Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Wall impulse response“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Wall impulse response" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Wall impulse response"
Xu, Qian. „Damage Index Analysis of Retaining Wall Structures Based on the Impulse Response Function and Virtual Impulse Response Function“. Shock and Vibration 2021 (18.10.2021): 1–21. http://dx.doi.org/10.1155/2021/9741732.
Der volle Inhalt der QuelleVadarevu, Sabarish B., Sean Symon, Simon J. Illingworth und Ivan Marusic. „Coherent structures in the linearized impulse response of turbulent channel flow“. Journal of Fluid Mechanics 863 (30.01.2019): 1190–203. http://dx.doi.org/10.1017/jfm.2019.15.
Der volle Inhalt der QuelleAu, Eu Ving, Gregory MacRae, Didier Pettinga, Bruce Deam, Vinod Sadashiva und Hossein Soleimankhani. „Seismic response of torsionally irregular single story structures“. Bulletin of the New Zealand Society for Earthquake Engineering 52, Nr. 1 (31.03.2019): 44–53. http://dx.doi.org/10.5459/bnzsee.52.1.44-53.
Der volle Inhalt der QuelleWei, Xue Ying, Tuo Huang und Nan Li. „Numerical Derivation of Pressure-Impulse Diagrams for Unreinforced Brick Masonry Walls“. Advanced Materials Research 368-373 (Oktober 2011): 1435–39. http://dx.doi.org/10.4028/www.scientific.net/amr.368-373.1435.
Der volle Inhalt der QuelleJia, Zhenzhen, Qing Ye und He Li. „Damage Assessment of Roadway Wall Caused by Dynamic and Static Load Action of Gas Explosion“. Processes 11, Nr. 2 (14.02.2023): 580. http://dx.doi.org/10.3390/pr11020580.
Der volle Inhalt der QuelleXu, Qian. „Damage Identification Investigation of Retaining Wall Structures Based on a Virtual Impulse Response Function“. Shock and Vibration 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/1346939.
Der volle Inhalt der QuelleWu, Di, Fangshuo Mo und Jianmin Ge. „Effects of coupling between loudspeaker and wall on impulse response measurement“. Journal of the Acoustical Society of America 131, Nr. 4 (April 2012): 3284. http://dx.doi.org/10.1121/1.4708279.
Der volle Inhalt der QuelleLi, Wen Sheng, Hui Yang und Bo Zhang. „Dynamic Analysis on Explosion Resistance Performance of Reinforced Concrete Wall“. Advanced Materials Research 1078 (Dezember 2014): 162–65. http://dx.doi.org/10.4028/www.scientific.net/amr.1078.162.
Der volle Inhalt der QuelleGaiser, James E., Terrance J. Fulp, Steve G. Petermann und Gary M. Karner. „Vertical seismic profile sonde coupling“. GEOPHYSICS 53, Nr. 2 (Februar 1988): 206–14. http://dx.doi.org/10.1190/1.1442456.
Der volle Inhalt der QuellePastor, J., B. Soria und C. Belmonte. „Properties of the nociceptive neurons of the leech segmental ganglion“. Journal of Neurophysiology 75, Nr. 6 (01.06.1996): 2268–79. http://dx.doi.org/10.1152/jn.1996.75.6.2268.
Der volle Inhalt der QuelleDissertationen zum Thema "Wall impulse response"
Fan, Jin. „Response of Reinforced Concrete Reservoir Walls Subjected to Blast Loading“. Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31441.
Der volle Inhalt der QuelleDilungana, Stéphane. „Apprentissage automatique et optimisation pour la détermination des propriétés acoustiques d'une salle à partir de signaux audio“. Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD015.
Der volle Inhalt der QuelleThe aim of this thesis is to contribute to significantly improve in situ acoustic diagnosis of rooms by developing new approaches at the crossroads of machine learning, optimization, audio signal processing and acoustics. The work presented in this manuscript focuses on estimating the acoustic absorption properties of each wall in a room from multiple room impulse responses acquired for free positions of sources and microphones, along with measurements of geometric parameters and responses of the associated devices. Several methods are proposed to solve this complex inverse problem, progressively aiming for a more detailed description of the absorption properties of the walls, application to more realistic simulated data, and greater ease of implementation. This work culminates in the presentation of an approach for estimating the wall’s impulse responses by optimization in the time domain. This approach is based on a new extension of the room impulse response model derived from the image source method, which accounts for errors in the measurement of the geometric parameters, in addition to the spatial frequency dependence of the source and microphone responses
Burda, Maike M. „Testing for causality with Wald tests under nonregular conditions“. Doctoral thesis, [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=968852432.
Der volle Inhalt der QuelleAkram, Muhammad. „Do crude oil price changes affect economic growth of India, Pakistan and Bangladesh? : A multivariate time series analysis“. Thesis, Högskolan Dalarna, Nationalekonomi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:du-10723.
Der volle Inhalt der QuelleMozayyan, Sina. „Statistisk undersökning av valutakurser : En jämförelse mellan olika prognosmodeller“. Thesis, Stockholms universitet, Statistiska institutionen, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-152182.
Der volle Inhalt der QuelleThe foreign exchange market is the world’s largest market and is an essential part of the global society of today. The FX market enables companies to trade with different currencies across country borders. It is also a large trade-platform for both big and small financial actors, who greatly benefit from the advantages of good predictions. Modeling of financial instruments is one of the most commonly used investment strategies and its area of application ranges from the FX market to markets suchas the stock market and the commodity market. In this paper, four different statistical models are used to model the currency pair Euro-US Dollar. These methods are random walk, ARIMA, ARIMA-GARCH and VAR. Besides investigating which method that gives the best forecasts, the method that best describes the training datais also found. Furthermore, for the dynamic VAR model, it is explored how the FX market affects, and is affected by, the long term and short term interest. The results show that ARIMA(3,1,2) is the best at describing the exchange rate while VAR(2) with the exchange rate and the difference between long term interests as variables gives the best predictions.
Rafsanjani, Seyedebrahim Hashemi. „High strain rate constitutive modeling forhistorical structures subjected to blast loading“. Doctoral thesis, 2015. http://hdl.handle.net/1822/38459.
Der volle Inhalt der QuelleThe work presented here was accomplished at the Department of Civil Engineering of University of Minho. This work involves detailed numerical studies intended to better understand the blast response of masonry structures, develops strain dependent constitutive material plasticity model for masonry, and addresses iso-damage curves for typical masonry infill walls in Portugal under blast with different loading conditions, which can be adopted for practical use in the case of enclosures. A bomb explosion near a building, in addition to a great deal of casualties and losses, can cause serious effects on the building itself, such as noticeable damage on internal and external frames, collapsing walls or shutting down of critical life safety systems. Until Oklahoma City bombing in 1995, studies dealing with the blast behavior of structures were a field of limited interest in the civil engineering community. After this terrorist attack, a great deal of effort has been done to better understand the blast response of the structures and devise solutions to reduce destructive damages and casualties due to such devastative loads. Moreover, the studies on the influence of the high strain rate on mechanical characteristics of construction materials such as steel and concrete have been carried out intensively. Unfortunately, despite the high vulnerability of masonry structures against high strain rates, such investigations on masonry structures and material properties are still scarce. In this regard, conducting experiments and validating numerical models with field test data leads to a better understanding of the blast response of masonry walls and the relevance of the different masonry material properties, which, consequently, results in innovation of strengthening techniques and of assessment and design methods. The framework of blast loading and its effect on structures is briefly revised and different expressions for prediction of blast pressure parameters are illustrated. A brief review of the recent characterization of the dynamic masonry properties, which resulted in derivation of dynamic increase factors (DIF) is presented. Performance of masonry walls against blast loading regarding experimental activities are addressed subsequently. Moreover, a series of numerical simulation of masonry structures subjected to blast loads were performed along with parametric studies to evaluate the effectiveness of most relevant parameters on the global blast response of the structures. The prominent parameters involved in parametric studies were distinguished and their effectiveness on the blast response of masonry walls is put forward. Different failure criteria have been proposed to estimate the damage level of masonry walls subjected to blast loading. The damage criteria utilized in both numerical and experimental studies are also introduced in detail. The present study proposes a dynamic 3D interface model that includes non-associated flow rule and high strain rate effects, implemented in the finite element (FE) code ABAQUS as a user subroutine. The model capability is validated with numerical simulation of unreinforced block work masonry walls subjected to low velocity impact. The results obtained are compared with field test data and good agreement is found. Subsequently, a comprehensive parametric analysis is accomplished with different joint tensile strengths and cohesion, and wall thickness to evaluate the effect of the parameter variations on the impact response of masonry walls. Furthermore, a new strain rate dependent anisotropic constitutive material continuum model is developed for impact and blast applications in masonry, with validation using the high strain rate response of masonry walls. The present model, implemented in FE code ABAQUS as a user subroutine, adopted the usual approach of considering different yield criteria in tension and compression, given the different failure mechanisms. These criteria are plasticity based, obey a non-associated flow rule, are numerically stable and inexpensive, and are characterized by a few material input parameters. The analysis of two unreinforced block work masonry parapets and a masonry brick work infill wall subjected to high strain rate loads is carried out to validate the capability of the model. A comparison is done between the numerical predictions and test data, and good agreement is noticed. Next, a parametric study is conducted to evaluate the influence of the most likely dominant parameters along the three orthogonal directions and of the wall thickness on the global behavior of masonry walls. Iso-damage curves are given for tested masonry infill walls according to three different types of typical Portuguese masonry infill walls, also with three different thicknesses. By performing multiple analyses, the pressure-impulse (P-I) diagrams are obtained under different loading conditions, which can be used for design purposes. Finally, the new continuum plasticity model is taken into engineering applications to solve real problems. The full-scale numerical simulation of the blast response of Al-Askari holy shrine is considered to practice and validate the model capability. The numerical results including the failure of the dome, roof, minarets and side facades are well predicted compared with the reference data. Besides the real explosion, two different scenarios are also defined to estimate the most likely high strain rate response of the shrine under different explosions producing different pressure profiles.
O trabalho aqui apresentado foi realizado no Departamento de Engenharia Civil da Universidade do Minho. Este trabalho envolve estudos numéricos detalhados que pretendem entender melhor a resposta às explosões das estruturas de alvenaria, desenvolver modelos constitutivos para a alvenaria no âmbito da teoria da plasticidade, e abordar curvas de iso-dano para paredes típicas de alvenaria de enchimento em Portugal sob explosão com diferentes condições de carga, que possam ser usadas no projeto das ensolventes. A explosão de uma bomba perto de um edifício, além de uma grande quantidade de vítimas e perdas materiais, pode causar efeitos graves sobre o edifício em si, tais como danos visíveis nos pórticos internos e externos, colapso de paredes ou encerramento de sistemas críticos de apoio à vida. Até ao atentado de Oklahoma City, em 1995, os estudos sobre o comportamento á explosão de estruturas eram um tema de interesse limitado na comunidade de engenharia civil. Após este ataque terrorista, um grande esforço tem sido feito para entender melhor a resposta das estruturas a explosões e para criar soluções para reduzir os danos e perdas humanas devido a essas ações devastadoras. Além disso, estudos sobre a influência da velocidade de deformação sobre as características mecânicas dos materiais de construção tais como aço e betão foram levados a cabo com grande desenvolvimento. Infelizmente, apesar da alta vulnerabilidade das estruturas de alvenaria contra as elevadas velocidades de deformação, a investigação sobre as estruturas de alvenaria e as propriedades dos seus materiais são ainda escassos. Neste sentido, a realização de experiências e a validação de modelos numéricos com os resultados de ensaios levam a uma melhor compreensão da resposta de paredes de alvenaria a explosões e premitem identificar a relevância das diferentes propriedades dos materiais de alvenaria, o que, consequentemente, resulta em inovação de técnicas de reforço e de avaliação de segurança e ferramentas de projeto. O estado da arte sobre ações de explosão e o seu efeito sobre as estruturas é brevemente revisto, incluindo diferentes expressões para definição dos parâmetros de pressão de explosão. Uma breve revisão da recente caracterização das propriedades dinâmicas de alvenaria resultou na caracterização do fator de aumento dinâmico (DIF). Em seguida, aborda-se o desempenho de paredes de alvenaria contra ações de explosão de um ponto de vista da atividade experimental. Além disso, foi realizada uma série de simulações numéricad de estruturas de alvenaria sujeitas a ações de explosão, juntamente com estudos paramétricos, para avaliar a eficácia dos principais parâmetros sobre a resposta da explosão global das estruturas. Os parâmetros mais relevantes envolvidos em estudos paramétricos foram distinguidos e o seu efeito na resposta de paredes de alvenaria a explosões é apresentada. Vários critérios de rotura têm sido propostos para estimar o nível de dano de paredes de alvenaria sujeitas a carregamento de explosões. Os critérios utilizados nos estudos de danos, tanto numéricos quanto experimentais, são apresentados em detalhe. O presente estudo propõe um modelo de interface 3D dinâmica que inclui regra de escoamento não-associado e efeitos da velocidade de deformação, implementado no código de elementos finitos (FE) ABAQUS como uma sub-rotina do utilizador. A capacidade do modelo é validado com simulações numéricas de paredes de alvenaria não armada submetidos a impacto a baixa velocidade. Os resultados obtidos são comparados com os dados de ensaios e boa concordância é encontrada. Subsequentemente, uma análise paramétrica abrangente é realizado com diferentes resistências à tração comum e coesão, e espessura da parede, para avaliar o efeito das variações de parâmetros em resposta a impactos nas paredes de alvenaria. Além disso, um modelo constitutiva contínuo do material dependendo da velocidade de deformação é desenvolvido para aplicações de impacto e explosão em alvenaria, com validação usando a resposta de paredes de alvenaria a velocidades elevadas de deformação. No presente modelo, implementado no código FE ABAQUS como uma sub-rotina do utilizador, foi adotado o método habitual de considerar diferentes critérios de rotura em tração e compressão, tendo em conta os diferentes mecanismos de falha. Estes critérios são baseados na teoria da plasticidade, obedecem a uma regra de escoamento não-associado, são numericamente estáveis e de baixo custo, e são caracterizados por pouco parâmetros de entrada do material. A análise de dois parapeitos não armados de alvenaria e uma pareder de enchimento de alvenaria de tijolo submetidos a cargas de alta velocidade de deformação é realizado para validar a capacidade do modelo. A comparação é feita entre as previsões numéricas e ensaios, com bons resultados. Em seguida, é realizado um estudo paramétrico para avaliar a influência dos parâmetros dominantes mais suscetíveis ao longo das três direções ortogonais, e da espessura da parede sobre o comportamento global das paredes de alvenaria. As curvas de iso-danos são obtidas para três tipos típicos de parede de alvenaria de enchimento em Portugal, com três espessuras diferentes. Com recurso a várias análises, os diagramas pressão-impulso (PI) são obtidos para diferentes paredes de enchimentos de alvenaria sob diferentes condições de carga, o que permite o dimensionamento em projeto corrente. Finalmente, o novo modelo de plasticidade contínuo é utilizado em aplicações de engenharia para resolver problemas reais. A simulação numérica em escala real da resposta à explosão do santuário sagrado de Al- Askari é considerado para a prática e validação da capacidade do modelo. Os resultados numéricos, incluindo o colapso da cúpula, telhado, minaretes e fachadas laterais estão a prever bem em comparação com os dados de referência. Para além da explosão real, dois diferentes cenários são também definidos para estimar a resposta mais provável da alta taxa de deformação do santuário sob diferentes explosões, a produzir perfis de pressão diferentes.
Portuguese Foundation of Science and Technology (FCT) - project CH-SECURE
Buchteile zum Thema "Wall impulse response"
Momeni, Mohammad, und Chiara Bedon. „Review on Glass Curtain Walls under Different Dynamic Mechanical Loads: Regulations, Experimental Methods and Numerical Tools“. In Facade Design - Challenges and Future Perspective [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.113266.
Der volle Inhalt der QuelleGylych, Jelilov, Abdullahi Ahmad Jibrin, Bilal Celik und Abdurrahman Isik. „Impact of Oil Price Fluctuation on the Economy of Nigeria, the Core Analysis for Energy Producing Countries“. In Energy Management Systems in Process Industries - Current Practice and Challenges in Era of Industry 4.0 [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.94055.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Wall impulse response"
Wu, Di, Fangshuo MO und Jianmin GE. „Effects of coupling between loudspeaker and wall on impulse response measurement“. In 163rd Meeting Acoustical Society of America/ACOUSTCS 2012 HONG KONG. ASA, 2013. http://dx.doi.org/10.1121/1.4848216.
Der volle Inhalt der QuelleSimoens, B., M. H. Lefebvre, R. E. Nickell und F. Minami. „Experimental Demonstration of Shakedown in a Vessel Submitted to Impulsive Loading“. In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57236.
Der volle Inhalt der QuelleSmith, Sonny, und Ram M. Narayanan. „Impulse response characterization of the propagation and scattering environment in through-wall applications using an S-band noise radar“. In SPIE Defense, Security, and Sensing, herausgegeben von Kenneth I. Ranney und Armin W. Doerry. SPIE, 2012. http://dx.doi.org/10.1117/12.922457.
Der volle Inhalt der QuelleSohn, Jung Min, Byoung Hoon Kim, Jeom Kee Paik und Graham Schleyer. „Nonlinear Structural Consequence Analysis of Blast Wall Structures Under Hydrocarbon Explosive Loads“. In ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/omae2012-83521.
Der volle Inhalt der QuelleTay-Wo-Chong, Luis, und Wolfgang Polifke. „LES-Based Study of the Influence of Thermal Boundary Condition and Combustor Confinement on Premix Flame Transfer Functions“. In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68796.
Der volle Inhalt der QuelleEtminan, Elnaz, Mahdiyar Molahasani Majdabadi, Seokbum Ko und Travis Wiens. „Using Dynamic Pressure Response for Erosion Detection in Hydraulic Tubes and Hoses“. In ASME/BATH 2021 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/fpmc2021-70511.
Der volle Inhalt der QuelleWei, Songbin, und Imin Kao. „Free Vibration Analysis for Thin Wire of Modern Wiresaw Between Sliced Wafers in Wafer Manufacturing Processes“. In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2266.
Der volle Inhalt der QuelleAli, Muhammad, Khairul Alam und Eboreime Ohioma. „Effects of Functionally Graded Cellular Core on Energy Absorption Response of Thin Walled Composite Axial Members“. In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-66150.
Der volle Inhalt der QuellePrek, Matjaz. „Wavelet Transform of Sound Signal in Fluid-Filled Viscoelastic Pipes“. In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21002.
Der volle Inhalt der QuelleJahnke, Douglas, und Yiannis Andreopoulos. „The Shockwave Response of Thin Composite Materials“. In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88193.
Der volle Inhalt der Quelle