Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Visualisation de la smartwatch“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Visualisation de la smartwatch" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Visualisation de la smartwatch"
Khurana, Rushil, Mayank Goel und Kent Lyons. „Detachable Smartwatch“. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 3, Nr. 2 (21.06.2019): 1–14. http://dx.doi.org/10.1145/3328921.
Der volle Inhalt der QuelleShin, Donghee, und Frank Biocca. „Impact of Social Influence and Users' Perception of Coolness on Smartwatch Behavior“. Social Behavior and Personality: an international journal 46, Nr. 6 (05.06.2018): 881–90. http://dx.doi.org/10.2224/sbp.5134.
Der volle Inhalt der QuelleYim, Yonghwan, Jaemoon Sim und Kyungdoh Kim. „Design and Evaluation of Encoded Haptic Pulses for Smartwatches“. Mobile Information Systems 2019 (28.12.2019): 1–15. http://dx.doi.org/10.1155/2019/9628582.
Der volle Inhalt der QuelleSwami, Divya Vishwanath, Sakshi Sachin Thamake, Nandini Sham Ubale, Pallavi Vijay Lokhande und Dr Kazi Kutubuddin Sayyad Liyakat. „Sending Notification to Someone Missing you Through Smart Watch“. International Journal of Information technology and Computer Engineering, Nr. 25 (29.09.2022): 19–24. http://dx.doi.org/10.55529/ijitc.25.19.24.
Der volle Inhalt der QuelleJeon, Seong A., Hansol Chang, Sun Young Yoon, Nayeong Hwang, Kyunga Kim, Hee Yoon, Sung Yeon Hwang, Tae Gun Shin, Won Chul Cha und Taerim Kim. „Effectiveness of Smartwatch Guidance for High-Quality Infant Cardiopulmonary Resuscitation: A Simulation Study“. Medicina 57, Nr. 3 (25.02.2021): 193. http://dx.doi.org/10.3390/medicina57030193.
Der volle Inhalt der QuelleSaid, Noor Azzah, Sharidatul Akma Abu Seman, Dilla Syadia Ab Latiff, Siti Noorsuriani Ma’o und Noorizan Mohamad Mozie. „Consumers’ Behavioral Intention Towards Smartwatch Adoption in Malaysia: A Concept Paper“. International Journal of Innovative Computing 11, Nr. 1 (28.04.2021): 13–19. http://dx.doi.org/10.11113/ijic.v11n1.281.
Der volle Inhalt der QuelleVisuri, Aku, Niels van Berkel, Jorge Goncalves, Reza Rawassizadeh, Denzil Ferreira und Vassilis Kostakos. „Understanding usage style transformation during long-term smartwatch use“. Personal and Ubiquitous Computing 25, Nr. 3 (19.01.2021): 535–49. http://dx.doi.org/10.1007/s00779-020-01511-2.
Der volle Inhalt der QuelleHomayounfar, Morteza, Amirhossein Malekijoo, Aku Visuri, Chelsea Dobbins, Ella Peltonen, Eugene Pinsky, Kia Teymourian und Reza Rawassizadeh. „Understanding Smartwatch Battery Utilization in the Wild“. Sensors 20, Nr. 13 (06.07.2020): 3784. http://dx.doi.org/10.3390/s20133784.
Der volle Inhalt der QuelleSara, Meghshanth. „Stress Detection Smartwatch“. International Journal for Research in Applied Science and Engineering Technology 10, Nr. 7 (31.07.2022): 3796–802. http://dx.doi.org/10.22214/ijraset.2022.45865.
Der volle Inhalt der QuelleProkudina, A. I., N. N. Kirillov und A. S. Nikolaev. „Smartwatch Innovation Landscape“. Economics. Law. Innovaion, Nr. 3 (September 2021): 45–52. http://dx.doi.org/10.17586/2713-1874-2021-3-45-52.
Der volle Inhalt der QuelleDissertationen zum Thema "Visualisation de la smartwatch"
Islam, Mohammad Alaul. „Visualizations for Smartwatches and Fitness Trackers“. Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG018.
Der volle Inhalt der QuelleThis thesis covers research on how to design and use micro-visualizations for pervasive and mobile data exploration on smartwatches and fitness trackers. People increasingly wear smartwatches that can track and show a wide variety of data. My work is motivated by the potential benefits of data visualizations on small mobile devices such as fitness monitoring armbands and smartwatches. I focus on situations in which visualizations support dedicated data-related tasks on interactive smartwatches. My main research goal in this space is to understand more broadly how to design small-scale visualizations for fitness trackers. Here, I explore: (i) design constraints in the small space through an ideation workshop; (ii) what kind of visualizations people currently see on their watch faces; (iii) a design review and design space of small-scale visualizations; (iv) and readability of micro-visualizations considering the impact of size and aspect ratio in the context of sleep tracking. The main findings of the thesis are, first, a set of data needs concerning a sightseeing usage context in which these data needs were met with a wealth of dedicated visualization designs that go beyond those commonly seen on watch displays. Second, a predominant display of health & fitness data, with icons accompanying the text being the most frequent representation type on current smartwatch faces. Third, a design space for smartwatch face visualizations which highlights the most important considerations for new data displays for smartwatch faces and other small displays. Last, in the context of sleep tracking, we saw that people performed simple tasks effectively, even with complex visualization, on both smartwatch and fitness band displays; but more complex tasks benefited from the larger smartwatch size. Finally, I point out important open opportunities for future smartwatch visualization research, such as scalability (e.g., more data, smaller size, and more visualizations), the role of context and wearer's movement, smartwatch display types, and interactivity. In summary, this thesis contributes to the understanding of visualizations on smartwatches and highlights open opportunities for smartwatch visualization research
Brun, Damien. „Démocratisation des visiocasques de réalité augmentée : perspective de la saisie de texte dans des environnements de travail“. Thesis, Le Mans, 2020. http://www.theses.fr/2020LEMA1031.
Der volle Inhalt der QuelleMany people predict a massive use of augmented reality head-mounted displays in different areas already explored by research, including health, education, entertainment and industry. Each of these areas involves scenarios with significant and ubiquitous text input activity, whether for a username or password, annotation of documents or virtual objects, a comment, a report or for sending messages. However, the contexts of use and the characteristics of these augmented reality head-mounted displays imply new interfaces beyond the usual framework of the keyboard-mouse couple or the tactile surface already adopted by the personal computer and the smartphone. In that regard, several text entry interfaces for head-mounted displays have been suggested, implemented and studied, through the recognition of gestures such as those of the hands, head or gaze, up to specific peripherals, such as controllers, gloves or rings, but none adequately responds to the constraints imposed by augmented reality for industrial and office work environments. Within the limits of these contexts supported by our industrial partner, this thesis attempts to address this problem by offering two new complementary text entry interfaces dedicated to augmented reality head-mounted displays. The first solution dedicated to the industrial environment invites users to combine a smartwatch with the head-mounted display to offer a multimodal interface adapted to difficult situations. The second solution dedicated to the office environment, invites users to handle a cubic device offering similar characteristics than traditional keyboards while being mobile. We adopted iterative user-centered design methods to implement parts of our solutions, and followed an empirical research approach including eight experiments to study and compare them. Finally, the analysis of the work allows us to develop and illustrate how our solutions can evolve to reach other contexts and activities, and thus actively participate in the democratization of augmented reality head-mounted displays
Karlsson, Fiona. „Assessing usability evaluation methods for smartwatch applications“. Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-189033.
Der volle Inhalt der QuelleShrivastava, Akash. „Exploring the smartwatch as a tool for medical adherence“. Thesis, Uppsala universitet, Informationssystem, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-256009.
Der volle Inhalt der QuelleLinger, Oscar. „Designing a User-Centered Music Experience for the Smartwatch“. Thesis, KTH, Medieteknik och interaktionsdesign, MID, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231061.
Der volle Inhalt der QuelleMed en snabb teknisk utveckling av smartklockor och tillhörande ljudteknik finns det en kunskapsbrist om användarbehov och hur dessa kan tillfredsställas genom användarcentrerad design. Tidigare forskning om smartklocksanvändares beteenden tyder på att ljudapplikationer inte är ett huvudsakligt användningsområde för smartklockor. Ljudapplikationer implementeras dock allt mer i smartklockor, vilket leder till frågan om vilket värde de ger och om användningsområden möjligen har förbisetts. Den här uppsatsen syftar till att förstå vilka sorts ljudupplevelser en användarcentrerad designprocess skulle resultera i för smartklockor. Designprocessen resulterade i insikter om smartklocksanvändares beteenden med ljudapplikationer, vilket användes som designriktlinjer för kontextmedvetenhet, mikrointeraktioner och ekosystem av enheter. Den resulterande prototypen HeartBeats nyttjar kontextmedvetenhetgenom att rekommendera musik med användarens hjärtrytm i åtanke, mikrointeraktioner med en gest för att byta låt och snabbstart av musik, samt ekosystem av enheter genom snabb åtkomst till klockhögtalare och stöd för att spara telefonbatteri.
Berglund, Lukas. „What is draining the battery on the PineTime smartwatch?“ Thesis, Linköpings universitet, Programvara och system, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-167846.
Der volle Inhalt der QuelleIsacson, Dan. „Application development for smartwatches : An investigation in suitable smartwatch applications“. Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-170020.
Der volle Inhalt der QuelleSmarta klockor har länge framstått som nästa stora insteg inom ekosystemet av mobila enheter. Succén bakom smarttelefoner har mycket att göra med det stora stödet från tredjepartsutvecklare och deras applikationer. För att smarta klockor ska nå liknande nivåer är det troligt att detta tredjepartsstöd är av stor betydelse. Men vad är lämpliga applikationer för detta format? Vad har folk för förväntningar på denna plattform? Det här arbetet har handlat om dessa ämnen med fokus på utveckling mot Apple Watch. Arbetet har gjorts genom en enkätundersökning online som nått över 1400 användare, genom en fältstudie på en person där en applikation för flygresor testats samt genom ett användartest på fem personer där dessa fått testa på ett antal applikationer för Apple Watch, varav de flesta av dessa var utvecklade för detta projekt. Totalt implementerades fyra applikationer: en tidtabellsapplikation för kommunaltrafik, en ljudguide för ett museum, ett spel och en applikation för flygresande. Resultaten visar att folk verkar förvänta sig att en smart klocka ska fungera som en förlängning av deras smarttelefon och det verkar som att notifikationer är ett väldigt bra användningsområde för formatet. Resultaten visar också att det verkar finnas många olika användningsområden för smarta klockor men att interaktioner med dessa bör vara korta och lätthanterliga. Detta är extra viktigt givet den begränsade skärmstorleken och man bör noga överväga hur och vad man presenterar för användaren.
Daniel, G. W. „Video visualisation“. Thesis, Swansea University, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.636344.
Der volle Inhalt der QuellePaverd, Wayne. „Information visualisation“. Master's thesis, University of Cape Town, 1996. http://hdl.handle.net/11427/13528.
Der volle Inhalt der QuelleInformation visualisation uses interactive three-dimensional (3D) graphics to create an immersive environment for the exploration of large amounts of data. Unlike scientific visualisation, where the underlying physical process usually takes place in 3D space, information visualisation deals with purely abstract data. Because abstract data often lacks an intuitive visual representation, selecting an appropriate representation of the data becomes a challenge. As a result, the creation of information visualisation involves as much exploration and investigation as the eventual exploration of that data itself. Unless the user of the data is also the creator of the visualisations, the turnaround time can therefore become prohibitive. In our experience, existing visualisation applications often lack the flexibility required to easily create information visualisations. These solutions do not provide sufficiently flexible and powerful means of both visually representing the data, and specifying user-interface interactions with the underlying database. This thesis describes a library of classes that allows the user to easily implement visualisation primitives, with their accompanying interactions. These classes are not individual visualisations but can be combined to form more complex visualisations. Classes for creating various primitive visual representations have been created. In addition to this, a number of auxillary classes have been created that provide the user with the ability to swap between visualisations, scale whole scenes, and use automatic level of detail control. The classes all have built-in interaction methods which allow the user to easily incorporate the forms of interaction that we found the most useful, for example the ability to select a data. item and thereby obtain more information about it, or the ability to allow the user to change the position of certain data items. To demonstrate the effectiveness of the classes we implemented and evaluated a. number of example systems. We found that the result of using the classes was a decrease in development time as well as enabling people with little, or no visualisation experience to create information visualisations.
Chisnall, David. „Autonomic visualisation“. Thesis, Swansea University, 2007. https://cronfa.swan.ac.uk/Record/cronfa42623.
Der volle Inhalt der QuelleBücher zum Thema "Visualisation de la smartwatch"
Jackson, Wallace. SmartWatch Design Fundamentals. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-4369-5.
Der volle Inhalt der QuelleVisualisation. Shaftesbury, Dorset: Element, 1997.
Den vollen Inhalt der Quelle findenRoland, Mortier, Hrsg. Visualisation. Berlin: Berlin-Verl. Spitz, 1999.
Den vollen Inhalt der Quelle findenVisualisation. London: Headway, 1994.
Den vollen Inhalt der Quelle findenRea, Paul M., Hrsg. Biomedical Visualisation. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61125-5.
Der volle Inhalt der QuelleRea, Paul M., Hrsg. Biomedical Visualisation. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76951-2.
Der volle Inhalt der QuelleRea, Paul M., Hrsg. Biomedical Visualisation. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87779-8.
Der volle Inhalt der QuelleShapiro, Leonard, und Paul M. Rea, Hrsg. Biomedical Visualisation. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10889-1.
Der volle Inhalt der QuelleRea, Paul M., Hrsg. Biomedical Visualisation. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-06070-1.
Der volle Inhalt der QuelleRea, Paul M., Hrsg. Biomedical Visualisation. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37639-0.
Der volle Inhalt der QuelleBuchteile zum Thema "Visualisation de la smartwatch"
Rohn, Jennifer L. „Smartwatch“. In Mapping the Posthuman, 139–42. New York: Routledge, 2023. http://dx.doi.org/10.4324/9781003322603-17.
Der volle Inhalt der QuelleCassettari, Seppe. „Visualisation“. In Introduction to Integrated Geo-information Management, 169–93. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1504-9_10.
Der volle Inhalt der QuelleFrampton, Michael. „Visualisation“. In Complete Guide to Open Source Big Data Stack, 295–337. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-2149-5_9.
Der volle Inhalt der QuelleWoolley, Gary. „Visualisation“. In Reading Comprehension, 81–97. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1174-7_6.
Der volle Inhalt der QuelleGower, John C. „Visualisation“. In Geometry Driven Statistics, 282–87. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118866641.ch14.
Der volle Inhalt der QuelleMorris, Helen. „Visualisation“. In Working with Stress and Tension in Clinical Practice, 60–72. Abingdon, Oxon ; New York, NY : Routledge, 2018.: Routledge, 2017. http://dx.doi.org/10.4324/9781315172491-9.
Der volle Inhalt der QuelleJackson, Wallace. „Smartwatch Design History, Concepts, Terms, and Installation“. In SmartWatch Design Fundamentals, 1–32. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-4369-5_1.
Der volle Inhalt der QuelleJackson, Wallace. „Watch Face Complication Design“. In SmartWatch Design Fundamentals, 283–313. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-4369-5_10.
Der volle Inhalt der QuelleJackson, Wallace. „Watch Face Gyroscopic Design: Using the Gyroscope“. In SmartWatch Design Fundamentals, 315–43. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-4369-5_11.
Der volle Inhalt der QuelleJackson, Wallace. „Watch Face Weather Design: Using Weather APIs“. In SmartWatch Design Fundamentals, 345–83. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-4369-5_12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Visualisation de la smartwatch"
Dagtas, Serhan, Tom McGee und Mohamed Adel-Mottaleb. „SmartWatch“. In the eighth ACM international conference. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/354384.376437.
Der volle Inhalt der QuellePanda, Sourav, Yixiao Feng, Sameer G. Kulkarni, K. K. Ramakrishnan, Nick Duffield und Laxmi N. Bhuyan. „SmartWatch“. In CoNEXT '21: The 17th International Conference on emerging Networking EXperiments and Technologies. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3485983.3494861.
Der volle Inhalt der QuelleAl-Sharrah, Manal, Ayed Salman und Imtiaz Ahmad. „Watch Your Smartwatch“. In 2018 International Conference on Computing Sciences and Engineering (ICCSE). IEEE, 2018. http://dx.doi.org/10.1109/iccse1.2018.8374228.
Der volle Inhalt der QuellePizza, Stefania, Barry Brown, Donald McMillan und Airi Lampinen. „Smartwatch in vivo“. In CHI'16: CHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2858036.2858522.
Der volle Inhalt der QuelleBernaerts, Yannick, Matthias Druwé, Sebastiaan Steensels, Jo Vermeulen und Johannes Schöning. „The office smartwatch“. In the 2014 companion publication. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2598784.2602777.
Der volle Inhalt der QuelleCiuffo, Francesco, und Gary M. Weiss. „Smartwatch-based transcription biometrics“. In 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON). IEEE, 2017. http://dx.doi.org/10.1109/uemcon.2017.8249014.
Der volle Inhalt der QuelleRupprecht, Franca Alexandra, Achim Ebert, Andreas Schneider und Bernd Hamann. „Virtual Reality Meets Smartwatch“. In CHI '17: CHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3027063.3053194.
Der volle Inhalt der QuelleDhull, Ritu, Dheeraj Chava, Deepala Vineeth Kumar, Kantipudi MVV Prasad, Gaurav Samudrala und M. Vijay Bhargav. „Pandemic Stabilizer using Smartwatch“. In 2020 International Conference on Decision Aid Sciences and Application (DASA). IEEE, 2020. http://dx.doi.org/10.1109/dasa51403.2020.9317056.
Der volle Inhalt der QuelleYip, Yuk Ngang Zita, Ze Zhu und Yan Cheong Chan. „Reliability analysis of smartwatch“. In 2017 18th International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2017. http://dx.doi.org/10.1109/icept.2017.8046614.
Der volle Inhalt der QuelleArvai, Laszlo. „Smartwatch Based Indoor Localization“. In 2020 21th International Carpathian Control Conference (ICCC). IEEE, 2020. http://dx.doi.org/10.1109/iccc49264.2020.9257230.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Visualisation de la smartwatch"
Samochowiec, Jakub, und Andreas Müller. Entsolidarisiert die Smartwatch? – Szenarien für ein datafiziertes Gesundheitssystem. Gdi-verlag, Gottlieb Duttweiler Institute, 2021. http://dx.doi.org/10.59986/hxdg2896.
Der volle Inhalt der QuelleJeon, Mingwan, Yonghyuk Kim, Jinseob Kim, Yeo Jin Jung und Yuri Lee. Impact of clothing consumption values and lifestyle on smartwatch acceptance. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/itaa_proceedings-180814-1909.
Der volle Inhalt der QuelleKim Martini, Kim Martini. Can we use a smartwatch for coastal monitoring and research? Experiment, November 2022. http://dx.doi.org/10.18258/35762.
Der volle Inhalt der QuelleCaldwell, T. G., und H. M. Bibby. Visualisation of Tensor Time Domain Electromagnetic Data. Office of Scientific and Technical Information (OSTI), Januar 1995. http://dx.doi.org/10.2172/895937.
Der volle Inhalt der QuelleValero Sancho, JL, J. Catalá Domínguez und BE Marín Ochoa. An approach to the taxonomy of data visualisation. Revista Latina de Comunicación Social, Juli 2014. http://dx.doi.org/10.4185/rlcs-2014-1021en.
Der volle Inhalt der QuelleMarín Ochoa, BE. Treatment of post-conflict Colombia through infographics and data visualisation. Revista Latina de Comunicación Social, April 2018. http://dx.doi.org/10.4185/rlcs-2018-1277en.
Der volle Inhalt der QuelleThompson, D. H. Visualisation in Water of Vortex Flow Over Sharp-Edged Canard Configurations. Fort Belvoir, VA: Defense Technical Information Center, April 1992. http://dx.doi.org/10.21236/ada251673.
Der volle Inhalt der QuelleGetzlaff, Klaus. Simulated near-surface speed combined with ice cover from VIKING20X simulation. GEOMAR, 2022. http://dx.doi.org/10.3289/iatlantic_viking20x_5day_2000_2009.
Der volle Inhalt der QuelleKirkby, A. L., F. Zhang, J. Peacock, R. Hassan und J. Duan. Development of the open-source MTPy package for magnetotelluric data analysis and visualisation. Geoscience Australia, 2020. http://dx.doi.org/10.11636/132198.
Der volle Inhalt der QuelleSchulzki, Tobias, Jan Harlaß und Klaus Getzlaff. Simulated see surface temperature combined with ice cover with an overlay of total cloud cover and windspeed from FOCI simulation. GEOMAR, 2023. http://dx.doi.org/10.3289/foci_sst_ice_wind_ccover.
Der volle Inhalt der Quelle