reducción de 23.5 g/kWh del consumo específico. Para concluir, un estudio termo-económico fue desarrollado teniendo en cuenta los costes de los principales elementos de la instalación y un valor mínimo de 2030 €/kW fue obtenido en el parámetro de Coste Específico de inversión. Además, el estudio exergético muestra que un total de 3.75 kW, 36.5 % de la tasa de destrucción total de exergía, podría ser reducida en los años futuros, teniendo en cuenta las máximas eficiencias considerando restricciones técnicas en los componentes del ciclo.
Les normatives anticontaminants per al transport propulsat per motors de combustió interna alternatius a la Unió Europea mostren límits d'emissió menors a 95 g·CO2/km per a l'any 2020. Per tal d'acomplir aquests límits, s'hauran de realitzar millores al consum de combustible dels vehicles. Una de les principals pèrdues als Motors de combustió interna alternatius (MCIA) ocorre a la línia d'escapament. Els MCIA transformen l'energia química en energia mecànica a través de la combustió; però, únicament el 15-32% d'aquesta energia és usada per produir treball, mentre que la major part és desaprofitada a través dels gasos d'escapament i l'aigua de refrigeració del motor. Per això, aquestes fonts d'energia poden ser utilitzades per millorar l'eficiència global del vehicle. Considerant aquestes dues fonts d'energia, els gasos d'escapament mostren un potencial major de recuperació d'energia residual debut al seu major contingut exergètic. De tots els tipus de Sistemes de Recuperació d'Energia Residual, els Cicles Rankine són considerats com els candidats més prometedors per millorar l'eficiència dels MCIA. No obstant, la implementació d'aquesta tecnologia en els vehicles de passatgers moderns requereix un desenvolupament addicional per aconseguir una integració compacta i una bona controlabilitat del motor. Mentre que les aplicacions industrials normalment operen en punts d'operació estacionaris, en el cas dels vehicles amb MCIA hi han importants reptes a solucionar tenint en compte el funcionament en condicions variables del motor i el seu impacte en la manera de conducció quotidiana del usuari. Aquesta Tesi contribueix al coneixement i caracterització d'un Cicle Rankine Orgànic (ORC) acoblat amb un motor de combustió interna alternatiu (MCIA) utilitzant etanol com a fluid de treball i un expansor tipus Swash-plate com a màquina expansora. El principal objectiu d'aquest treball de recerca és obtenir i quantificar el potencial dels ORCs per a la recuperació de l'energia residual en motors d'automoció. Per aconseguir-ho, una instal·lació experimental amb un ORC va ser dissenyada i construïda a l'Institut "CMT- Motores Térmicos" (Universitat Politècnica de València). Esta installació pot ser acoblada a diferents tipus de MCIAs. Mitjançant assajos experimentals en aquesta installació, una estimació de les principals variables del cicle va ser obtinguda tant en punts estacionaris com en punts transitoris. Un potencial de millora al voltant d'un 3.7% pot ser aconseguida en punts d'alta càrrega instal·lant un ORC acoblat a un motor gasolina turboalimentat. Pel que fa a les condicions transitòries, un control senzill i robust basat en PIDs adaptatius permet el control del ORC en perfils de conducció reals. Les condicions ideals per a testejar i validar el control de l'ORC són alta càrrega al motor començant amb el motor en calent per aconseguir altes temperatures d'escapament que justifiquen la viabilitat d'aquests cicles. Per tractar d'aprofundir en la viabilitat i característiques d'aquesta aplicació particular, diversos estudis teòrics van ser realitzats. Un model 1D va ser desenvolupat usant el programari LMS Imagine.Lab Amesim. Un potencial de millora al voltant d'un 2.5% en el rendiment efectiu del motor va ser obtingut en condicions transitòries en els punts d'alta càrrega com una conseqüència directa de la reducció de 23.5 g/kWh al consum específic. Per concloure, un estudi termo-econòmic va ser desenvolupat tenint en compte els costos dels principals elements de la installació i un valor mínim de 2030 €/kW va ser obtingut en el paràmetre del Cost Específic d'Inversió. A més, l'estudi exergètic mostra que un total de 3.75 kW, 36.5% de la taxa de destrucció total d'exergia, podria ser recuperat en un pròxim, considerant restriccions tècniques en els components del cicle i tenint en compte les màximes eficiències que es poden aconseguir.
Royo Pascual, L. (2017). Study of Organic Rankine Cycles for Waste Heat Recovery in Transportation Vehicles [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/84013
TESIS
Boonsrang, Direcksataporn. „A study on the dynamic characteristics and control of heat exchangers in waste heat recovery systems /“. Electronic version of summary, 1992. http://www.wul.waseda.ac.jp/gakui/gaiyo/1797.pdf.
Der volle Inhalt der QuelleJohansson, Erik. „Parametric study of a wastewater heat recovery system for buildings“. Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-160471.
Der volle Inhalt der QuelleStengler, Jana [Verfasser], und André [Akademischer Betreuer] Thess. „Combined thermochemical energy storage and heat transformation for industrial waste heat recovery / Jana Stengler ; Betreuer: André Thess“. Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2021. http://d-nb.info/1231794410/34.
Der volle Inhalt der QuelleMantovanelli, Alessandro. „Microchannel heat exchangers: An attractive option for the regenerator of a mobile orc waste heat recovery system“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8639/.
Der volle Inhalt der QuelleGewald, Daniela [Verfasser]. „Waste heat recovery of stationary internal combustion engines for power generation / Daniela Gewald“. München : Verlag Dr. Hut, 2013. http://d-nb.info/1045987735/34.
Der volle Inhalt der QuelleMassaguer, Colomer Eduard. „Advances in the modelling of thermoelectric energy harvesters in waste heat recovery applications“. Doctoral thesis, Universitat de Girona, 2016. http://hdl.handle.net/10803/398612.
Der volle Inhalt der QuelleEn aquest treball s’investiga la recuperació termoelèctrica en xarxes de fluids i es proposa una eina genèrica per a la simulació i dimensionament de recuperadors termoelèctrics, els quals, poden ser utilitzats en aplicacions industrials per convertir l'energia tèrmica residual en electricitat. Els models actuals que es troben en la literatura es basen sovint en aplicacions molt específiques o són massa generals per analitzar realment el comportament de recuperadors en aplicacions reals. El model desenvolupat en aquest treball és altament adaptable pel que permet estudiar un gran nombre de sistemes diferents. S’ha desenvolupat un model teòric per estimar amb precisió l'energia recuperada tenint en compte les no linealitats de les equacions termoelèctriques i de transferència de calor. Tenint en compte que un recuperador termoelèctric comprèn sempre múltiples mòduls termoelèctrics col·locats en respecte a la direcció de flux, ambdues configuracions sèrie-paral·lel tant la tèrmica com l’elèctrica s'han considerat. El nou model ha estat analitzat i validat sota diversos estats estacionaris i transitoris a partir de dades experimentals. El model de recuperador proposat s’ha codificat per tal de treballar en l’entorn TRNSYS, de manera que pot ser utilitzat en el disseny i optimització de recuperadors termoelèctrics, és fàcilment escalable, permet atendre a una gran varietat d'aplicacions i requisits i, per tant, ajudar a la seva implantació en aplicacions reals. Aquest mòdul servirà per predir el comportament de recuperadors de calor termoelèctrics aplicats en sistemes tèrmics convencionals
Koppauer, Herwig [Verfasser]. „Nonlinear model predictive control of an automotive waste heat recovery system / Herwig Koppauer“. Düren : Shaker, 2019. http://d-nb.info/1196486247/34.
Der volle Inhalt der QuelleLuu, Son Dac Ngoc. „Synthesis and characterisation of oxychalcogenides as promising thermoelectric materials for waste heat recovery“. Thesis, Heriot-Watt University, 2015. http://hdl.handle.net/10399/3216.
Der volle Inhalt der QuelleAlbatati, Faisal Ali S. „Investigation of environmentally friendly power generation systems for low-grade waste heat recovery“. Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/28990/.
Der volle Inhalt der QuelleLittle, Adrienne Blair. „An understanding of ejector flow phenomena for waste heat driven cooling“. Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54373.
Der volle Inhalt der QuelleSharp, Joshua Glenn. „Experimental determination of the feasibility of waste heat recovery in data centers using ejector based refrigeration“. Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41060.
Der volle Inhalt der Quelle