Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Visuo-motor tracking“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Visuo-motor tracking" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Visuo-motor tracking"
Eichert, V., R. Horn und H. J. Möller. „VISUO-MANU-MOTOR TRACKING PERFORMANCE IN ALZHEIMERʼS DISEASE“. Clinical Neuropharmacology 15 (1992): 466B. http://dx.doi.org/10.1097/00002826-199202001-00906.
Der volle Inhalt der QuelleSakaguchi, Yutaka. „Intermittent motor control observed in visuo-manual tracking“. Neuroscience Research 71 (September 2011): e249. http://dx.doi.org/10.1016/j.neures.2011.07.1085.
Der volle Inhalt der QuelleMiall, R. C., D. J. Weir und J. F. Stein. „Planning of movement parameters in a visuo-motor tracking task“. Behavioural Brain Research 27, Nr. 1 (Januar 1988): 1–8. http://dx.doi.org/10.1016/0166-4328(88)90104-0.
Der volle Inhalt der QuelleHufschmidt, Andreas, Günther Deuschl und Carl Hermann Locking. „Motor Habits in Visuo-manual Tracking: Manifestation of an Unconscious Short-Term Motor Memory?“ Behavioural Neurology 3, Nr. 4 (1990): 217–32. http://dx.doi.org/10.1155/1990/698081.
Der volle Inhalt der QuelleRoerdink, Melvyn, Ellen D. Ophoff, C. (Lieke) E. Peper und Peter J. Beek. „Visual and musculoskeletal underpinnings of anchoring in rhythmic visuo-motor tracking“. Experimental Brain Research 184, Nr. 2 (28.08.2007): 143–56. http://dx.doi.org/10.1007/s00221-007-1085-y.
Der volle Inhalt der QuelleRickards, C., und F. W. J. Cody. „Increased use of target cues during visuo-motor tracking in Parkinson's disease“. European Journal of Neurology 3, Nr. 3 (Mai 1996): 212–20. http://dx.doi.org/10.1111/j.1468-1331.1996.tb00425.x.
Der volle Inhalt der QuelleEichert, V. „Visuo-manu-motor tracking performance in healthy volunteers and postacute schizophrenic patients“. Biological Psychiatry 42, Nr. 1 (Juli 1997): 178S. http://dx.doi.org/10.1016/s0006-3223(97)87639-1.
Der volle Inhalt der Quellede Rugy, Aymar, Olivier Oullier und Jean-Jacques Temprado. „Stability of rhythmic visuo-motor tracking does not depend on relative velocity“. Experimental Brain Research 184, Nr. 2 (01.11.2007): 269–73. http://dx.doi.org/10.1007/s00221-007-1180-0.
Der volle Inhalt der QuelleGuillaud, Etienne, Gabriel Gauthier, Jean-Louis Vercher und Jean Blouin. „Fusion of Visuo-ocular and Vestibular Signals in Arm Motor Control“. Journal of Neurophysiology 95, Nr. 2 (Februar 2006): 1134–46. http://dx.doi.org/10.1152/jn.00453.2005.
Der volle Inhalt der QuelleSchwartz, Joshua D., und Stephen G. Lisberger. „Initial tracking conditions modulate the gain of visuo-motor transmission for smooth pursuit eye movements in monkeys“. Visual Neuroscience 11, Nr. 3 (Mai 1994): 411–24. http://dx.doi.org/10.1017/s0952523800002352.
Der volle Inhalt der QuelleDissertationen zum Thema "Visuo-motor tracking"
Vine, Samuel James. „Anxiety, attention and performance variability in visuo-motor skills“. Thesis, University of Exeter, 2010. http://hdl.handle.net/10036/118107.
Der volle Inhalt der QuellePappo, Harry A. „Simulation of the visuo-motor processes in the tracking and interception of a tennis ball in play“. Thesis, Rhodes University, 1985. http://hdl.handle.net/10962/d1001431.
Der volle Inhalt der QuelleBoylan, Simon. „Cognitive effort, efficient coding and non-invasive fMRI measurement of their relation in sensorimotor responses“. Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0463.
Der volle Inhalt der QuelleCognitive effort is a ubiquitous subjective feeling of exertion that pushes people to avoid demanding tasks. From a biological and evolutionary point of view, mental effort is thought to be a mechanism intended to preserve cognitive resources. However, so far, no consensus on the nature of these resources has been established. Since the brain functions as an information-processing organ, efficient coding theory suggests that cognitive resources—whatever their nature—are optimized and should depend on information gain.This hypothesis assumes certain principles about neural coding and information processing. Firstly, we frame our work in the premise that the brain is a Bayesian information-processing machine, that updates internal models through inferences between inputs and previous beliefs. If stimuli are familiar and naturalistic, efficient neural coding can take place to optimize information coding and processing. If these conditions are met, then we can estimate the quantity of information computed by the brain as the relative entropy between prior and posterior beliefs, or information gain; moreover the quantity of energy needed to compute information being optimized, energy spent on a task should be proportional to this same quantity.Indirect measures of this relationship have been validated through pupillometry, as pupil size correlates with information rate during cognitive tasks. In this thesis, we designed experiments to further validate this information-theoretical framework, using complementary behavioral and neuroimaging measures.To assess this hypothesis, we conducted three key experiments : two joystick visuo-motor and oculomotor tracking tasks with pupillometry, and a response-to-stimulus (Hick-Hyman) task in fMRI.The first study investigates the relation between cognitive effort, pupil size and continuous visual-motor prediction under this information framework. By controlling information components of the target, such as predictability, lag, speed and acceleration, we can validate the information origin of cognitive effort (NASA-TLX) and its correlation with pupil size .The second experiment was developed to test the overnight memorization and implicitness of eye and hand continuous tracking. Using the same design as in the first experiment, we ran four experimental sessions, divided in joystick and eye tracking, on two consecutive days. We showed that participants implicitly learned to better predict repeating parts of the trajectory, which resulted in better performance and smaller pupil dilation.The last study was designed to investigate the relationship between information processing and energy dissipation in the brain by quantifying the cerebral metabolic rate of oxygen (CMRO2) during a response to stimulus task in fMRI (BOLD-ASL sequence). Hick-Hyman task maps a different number of stimuli to their response buttons, depending on the complexity (entropy) of the trial or block. As a linear relationship exists between the quantity of information processed (entropy) and the performance (response time) during the task, we hypothesized that there should be a similar relation between the quantity of information needed to accomplish a task and the energy allocated to do so. We addressed multiple technical issues related to CMRO2 computation in a cognitive task context. While we have improved and automatized the data analysis pipeline, we faced significant challenges that prevented us to reach a final conclusion on our initial hypothesis
Buchteile zum Thema "Visuo-motor tracking"
Sanguineti Vittorio, Casadio Maura, Vergaro Elena, Squeri Valentina, Giannoni Psiche und Morasso Pietro G. „Robot therapy for stroke survivors: proprioceptive training and regulation of assistance“. In Studies in Health Technology and Informatics. IOS Press, 2009. https://doi.org/10.3233/978-1-60750-018-6-126.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Visuo-motor tracking"
Vodrahalli, Kailas, Maciej Filipkowski, Tiffany Chen, James Zou und Yaping Joyce Liao. „Predicting Visuo-Motor Diseases From Eye Tracking Data“. In Pacific Symposium on Biocomputing 2022. WORLD SCIENTIFIC, 2021. http://dx.doi.org/10.1142/9789811250477_0023.
Der volle Inhalt der QuelleMasia, L., V. Squeri, M. Casadio, P. Morasso, V. Sanguineti und G. Sandini. „Visuo-motor tracking with coordinated wrist movements under different combinations of visual and kinesthetic disturbances“. In 2009 2nd Conference on Human System Interactions (HSI). IEEE, 2009. http://dx.doi.org/10.1109/hsi.2009.5091065.
Der volle Inhalt der Quelle