Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Visual fingerprint“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Visual fingerprint" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Visual fingerprint"
Anshari, Muhammad, Mitra istiar Wardhana und Dhara Alim Cendekia. „Visual Login Fingerprints Scanner Aplikasi Mobile Banking (BRImo, Jenius, BNI Mobile Banking) berdasarkan Model Kait Nir Eyal“. JoLLA: Journal of Language, Literature, and Arts 3, Nr. 8 (31.08.2023): 1198–216. http://dx.doi.org/10.17977/um064v3i82023p1198-1216.
Der volle Inhalt der QuelleZhang, Huiqing, und Yueqing Li. „LightGBM Indoor Positioning Method Based on Merged Wi-Fi and Image Fingerprints“. Sensors 21, Nr. 11 (25.05.2021): 3662. http://dx.doi.org/10.3390/s21113662.
Der volle Inhalt der QuellePopov, Vladimir. „The Problem of Selection of Fingerprints for Topological Localization“. Applied Mechanics and Materials 365-366 (August 2013): 946–49. http://dx.doi.org/10.4028/www.scientific.net/amm.365-366.946.
Der volle Inhalt der QuelleLuda, M. P., N. Li Pira, D. Trevisan und V. Pau. „Evaluation of Antifingerprint Properties of Plastic Surfaces Used in Automotive Components“. International Journal of Polymer Science 2018 (28.11.2018): 1–11. http://dx.doi.org/10.1155/2018/1895683.
Der volle Inhalt der QuelleShams, Haroon, Tariqullah Jan, Amjad Ali Khalil, Naveed Ahmad, Abid Munir und Ruhul Amin Khalil. „Fingerprint image enhancement using multiple filters“. PeerJ Computer Science 9 (03.01.2023): e1183. http://dx.doi.org/10.7717/peerj-cs.1183.
Der volle Inhalt der QuelleZabala-Blanco, David, Marco Mora, Ricardo J. Barrientos, Ruber Hernández-García und José Naranjo-Torres. „Fingerprint Classification through Standard and Weighted Extreme Learning Machines“. Applied Sciences 10, Nr. 12 (15.06.2020): 4125. http://dx.doi.org/10.3390/app10124125.
Der volle Inhalt der QuelleMakrushin, Andrey, Venkata Srinath Mannam und Jana Dittmann. „Privacy-Friendly Datasets of Synthetic Fingerprints for Evaluation of Biometric Algorithms“. Applied Sciences 13, Nr. 18 (05.09.2023): 10000. http://dx.doi.org/10.3390/app131810000.
Der volle Inhalt der QuelleYadav, Nisha, Deeksha Mudgal, Amarnath Mishra, Sacheendra Shukla, Tabarak Malik und Vivek Mishra. „Harnessing fluorescent carbon quantum dots from natural resource for advancing sweat latent fingerprint recognition with machine learning algorithms for enhanced human identification“. PLOS ONE 19, Nr. 1 (04.01.2024): e0296270. http://dx.doi.org/10.1371/journal.pone.0296270.
Der volle Inhalt der QuelleHasoun, Rajaa, Soukaena Hashem und Rehab Hasan. „A Proposed Hybrid Fingerprint, Image Fusion and Visual Cryptography Technique for Anti-Phishing“. Journal of Al-Rafidain University College For Sciences ( Print ISSN: 1681-6870 ,Online ISSN: 2790-2293 ), Nr. 1 (10.10.2021): 328–48. http://dx.doi.org/10.55562/jrucs.v39i1.216.
Der volle Inhalt der QuelleWu, Feng, und Baohua Jiang. „Application of Fluorescent Carbon Nanoelectronic Materials in Combining Partial Differential Equations for Fingerprint Development and Its Image Enhancement“. Journal of Nanoelectronics and Optoelectronics 18, Nr. 9 (01.09.2023): 1070–77. http://dx.doi.org/10.1166/jno.2023.3496.
Der volle Inhalt der QuelleDissertationen zum Thema "Visual fingerprint"
Allouche, Mohamed. „Video tracking for marketing applications“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAS033.
Der volle Inhalt der QuelleThe last decades have seen video production and consumption rise significantly: TV/cinematography, social networking, digital marketing, and video surveillance incrementally and cumulatively turned video content into the predilection type of data to be exchanged, stored, and processed. It is thus commonly considered that 80% of the Internet traffic is video, and intensive and holistic efforts for devising lossy video compression solutions are carried out to reach the trade-off between video data size and their visual quality.Under this framework, marketing videos are still dominated by the paid content (that is, content created by the advertiser that pays an announcer for distributing that content). Yet, organic video content is slowly but surely advancing. In a nutshell, the term organic content refers to a content whose creation and/or distribution is not paid. In most cases, it is a user-created content with implicit advertising value, or some advertising content distributed by a user on a social network. In practice, such a content is directly produced by the user devices in compressed format (e.g. the AVC - Advanced Video Coding, HEVC - High efficiency Video Coding or VVC - Versatile Video Coding) and is often shared by other users, on the same or on different social networks, thus creating a virtual chain distribution that is studied by marketing experts.Such an application can be modeled by at least two different scientific methodological and technical frameworks, namely blockchain and video fingerprinting. On the one hand, should we first consider the distribution issues, blockchain seems an appealing solution, as it makes provisions for a secure, decentralized, and transparent solution to track changes of any digital asset. While blockchain already proved its effectiveness in a large variety of content distribution applications, its multimedia related applications stay scarce and rise conceptual contradictions between the strictly limited computing/storage resources available in blockchain and the large amount of data representing the video content as well as the complex operations video processing requires. On the other hand, should we first consider the multimedia content issues, each step of distribution can be considered as a near duplication operation. Thus, the tracking of organic video can be ensured by video fingerprinting that regroups research efforts devoted to identifying duplicated and/or replicated versions of a given video sequence in a reference video dataset. While tracking video content in uncompressed domain is a rich research field, compressed domain video fingerprinting is still underexplored.The present thesis studies the possibility of tracking advertising compressed video content, in the context of its uncontrolled, spontaneous propagation into a distributed network:• video tracking by means of blockchain-based solutions, despite the large amount of data and the computation requirements of video applications, a priori incompatible with nowadays blockchain solutions• effective compressed domain video fingerprinting, even though video compression is supposed to exclude the very visual redundancy that allows video content to be retrieved.• applicative synergies between blockchain and fingerprinting frameworks.The main results consist in the conception, specification and implementation of:• COLLATE, an on-Chain Off-chain Load baLancing ArchiTecturE, thus making it possible for the intimately constrained computing, storage and software resources of any blockchain to be abstractly extended by general-purpose computing machine resources;• COMMON - Compressed dOMain Marketing videO fiNgerprinting, demonstrating the possibility of modelling compressed modeling video fingerprint under deep learning framework• BIDDING - BlockchaIn-baseD viDeo fINgerprintinG, an end-to-end processing pipeline for coupling compressed domain video fingerprinting to the blockchain load balancing solution
Mei, Yuanxun. „Visualization of Wine Attributes“. Thesis, Växjö University, School of Mathematics and Systems Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-6159.
Der volle Inhalt der QuelleAs the development of the Internet and the rapid increase of data, information visualization is becoming more and more popular. Since human eyes receive visual information very quick and easy, the visualization can make complex and large data more understandable.
Describing sensory perceptions, such as taste, is a challenging task. For a customer, the visualization of the taste of a specific wine together with the other wine attributes such as color and grape type would help him/her choose the right one. In the thesis, two suitable representations of wine attributes are implemented. And, the final system contains two parts. One is a user interface generating his/her fingerprint based on the two representations. The other one is generating the fingerprints of all wines in a database, and save these fingerprints as images. If the user compares his/her wine fingerpr
Kasaei, Shohreh. „Fingerprint analysis using wavelet transform with application to compression and feature extraction“. Thesis, Queensland University of Technology, 1998. https://eprints.qut.edu.au/36053/7/36053_Digitised_Thesis.pdf.
Der volle Inhalt der QuelleGarboan, Adriana. „Traçage de contenu vidéo : une méthode robuste à l’enregistrement en salle de cinéma“. Thesis, Paris, ENMP, 2012. http://www.theses.fr/2012ENMP0097/document.
Der volle Inhalt der QuelleSine qua non component of multimedia content distribution on the Internet, video fingerprinting techniques allow the identification of content based on digital signatures(fingerprints) computed from the content itself. The signatures have to be invariant to content transformations like filtering, compression, geometric modifications, and spatial-temporal sub-sampling/cropping. In practice, all these transformations are non-linearly combined by the live camcorder recording use case.The state-of-the-art limitations for video fingerprinting can be identified at three levels: (1) the uniqueness of the fingerprint is solely dealt with by heuristic procedures; (2) the fingerprinting matching is not constructed on a mathematical ground, thus resulting in lack of robustness to live camcorder recording distortions; (3) very few, if any, full scalable mono-modal methods exist.The main contribution of the present thesis is to specify, design, implement and validate a new video fingerprinting method, TrackART, able to overcome these limitations. In order to ensure a unique and mathematical representation of the video content, the fingerprint is represented by a set of wavelet coefficients. In order to grant the fingerprints robustness to the mundane or malicious distortions which appear practical use-cases, the fingerprint matching is based on a repeated Rho test on correlation. In order to make the method efficient in the case of large scale databases, a localization algorithm based on a bag of visual words representation (Sivic and Zisserman, 2003) is employed. An additional synchronization mechanism able to address the time-variants distortions induced by live camcorder recording was also designed.The TrackART method was validated in industrial partnership with professional players in cinematography special effects (Mikros Image) and with the French Cinematography Authority (CST - Commision Supérieure Technique de l'Image et du Son). The reference video database consists of 14 hours of video content. The query dataset consists in 25 hours of replica content obtained by applying nine types of distortions on a third of the reference video content. The performances of the TrackART method have been objectively assessed in the context of live camcorder recording: the probability of false alarm lower than 16 10-6, the probability of missed detection lower than 0.041, precision and recall equal to 0.93. These results represent an advancement compared to the state of the art which does not exhibit any video fingerprinting method robust to live camcorder recording and validate a first proof of concept for the developed statistical methodology
Bücher zum Thema "Visual fingerprint"
Tokareva, Elena, Tat'yana Solodova und Natal'ya Lavrent'eva. Visual Dactyloscopy: in Schemes and Illustrations. ru: INFRA-M Academic Publishing LLC., 2025. https://doi.org/10.12737/2188330.
Der volle Inhalt der QuelleBuchteile zum Thema "Visual fingerprint"
Rahman, S. M. Mahbubur, Tamanna Howlader und Dimitrios Hatzinakos. „Fingerprint Classification“. In Orthogonal Image Moments for Human-Centric Visual Pattern Recognition, 117–28. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9945-0_5.
Der volle Inhalt der QuelleAmayeh, Gholamreza, Soheil Amayeh und Mohammad Taghi Manzuri. „Fingerprint Images Enhancement in Curvelet Domain“. In Advances in Visual Computing, 541–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-89646-3_53.
Der volle Inhalt der QuelleMoolla, Yaseen, Ann Singh, Ebrahim Saith und Sharat Akhoury. „Fingerprint Matching with Optical Coherence Tomography“. In Advances in Visual Computing, 237–47. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27863-6_22.
Der volle Inhalt der QuelleMgaga, Sboniso Sifiso, Jules-Raymond Tapamo und Nontokozo Portia Khanyile. „Optical Coherence Tomography Latent Fingerprint Image Denoising“. In Advances in Visual Computing, 694–705. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64559-5_55.
Der volle Inhalt der QuelleDellys, Hachemi Nabil, Noussaiba Benadjimi, Meriem Romaissa Boubakeur, Layth Sliman, Karima Benatchba, Saliha Artabaz und Mouloud Koudil. „A Critical Comparison of Fingerprint Fuzzy Vault Techniques“. In Advances in Visual Informatics, 178–88. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25939-0_16.
Der volle Inhalt der QuelleXie, Wuyuan, Zhan Song und Xiaoting Zhang. „A Novel Photometric Method for Real-Time 3D Reconstruction of Fingerprint“. In Advances in Visual Computing, 31–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17274-8_4.
Der volle Inhalt der QuelleJiang, Xiang, Shikui Wei, Ruizhen Zhao, Ruoyu Liu, Yufeng Zhao und Yao Zhao. „A Visual Perspective for User Identification Based on Camera Fingerprint“. In Lecture Notes in Computer Science, 52–63. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34110-7_5.
Der volle Inhalt der QuelleMuhammed, Ajnas, und Alwyn Roshan Pais. „A Novel Cancelable Fingerprint Template Generation Mechanism Using Visual Secret Sharing“. In Lecture Notes in Computer Science, 357–65. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-12700-7_37.
Der volle Inhalt der QuelleChi, Zhang. „Research on Image Fingerprint Technology Based on Watson Visual Model Multimedia Technology“. In Advances in Intelligent Systems and Computing, 127–36. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60744-3_14.
Der volle Inhalt der QuelleGaudio, Paola. „11. Emotional Fingerprints“. In Prismatic Jane Eyre, 546–91. Cambridge, UK: Open Book Publishers, 2023. http://dx.doi.org/10.11647/obp.0319.17.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Visual fingerprint"
Zhang, Shihao, Zhaodi Pei, Haonan Mou, Wenting Yang, Qing Li und Xia Wu. „Visual Explanations of Deep Convolutional Neural Network for EEG Brain Fingerprint“. In 2024 IEEE International Symposium on Biomedical Imaging (ISBI), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/isbi56570.2024.10635505.
Der volle Inhalt der QuelleMassoudi, A., F. Lefebvre, C. h. Demarty, L. Oisel und B. Chupeau. „A Video Fingerprint Based on Visual Digest and Local Fingerprints“. In 2006 International Conference on Image Processing. IEEE, 2006. http://dx.doi.org/10.1109/icip.2006.312834.
Der volle Inhalt der QuelleLi, Haoyue, Ming Fang und Feiran Fu. „Visual fingerprint-based indoor localization“. In the 2nd International Conference. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3194206.3194237.
Der volle Inhalt der QuellePrange, Sarah, Lukas Mecke, Alice Nguyen, Mohamed Khamis und Florian Alt. „Don't Use Fingerprint, it's Raining!“ In AVI '20: International Conference on Advanced Visual Interfaces. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3399715.3399823.
Der volle Inhalt der QuelleDreher, Andreas W., und Klaus Reiter. „Nerve Fiber Layer Assessment with a Retinal Laser Ellipsometer“. In Noninvasive Assessment of the Visual System. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/navs.1991.tua2.
Der volle Inhalt der QuelleJain, S., S. K. Mitra, A. Banerjee und A. K. Roy. „A graphical approach for fingerprint verification“. In IET International Conference on Visual Information Engineering (VIE 2006). IEE, 2006. http://dx.doi.org/10.1049/cp:20060504.
Der volle Inhalt der QuelleBoutella, Leila, und Amina Serir. „Block ridgelet and SVM based fingerprint matching“. In 2011 3rd European Workshop on Visual Information Processing (EUVIP). IEEE, 2011. http://dx.doi.org/10.1109/euvip.2011.6045518.
Der volle Inhalt der QuelleMühlbacher, Bernhard, Thomas Stütz und Andreas Uhl. „JPEG2000 Part 2 wavelet packet subband structures in fingerprint recognition“. In Visual Communications and Image Processing 2010, herausgegeben von Pascal Frossard, Houqiang Li, Feng Wu, Bernd Girod, Shipeng Li und Guo Wei. SPIE, 2010. http://dx.doi.org/10.1117/12.862926.
Der volle Inhalt der QuelleHine, Gabriel Emile, Emanuele Maiorana und Patrizio Campisi. „Minutiae Triple Correlation: A Translation Invariant Fingerprint Representation“. In 2019 8th European Workshop on Visual Information Processing (EUVIP). IEEE, 2019. http://dx.doi.org/10.1109/euvip47703.2019.8946139.
Der volle Inhalt der QuellePatil, B. D., J. V. Kulkarni und R. S. Holambe. „Fingerprint verification using wavelet and local dominant orientation“. In IET International Conference on Visual Information Engineering (VIE 2006). IEE, 2006. http://dx.doi.org/10.1049/cp:20060506.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Visual fingerprint"
Stanton, Brian, Mary Theofanos und Charles Sheppard. A study of users with visual disabilities and a fingerprint process. Gaithersburg, MD: National Institute of Standards and Technology, 2008. http://dx.doi.org/10.6028/nist.ir.7484.
Der volle Inhalt der Quelle